环维黄杨星D对心肌肥厚的影响及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     环维黄杨星D (Cyclovirobuxinum D, Cvb-D)为黄杨科植物小叶黄杨及其同属植物中提取精制所得生物碱,可行气活血,通络止痛,对与心肌肥厚发生发展密切相关的因子都有明显调节作用,但对心肌肥厚疗效尚未见报道。本研究利用异丙肾上腺素(ISO)诱导小鼠心肌肥厚、左旋甲状腺素(L-thy)诱导大鼠心肌肥厚两个模型,从组织病理形态学、神经体液因子、心肌能量代谢以及相关信号通路探讨Cvb-D对心肌肥厚的药效及其作用机制,为其临床应用提供实验依据,拓展中医药防治心血管疾病的新领域。
     方法:
     取KM小鼠皮下注射ISO1.0mg/kg,每d两次,连续14d,制备小鼠心肌肥厚模型,给予低、中、高剂量环维黄杨星D(6.0、9.0、12.0mg/kg·d),灌胃给药14d。以小鼠心脏重量指数(HW=全心重量/体重)、左心室重量指数(LIWI=左心室重量/体重)、病理形态学(HE染色)、心肌能量代谢变化(游离脂肪酸FFA、乳酸LD)和凋亡调控基因bax、bcl-2蛋白阳性表达量(免疫组织化学)为指标考察Cvb-D对小鼠心肌肥厚的保护作用。
     取SD大鼠腹腔注射L-thy1.0mg/kg-d,连续14d,制备大鼠心肌肥厚模型,给予低、中、高剂量环维黄杨星D(6.0、12.0、24.0mg/kg·d),灌胃给药14d。以大鼠心脏重量指数、左心室重量指数、病理形态学、心肌NO系统(NO、NOS)、抗氧化损伤(SOD、MDA含量)为指标考察Cvb-D对大鼠心肌肥厚的疗效。以凋亡调控基因bax、bcl-2蛋白阳性表达量、原癌基因c-fos、c-jun mRNA和丝裂原活化蛋白激酶MAPK通路中p38a, p381βmRNA的表达变化(实时荧光相对定量RT-PCR)为指标,初步探讨Cvb-D对大鼠心肌肥厚的保护作用机理。
     结果:
     1环维黄杨星D (Cvb-D)对心肌肥厚的药效研究
     与模型对照组比较,Cvb-D高剂量组小鼠心脏重量指数(HW)和左心室重量指数(LHWI)明显降低(P<0.01或P<0.05);Cvb-D低、中、高剂量组大鼠心脏重量指数(HW)和左心室重量指数(LHWI)明显降低(P<0.01或P<0.05):Cvb-D中、高剂量组大鼠和小鼠心肌细胞肥厚扩大、细胞间隙紊乱现象有明显的改善;Cvb-D低、中、高剂量组小鼠血清游离脂肪酸(FFA)和乳酸(LD)含量显著下降(P<0.01,或P<0.05);Cvb-D中、高剂量组大鼠心肌组织SOD活性显著升高;Cvb-D低、中、高剂量组大鼠心肌组织MDA含量明显降低(P<0.05);Cvb-D低、中、高剂量组大鼠心肌组织NO含量显著上升(P<0.01或P<0.05);Cvb-D中、高剂量组大鼠心肌组织NOS的含量显著升高(P<0.01或P<0.05)
     2环维黄杨星D (Cvb-D)对心肌肥厚的作用机理
     与模型对照组比较,Cvb-D低、中、高剂量组小鼠和大鼠心肌组织bax蛋白的表达显著下调,且使bcl-2蛋白的表达明显上调,bax、bcl-2累积光密度IOD比值显著降低(P<0.05或P<0.01),减少心肌细胞的凋亡;Cvb-D中、高剂量组大鼠心肌c-fos mRNA显著降低(P<0.01);Cvb-D中、高剂量组大鼠心肌c-jun mRNA显著下调(P<0.05或P<0.01);Cvb-D中、高剂量组大鼠心肌p38a、p38βmRNA显著下调(P<0.01)
     结论:
     1Cvb-D抑制心肌肥厚,改善心肌肥厚病理形态学,阻止左室心肌肥厚的发生发展。其机制与其能通过影响心肌一氧化氮系统,抗氧化损伤进而改善心功能、阻止氧自由基对心肌细胞的损伤作用有关。
     2Cvb-D通过减少心肌肥厚心肌组织游离脂肪酸(FFA)、乳酸(LD)的生成,改善心肌能量代谢,减轻心脏负荷,改善心肌肥厚预后。
     3Cvb-D对ISO、L-thy诱导的心肌肥厚细胞凋亡具有较好的抑制作用,其机制可能与其能够下调控制凋亡的bax基因和上调bcl-2基因的表达有关。
     4环维黄杨星D对心肌肥厚具有良好的保护作用,其分子机制与其能够调节原癌基因c-fos、c-jun mRNA的表达、影响p38MAPK信号通路有关。
Objectives:
     Cyclovirobuxine D (Cvb-D), an alkaloid extracted from Buxusn microphylla Sieb.et Zucc.var.sinica Rehd.et Wils and its congeneric plants, can promote Qi and blood flowing,dredge collaterals and relieve pain.Cyclovirobuxine D plays an important role in the regulation of neuroendocrine factors,which are linked closely with myocardial hypertrophy.But there were no reports about the influence of Cvb-D on myocardial hypertrophy.In this study, the model of myocardial hypertrophy of mouse and rat were induced by isoproterenol (ISO) and L-thyroxine (L-thy), respectively. Cvb-D's efficacy and its underlying mechanism of effect on cardiac hypertrophy were studied, in the aspects of pathomophology, NO system, antioxidant effect, myocardial energy metabolism and related signal pathways, aiming to provide new ideas and experimental bases for the clinical application of Cvb-D and expand a new research filed for prevention and treatment of cardiovascular by TCM.
