脑得生药效物质基础及相关指标成分的药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以具有活血化瘀、通经活络之功效的中药复方“脑得生”为研究对象,以药代动力学(PK)和药效动力学(PD)为研究手段,以血清药化学数据和活血化瘀的药理学表征为指标,研究中药复方的配伍规律、药效物质基础及作用机理,探索中药复方药效物质基础研究的新方法。
     采用现代分离提取技术,提取复方中各味药材的有效部位,以合理的处方和工艺制备脑得生注射液。在对主要有效成分人参皂苷Rg_1、Rb_1、红花黄色素A和葛根素的HPLC定量分析基础上,建立了脑得生注射液的HPLC色谱指纹图谱,确定35个共有色谱峰,并对其中的13个色谱峰进行了指认,建立了质量控制标准;同时进行了注射液中的多组分同时定量分析方法的研究,建立了人参皂苷Rb_1、Rg_1、红花黄色素A、阿魏酸和葛根素的HPLC-UV测定法和人参皂苷Rb_1、Rd、Re、Rg_1、Rg_2、Rh_1、三七皂苷R_1、红花黄色素A、葛根素和大豆苷元的HPLC-MS测定法。所建立的HPLC测定法符合定量分析要求,为脑得生注射液的质量稳定、可控提供了技术保证。
     建立了血浆中红花黄色素A、葛根素、3′-羟基葛根素、3′-甲氧基葛根素、葛根素芹菜糖苷、大豆苷、大豆苷元-7,4′-二葡萄糖苷的HPLC-UV测定法和人参皂苷Rb_1、Rd、Rg_1、三七皂苷R_1和大豆苷元的HPLC-MS测定法,并进行了药代动力学研究。研究结果显示:随给药剂量的增加,红花黄色素A药代动力学过程由二室模型转向一室模型、葛根素由近于二室