     Methods:
     The Kunming mice were subcutaneous injected of ISO (1.0mg/kg), b.i.d.,for14consecutive days,to induce the mouse model of cardiac hypertrophy. The treatment groups were oral administrated Cvb-D (6.0,9.0,12.0mg/kg·d) for14days. The protective effects of Cvb-D on myocardial hypertrophy in mice were investigated with the heart weight index(HW=heart weight/body weight), left heart weight index(LHWI=left ventricular weight/body weight), the myocardial histopathological morphology(HE staining), the energy metabolism(The content of free fatty acid and lactic acid) and apoptosis regulation genes of bax and bcl-2(Immunohistochemistry) as indicators.
     The Sprague Dawley rats were intraperitoneal injected of L-thy (1.0mg/kg·d,) for14consecutive days to induce the rat model of cardiac hypertrophy. The treatment groups were oral administration of Cvb-D (6.0,12.0,24.0mg/kg·d) for14days. The protective effects of Cvb-D on myocardial hypertrophy in rats were investigated on the base of the heart weight index(HW=heart weight/body weight), left heart weight index(LHWI=left ventricular weight/body weight), the myocardial histopathological morphology(HE staining), NO system of myocardial (The content of NO and NOS), anti-oxidative damage(The content of SOD and MDA). Through the positive expression changes of bax and bcl-2proteins, changes of c-fos, c-jun,p38α and p38β mRNA(Real time QPCR) to explore the mechanism of Cyclovirobuxinum D on preventing cardiac hypertrophy preliminarily
     Results:
     1The effects of Cyclovirobuxinum D on cardiac hypertrophy
     Compared with model group, high dose of Cvb-D could significantly reduce the weight index of the rat's heart and the mass index of the left ventricular in mice (P<0.Olor P<0.05); high-, mid-, low-dose of Cvb-D all could significantly reduce the weight index of the rat's heart and the mass index of the left ventricular in rats (P<0.01or P<0.05); high-, mid-dose of Cvb-D could improve the hypertrophy of myocardial cells, intercellular space disorder phenomenon in mice and rats; high-, mid-, low-dose of Cvb-D all could significantly reduce the content of free fatty acid (FFA) and lactic acid (LD) in serum(P><0.05or P<0.01);high-, mid-dose of Cvb-D could also improve the activity of SOD in myocardial organization, reduce the MDA's content (P<0.05orP<0.0I) and significantly increase the content of NO and NOS (P<0.05or P<0.01).
     2The mechanism of Cyclovirobuxinum D on preventing cardiac hypertrophy
     Compared with model group, high-, mid-, low-dose of Cvb-D all could significantly reduce the expression of bax's protein of myocardial tissue in mice and rats, upregulate the protein of bcl-2(P<0.05or P<0.01), and reduce the apoptosis of cardiac cells. High-, mid-dose of Cvb-D were able to significantly reduce the expression of mRNA of c-fos and c-jun in myocardial tissue(P<0.05orP<0.01);High-, mid-dose of Cvb-D were able to significantly down-regulated the expression of mRNA of p38a and p38p in myocardial tissue(P<0.01).
     Conclusions:
     1. The Cvb-D could inhibit cardiac hypertrophy, improving the morphology of left ventricular hypertrophy,and preventing the development of left ventricular hypertrophy. Its mechanism may be related to its effects on the myocardial nitric oxide system, anti-oxidative damage and thus improve the cardiac function and prevent injury related to oxygen free radicals on myocardial cells.
     2. The Cvb-D could ameliorate the mycardial energy metabolism and relieve the dardiac stress,by reducing the generation of free fatty acids(FFA) and lactic acid(LD) in cardiac tissue of hypertrophic cadiac.
     3. The Cvb-D showed a better inhibition effect of apoptosis of cardiomyocytes induced by ISO, L-thy, its mechanism may be related to down-regulating the bax gene which control apoptosis and up-regulating the bcl-2gene expression.
     4. The Cvb-D showed a great protective effect on cardiac hypertrophy. Its molecular mechanism could involve the regulation of the mRNA expression of proto-oncogene of c-fos and c-jun, and influence of the p38in MAPK signaling pathway.
引文
[1]Foryst-Ludwig, A., M.C. Kreissl, C. Sprang, et al. Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol,2011,301(1):H115-22.
    [2]Dickhout, J.G., R.E. Carlisle, and R.C. Austin, Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease:endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res,2011,108(5):629-42.
    [3]Seidel, T., A. Salameh, and S. Dhein. A simulation study of cellular hypertrophy and connexin lateralization in cardiac tissue. Biophys J,2010,99(9):2821-30.
    [4]Saito, S., G. Matsumiya, T. Sakaguchi, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant,2010,29(6):672-9.
    [5]洪缨,解欣然,谢俊大,等.小檗碱对压力超负荷致心肌肥厚模型大鼠心脏结构的影响.北京中医药大学学报,2006,27(07):465-467+505.
    [6]张萍,何国祥,王国超,等.压力超负荷时心肌闰盘的改变.中华心血管病杂志,2000,28(05):66-68+80.
    [7]佟长青,刘子泉,邸瑶,等.益气活血方逆转心肌肥大过程中心肌超微结构的变化.武警医学院学报,2007,16(03):228-230+341.
    [8]Saez, J.C., A.C. Nairn, A.J. Czernik, et al. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol,1997, 29(8):2131-45.
    [9]Jameel, M.N.,J. Zhang, Myocardial energetics in left ventricular hypertrophy. Curr Cardiol Rev,2009,5(3):243-50.
    [10]Takaoka, H., G. Esposito, L. Mao, et al. Heart size-independent analysis of myocardial function in murine pressure overload hypertrophy. Am J Physiol Heart Circ Physiol,2002,282(6):H2190-7.
    [11]冯兵.心肌肥厚的能量代谢研究进展.国外医学.心血管疾病分册,1997,24(02):9-12.
    [12]Teare, D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J,1958, 20(1):1-8.
    [13]Kerkela, R.,T. Force. Recent insights into cardiac hypertrophy and left ventricular remodeling. Curr Heart Fail Rep,2006,3(1):14-8.
    [14]Bregagnollo, E.A., M.A. Mestrinel, K. Okoshi, et al. Relative role of left ventricular geometric remodeling and of morphological and functional myocardial remodeling in the transition from compensated hypertrophy to heart failure in rats with supravalvar aortic stenosis. Arq Bras Cardiol,2007,88(2):225-33.
    [15]Lotrionte, M., L. Galiuto, G.G. Biondi-Zoccai, et al. Pathophysiologic role of myocardial hypertrophy, microcirculatory dysfunction and cardiomyocyte apoptosis in aortic stenosis. G Ital Cardiol (Rome),2006,7(7):437-44.
    [16]Smirnova, M.D., T.V. Fofanova, A. Postnov, et al. Genetic aspects of myocardial hypertrophy in hypertrophic cardiomyopathy and arterial hypertension. Ter Arkh, 2008,80(1):77-84.
    [17]Moran, A.M., I. Friehs, K. Takeuchi, et al. Noninvasive serial evaluation of myocardial mechanics in pressure overload hypertrophy of rabbit myocardium. Herz,2003,28(1):52-62.
    [18]Straznicka, M., R.J. Leone, Jr., P.M. Scholz, et al. Myocardial effects of cyclic AMP phosphodiesterase inhibition are dampened in thyroxine-induced cardiac hypertrophy. J Surg Res,1998,76(1):61-6.
    [19]Kobori, H., A. Ichihara, Y. Miyashita, et al. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol,1999, 160(1):43-7.
    [20]Degens, H., A.J. Gilde, M. Lindhout, et al. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol, 2003,284(1):H108-15.
    [21]Lu, W., P.Q. Liu, T.H. Wang, et al. Role of mitogen-activated protein kinase in the inhibition of myocardial hypertrophy by nitric oxide in renovascular hypertensive rats. Sheng Li Xue Bao,2001,53(1):32-6.
    [22]Janssens, S., P. Pokreisz, L. Schoonjans, et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res,2004, 94(9):1256-62.
    [23]Rossi, M.A., S.G. Ramos, and C.M. Prado. Chronic inhibition of nitric oxide synthase induces hypertension and cardiomyocyte mitochondrial and myocardial collagen remodelling in the absence of hypertrophy. J Hypertens,2003,21(5): 993-1001.
    [24]詹昌德.一氧化氮在防止心肌肥厚反应巾的作用及其机制.生理科学进展,2000,31(04):322-324.
    [25]郭益民,朱小南,潘敬运.一氧化氮在肾性高血压大鼠心肌肥厚中的作用.中出医科大学学报,1999,20(02):31-34.
    [26]Zhong, J., R. Basu, D. Guo, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation, 2010,122(7):717-28,18 p following 728.
    [27]Dostal, D.E., K.N. Rothblum, K.M. Conrad, et al. Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol,1992,263(4 Pt 1): C851-63.
    [28]Baker, K.M., M.I. Chernin, T. Schreiber, et al. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept,2004, 120(1-3):5-13.
    [29]He, J.G., S.L. Chen, Y.Y. Huang, et al. The nonpeptide AVE0991 attenuates myocardial hypertrophy as induced by angiotensin Ⅱ through downregulation of transforming growth factor-betal/Smad2 expression. Heart Vessels,2010,25(5): 438-43.
    [30]Ohtani, T., M. Ohta, K. Yamamoto, et al. Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure:Beneficial effects of mineralocorticoid receptor blocker. Am J Physiol Regul Integr Comp Physiol,2007,292(2):R946-54.
    [31]张冀东,阿托伐他汀逆转醛固酮致心肌成纤维细胞增殖的机制探讨[D],2008, 河北医科大学.
    [32]Partanen, N., M. Husso, O. Vuolteenaho, et al. N-terminal pro-atrial natriuretic peptide reflects cardiac remodelling in stage 1 hypertension. J Hum Hypertens, 2011,25(12):746-51.
    [33]杨鸿,许顶立,夏凉,等.大鼠心肌肥厚时心脏心钠素、ras癌基因的表达.北京医科大学学报,1994,26(S 1):67-74.
    [34]Iemitsu, M, S. Maeda, T. Otsuki, et al. Time course alterations of myocardial endothelin-1 production during the formation of exercise training-induced cardiac hypertrophy. Exp Biol Med (Maywood),2006,231(6):871-5.
    [35]Mizutani, K., S. Kawashima, T. Ueyama, et al. Heparin and heparan sulfate inhibit extracellular signal-regulated kinase activation and myocardial cell hypertrophy induced by endothelin-1. Kobe J Med Sci,2001,47(2):47-58.
    [36]Wei, B.R., P.L. Martin, S.B. Hoover, et al. Capacity for resolution of Ras-MAPK-initiated early pathogenic myocardial hypertrophy modeled in mice. Comp Med,2011,61(2):109-18.
    [37]Dwyer, J.P., M.E. Ritchie, G.K. Smyth, et al. Myocardial gene expression associated with genetic cardiac hypertrophy in the absence of hypertension. Hypertens Res,2008,31(5):941-55.
    [38]Lee, S.D., S.H. Chang, W.H. Kuo, et al. Role of mitogen-activated protein kinase kinase in Porphyromonas gingivalis-induced myocardial cell hypertrophy and apoptosis. Eur J Oral Sci,2006,114(2):154-9.
    [39]Pratt, P.F., D. Bokemeyer, M. Foschi, et al. Alterations in subcellular localization of p38 MAPK potentiates endothelin-stimulated COX-2 expression in glomerular mesangial cells. J Biol Chem,2003,278(51):51928-36.
    [40]Han, J., J.D. Lee, P.S. Tobias, et al. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem,1993,268(33): 25009-14.
    [41]Brewster, J.L., T. de Valoir, N.D. Dwyer, et al. An osmosensing signal transduction pathway in yeast. Science,1993,259(5102):1760-3.
    [42]Sheth, K., J. Friel, B. Nolan, et al. Inhibition of p38 mitogen activated protein kinase increases lipopolysaccharide induced inhibition of apoptosis in neutrophils by activating extracellular signal-regulated kinase. Surgery,2001,130(2):242-8.
    [43]Hirotani, S., K. Otsu, K. Nishida, et al. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation,2002,105(4):509-15.
    [44]Cheng, T.H., N.L. Shih, C.H. Chen, et al. Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. J Biomed Sci,2005, 12(1):123-33.
    [45]Zhang, D., V. Gaussin, G.E. Taffet, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med,2000,6(5):556-63.
    [46]Matsumoto-Ida, M., Y. Takimoto, T. Aoyama, et al. Activation of TGF-betal-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol,2006,290(2):H709-15.
    [47]See, F., W. Thomas, K. Way, et al. p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol,2004,44(8):1679-89.
    [48]Wang, Y., B. Su, V.P. Sah, et al. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem,1998,273(10):5423-6.
    [49]Yue, T.L., J.L. Gu, C. Wang, et al. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem,2000,275(48):37895-901.
    [50]Streicher, J.M., S. Ren, H. Herschman, et al. MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res,2010, 106(8):1434-43.
    [51]Liu, H., A. Pedram, and J.K. Kim. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38beta. Cardiovasc Res,2011,89(1):119-28.
    [52]Watanabe, K., M. Ma, K. Hirabayashi, et al. Swimming stress in DN 14-3-3 mice triggers maladaptive cardiac remodeling:role of p38 MAPK. Am J Physiol Heart Circ Physiol,2007,292(3):H1269-77.
    [53]Teiger, E., V.D. Than, L. Richard, et al. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest,1996,97(12):2891-7.
    [54]Ing, D.J., J. Zang, V.J. Dzau, et al. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res,1999,84(1):21-33.
    [55]李为民,孙宁玲,刘巍,等.自发性高血压大鼠心肌bcl-2、bax蛋白表达的研究.中国免疫学杂志,2002,18(02):126-128+131.
    [56]Hefti, M.A., B.A. Harder, H.M. Eppenberger, et al. Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol,1997,29(11):2873-92.
    [57]Delaney, J., R. Chiarello, D. Villar, et al. Regulation of c-fos, c-jun and c-myc gene expression by angiotensin Ⅱ in primary cultured rat astrocytes:role of ERK1/2 MAP kinases. Neurochem Res,2008,33(3):545-50.
    [58]衣晓峰.哈医大发现心肌肥厚发生发展新机制.中国医药报.B02.
    [59]许旭东,宋晓伟,荆清,等.大鼠心肌肥厚过程中microRNAs的表达变化.蚌埠医学院学报,2010,35(12):1200-1203.
    [60]张淑华,葛郁芝,潘淑娟,等microRNAs在心肌肥厚大鼠中的差异表达及其与肥厚关系的探讨.第11届中国南方国际心血管病学术会议.2009.中国广东广州.
    [61]Zhu, W., L. Yang, H. Shan, et al. MicroRNA expression analysis:clinical advantage of propranolol reveals key microRNAs in myocardial infarction. PLoS One,2011, 6(2):e14736.
    [62]Hua, Y., Y. Zhang, and J. Ren. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction:role of microRNA-1 and microRNA-133a. J Cell Mol Med,2012,16(1):83-95.
    [63]王晓建,杨旭,宋晓东,等.新基因C10orf97参与压力超负荷性心肌肥厚.中国 比较医学杂志,2008,18(05):9-12+20.
    [64]Sanford, C.F., E.E. Griffin, and K. Wildenthal. Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res,1978,43(5):688-94.
    [65]Weiss, H.R.J. Tse. Myocardial metabolic and functional responses to acetylcholine are altered in thyroxine-induced cardiac hypertrophy. Can J Physiol Pharmacol, 1995,73(6):729-35.
    [66]Strandgaard, S.,O.B. Paulson. Cerebral blood flow and its pathophysiology in hypertension. Am J Hypertens,1989,2(6 Pt 1):486-92.
    [67]Breisch, E.A., F.C. White, H.K. Hammond, et al. Myocardial characteristics of thyroxine stimulated hypertrophy. A structural and functional study. Basic Res Cardiol,1989,84(4):345-58.
    [68]Kitagawa, Y., D. Yamashita, H. Ito, et al. Reversible effects of isoproterenol-induced hypertrophy on in situ left ventricular function in rat hearts. Am J Physiol Heart Circ Physiol,2004,287(1):H277-85.
    [69]Lv, R., C. Zhang, Y. Liu, et al. Dynamic study on inhibition of qi-benefiting, blood-activating recipe on myocardial hypertrophy induced by ISO in rats. Zhong YaoCai,2010,33(5):749-53.
    [70]胡宇驰,侯家玉.知母、黄芪对小鼠实验性心肌肥厚及应激反应能力的影响。中国中药杂志,2003,28(04):84-89.
    [71]于学军,戚文航,顾德官,等.自发性高血压大鼠左室肥厚及心肌纤维化的动态变化.高血压杂志,1999,7(02):66-69.
    [72]Jankowski, M. Cardiac delivery of interference RNA for thyrotropin-releasing hormone inhibits hypertrophy in spontaneously hypertensive rat. Hypertension, 2011,57(1):26-8.
    [73]Anversa, P., M. Hagopian, and A.V. Loud, Quantitative radioautographic localization of protein synthesis in experimental cardiac hypertrophy. Lab Invest, 1973,29(3):282-92.
    [74]Wu, Y., H.C. Yang, and X. Chen. The effects of simvastatin on cardiac hypertrophy and association on calcium channel modulation in rats with myocardial hypertrophy induced by abdominal aortic constriction. Zhonghua Xin Xue Guan Bing Za Zhi, 2009,37(4):352-7.
    [75]Laycock, S.K., K.A. Kane, J. McMurray, et al. Captopril and norepinephrine-induced hypertrophy and haemodynamics in rats. J Cardiovasc Pharmacol,1996,27(5):667-72.
    [76]Choi, E.Y., W. Chang, S. Lim, et al. Rosuvastatin inhibits norepinephrine-induced cardiac hypertrophy via suppression of Gh. Eur J Pharmacol,2010,627(1-3):56-62.
    [77]Frohlich, E.D., Y. Chien, S. Sesoko, et al. Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats. Am J Physiol, 1993,264(1 Pt 2):R30-4.
    [78]Yu, H.C., L.M. Burrell, M.J. Black, et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation,1998,98(23):2621-8.
    [79]Schmieder, R.E., F.H. Messerli, G.E. Garavaglia, et al. Dietary salt intake. A determinant of cardiac involvement in essential hypertension. Circulation,1988, 78(4):951-6.
    [80]王照华,梁黔生,和郑智.丹参酮对高盐诱导心肌肥厚的作用.华中科技大学学报(医学版),2009,38(04):500-503.
    [81]Shanmugam, P., A.J. Valente, S.D. Prabhu, et al. Angiotensin-Ⅱ type 1 receptor and NOX2 mediate TCF/LEF and CREB dependent WISP1 induction and cardiomyocyte hypertrophy. J Mol Cell Cardiol,2011,50(6):928-38.
    [82]Yu, H., Y. Guo, L. Mi, et al. Mitofusin 2 inhibits angiotensin Ⅱ-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther,2011,16(2):205-11.
    [83]李燕钰.心肌肥厚之“痰瘀相关”理论探讨.陕西中医,2004,25(07):619-620.
    [84]徐贵成,张东焱.张大荣临床论治扩张型心肌病.中国中医药信息杂志,1997,4(08):32-33.
    [85]倪量,王硕仁,赵明镜,等.部分缩窄大鼠腹主动脉致心肌肥厚动物模型的病证结合研究.中国中医基础医学杂志,2007,13(10):757-759.
    [86]魏春明,马凤英,陶宗玲.肥厚型心肌病50例中医辨证分型初步探讨.天津中医,1991(06):8-9.
    [87]王然勤,陈建强,马珠群,等.血府逐瘀汤治疗肥厚型心肌病27例.辽宁中医杂志,2002,29(08):467-468.
    [88]王洪永,袁力.肥厚性心肌病病案.中医杂志,2001,42(03):171-172.
    [89]陈建国.活血化瘀煎治疗肥厚性心肌病.中医文献杂志,1998(03):45.
    [90]赵爱红.消瘦丸加减治疗肥厚性心肌病22例.山东中医杂志,2008,27(04):243-244.
    [91]杨晓茹,刘惟莞,石明健,等.水杉总黄酮抗实验性心肌肥厚作用的研究.中国药理学通报,2000,16(01):87-89.
    [92]姜妍,韩淑英.荞麦花叶总黄酮对去甲肾上腺素所致心肌肥厚大鼠PKC蛋白表达的影响.中国药理学通报,2008,24(12):1674-1675.
    [93]石瑞芳,韩淑英.荞麦花总黄酮对甲状腺素诱发大鼠心肌肥厚的影响.中药材,2006,29(03):269-271.
    [94]韩淑英,马新超,王志路,等.荞麦叶总黄酮对异丙肾上腺素诱导大鼠心肌肥厚的影响.华西药学杂志,2004,19(01):11-13.
    [95]周亚光,屠恩远,王照华,等.丹参酮II A对压力超负荷大鼠心肌肥厚及MAPK通路的影响.华中科技大学学报(医学版),2010,39(01):29-32+36.
    [96]李永胜,严丽,雍永权,等.丹参酮II A对高血压大鼠肥厚心肌TGF-β_1/Smads信号通路的影响.中国中西医结合杂志,2010,30(05):499-503.
    [97]陈炳华,龚丽娅,徐伟,等.丹参酮II A抑制心肌肥厚的机制研究.中国基层医药,2005,12(07):775-776.
    [98]龚丽娅,郑智,黄俊,等.丹参酮II A对心肌肥厚的作用及其机制研究.中国急救医学,2004,24(02):38-40.
    [99]Tan, X., J. Li, X. Wang, et al. Tanshinone IIA protects against cardiac hypertrophy via inhibiting calcineurin/NFATc3 pathway. Int J Biol Sci,2011,7(3):383-9.
    [100]吴柱国,胡志华.三七总皂苷对小鼠心肌肥厚的抑制作用及机制.中国现代医学杂志,2010,20(13):1943-1947.
    [101]石凤芹.参松养心胶囊、扶正化瘀胶囊改善大鼠心肌肥厚及对其电生理影响的研究[D],2010,北京中医药大学.
    [102]李彦川,刘育英,陈媛媛,等.芪参益气滴丸后给药对心肌肥厚大鼠心肌纤维 化的阻断作用.微循环学杂志,2010,20(02):67.
    [103]国家药典编委会,中华人民共和国(一部)2000:北京:化学工业出版社.
    [104]周玖瑶,孙毅东,邓素坚,等.环维黄杨星D对心肌缺血大鼠心肌细胞凋亡的影响.中药新药与临床药理,2007,18(04):285-288.
    [105]汪永孝,郑云敏,范家骏等.环维黄杨星D对正常和心肌缺血大鼠血液流变学的影响.高血压杂志,1995,3(02):113-115.
    [106]周玖瑶,林辉,李锐,等.环维黄杨星D对心肌缺血大鼠LDH、NO、NOS及iNOS水平的影响.中药材,2006,29(12):1335-1337.
    [107]周玖瑶,李锐,廖雪珍,等.环维黄杨星D抗垂体后叶素致心肌缺血作用机理研究.广州中医药大学学报,2005,22(06):36-39.
    [108]Catalucci, D., M.V. Latronico, O. Ellingsen, et al. Physiological myocardial hypertrophy:how and why? Front Biosci,2008,13:312-24.
    [109]盛瑞,顾振纶,谢梅林,等EGCG抑制心肌肥厚胶原生成和细胞增殖.中国药理学通报,2006,22(09):1095-1099.
    [110]顾伟梁,陈长勋,王樱.玄参和附子抗鼠心肌肥厚作用的对比实验研究.中西医结合学报,2008,6(04):376-380.
    [111]Oliveira, E.M.,J.E. Krieger. Chronic beta-adrenoceptor stimulation and cardiac hypertrophy with no induction of circulating renin. Eur J Pharmacol,2005,520(1-3): 135-41.
    [112]张淑华,曲福军.试验性大鼠心肌肥厚与氧自出基的关系.同济大学学报(医学版),2002,23(01):18-19.
    [113]杨芳芳,胡申江.环维黄杨星D对大鼠心脏功能及血压的作用.中国药理学与毒理学杂志,2007,21(04):255-258.
    [114]Du, X.J. Distinct role of adrenoceptor subtypes in cardiac adaptation to chronic pressure overload. Clin Exp Pharmacol Physiol,2008,35(3):355-60.
    [115]Ishigai, Y., T. Mori, T. Ikeda, et al. Role of bradykinin-NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes. Am J Physiol,1997, 273(6Pt2):H2659-63.
    [116]Lopaschuk, G.D. Cardiac energy metabolism alterations in angiotensin II induced hypertrophy. J Mol Cell Cardiol,2006,41(3):418-20.
    [117]Allard, M.F. Energy substrate metabolism in cardiac hypertrophy. Curr Hypertens Rep,2004,6(6):430-5.
    [118]Ingwall, J.S. Energy metabolism in heart failure and remodelling. Cardiovasc Res, 2009,81(3):412-9.
    [119]Sambandam, N., G.D. Lopaschuk, R.W. Brownsey, et al. Energy metabolism in the hypertrophied heart. Heart Fail Rev,2002,7(2):161-73.
    [120]LaPier, T.L.,K.J. Rodnick. Changes in cardiac energy metabolism during early development of female SHR. Am J Hypertens,2000,13(10):1074-81.
    [121]Onay-Besikci, A. Regulation of cardiac energy metabolism in newborn. Mol Cell Biochem,2006,287(1-2):1-11.
    [122]Takacs, E., J. Szabo, K. Nosztray, et al. Thyroxine-induced myocardial hypertrophy in rats. Acta Pharm Hung,1977,47(4):179-85.
    [123]Edgren, J., J. von Knorring, S. Lindy, et al. Heart volume and myocardial connective tissue during development and regression of thyroxine-induced cardiac hypertrophy in rats. Acta Physiol Scand,1976,97(4):514-8.
    [124]Zhan, C.D., T.H. Wang, and J.Y. Pan. The role of nitric oxide in the angiotensin Ⅱ-induced hypertrophy of cardiac myocytes]. Sheng Li Xue Bao,1999,51(6): 660-6.
    [125]Tishchenko, O.V., E.V. Eliseeva, and P. A. Motavkin. Significance of nitric oxide function in development of cardiac hypertrophy under condition of experimental renal hypertension. Tsitologiia,2002,44(3):263-9.
    [126]Souza, H.C., D.M. Penteado, M.C. Martin-Pinge, et al. Nitric oxide synthesis blockade increases hypertrophy and cardiac fibrosis in rats submitted to aerobic training. Arq Bras Cardiol,2007,89(2):88-93,99-104.
    [127]Guh, J.H., T.L. Hwang, F.N. Ko, et al. Antiproliferative effect in human prostatic smooth muscle cells by nitric oxide donor. Mol Pharmacol,1998,53(3):467-74.
    [128]Matsuoka, H., M. Nakata, K. Kohno, et al. Chronic L-arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension, 1996,27(1):14-8.
    [129]Drexler, H., S. Kastner, A. Strobel, et al. Expression, activity and functional significance of inducible nitric oxide synthase in the failing human heart. J Am Coll Cardiol,1998,32(4):955-63.
    [130]吴扬,胡亚娥,张元媛.氧化氮合酶mRNA在压力超负荷心肌肥厚中的作用.临床心血管病杂志,2005,21(09):544-547.
    [131]Ma, Q.L., Y. Xie, and S.D. Zhang. Effects of trimetazidine on serum oxygen free radicals in congestive heart failure. Hunan Yi Ke Da Xue Xue Bao,2002,27(6): 527-9.
    [132]Shizukuda, Y.,P.M. Buttrick. Oxygen free radicals and heart failure:new insight into an old question. Am J Physiol Lung Cell Mol Physiol,2002,283(2):L237-8.
    [133]Allen, S., A. Badarau, and C. Dennison. Cu(Ⅰ) affinities of the domain 1 and 3 sites in the human metallochaperone for Cu,Zn-superoxide dismutase. Biochemistry, 2012,51(7):1439-48.
    [134]Van Raamsdonk, J.M.,S. Hekimi. Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A,2012,109(15):5785-90.
    [135]Ito, H., M. Torii, and T. Suzuki. Decreased superoxide dismutase activity and increased superoxide anion production in cardiac hypertrophy of spontaneously hypertensive rats. Clin Exp Hypertens,1995,17(5):803-16.
    [136]Kang, P.M., P. Yue, Z. Liu, et al. Alterations in apoptosis regulatory factors during hypertrophy and heart failure. Am J Physiol Heart Circ Physiol,2004,287(1): H72-80.
    [137]Lu, J., J. Xiao, H. Luo, et al. Apoptosis in pressure overload-induced heart hypertrophy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2001,18(2):214-7,226.
    [138]卢江华,肖静,罗红琳,等.后负荷增大引起的心肌肥厚过程中细胞凋亡的变化规律.生物医学工程学杂志,2001,18(02):214-217+226.
    [139]Misao, J., Y. Hayakawa, M. Ohno, et al. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation,1996,94(7):1506-12.
    [140]Qi, B., L. Cao, L. Wang, et al. Study on apoptosis and expression of P53, bcl-2, Bax in cardiac myocytys of congestive heart failure induced by ventricular pacing. J Tongji Med Univ,2001,21(3):202-5.
    [141]Li, Y., B. Wang, C. Zhou, et al. Matrine induces apoptosis in angiotensin Ⅱ-stimulated hyperplasia of cardiac fibroblasts:effects on Bcl-2/Bax expression and caspase-3 activation. Basic Clin Pharmacol Toxicol,2007,101(1):1-8.
    [142]Yamazaki, T.,Y. Yazaki. Molecular basis of cardiac hypertrophy. Z Kardiol,2000, 89(1):1-6.
    [143]Babu, G.J., M.J. Lalli, M.A. Sussman, et al. Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol,2000,32(8):1447-57.
    [144]Dzimiri, N., K. Al-Bahnasi, and Z. Al-Halees. Myocardial hypertrophy is not a prerequisite for changes in early gene expression in left ventricular volume overload. Fundam Clin Pharmacol,2004,18(1):39-44.
    [145]Saito, T., J. Fukuzawa, J. Osaki, et al. Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol,2003,35(9):1153-60.
    [146]Donohue, T.J., L.D. Dworkin, M.N. Lango, et al. Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy. Circulation,1994,89(2):799-809.
    [147]Zhou, D., Q. Liang, X. He, et al. Changes of c-fos and c-jun mRNA expression in angiotensin II-induced cardiomyocyte hypertrophy and effects of sodium tanshinone IIA sulfonate. J Huazhong Univ Sci Technolog Med Sci,2008,28(5):531-4.
    [148]Tan, S.J., J.Y. Pan, C.Y. Zhan, et al. Effect of angiotensin II on c-fos expression and protein synthesis in cultured rat myocardial cells. Sheng Li Xue Bao,1999,51(5): 521-6.
    [149]Liao, P., D. Georgakopoulos, A. Kovacs, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA, 2001,98(21):12283-8.
    [150]Cuenda, A.,S. Rousseau. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta,2007,1773(8):1358-75.
    [151]王玉,孙黎光,夏春辉,等.在Fas诱导Bel-7402细胞凋亡中p38MAPK调节Bcl-2的表达.世界华人消化杂志,2007,15(30):3184-3189.
    [152]Markou, T., D. Cieslak, C. Gaitanaki, et al. Differential roles of MAPKs and MSK1 signalling pathways in the regulation of c-Jun during phenylephrine-induced cardiac myocyte hypertrophy. Mol Cell Biochem,2009,322(1-2):103-12.
    [153]丁利平,徐新云,罗振国,等p38MAPK和ERK1/2对镉诱导NRK肾细胞c-myc与c-fos基因mRNA表达的影响.职业与健康,2009,25(09):897-900.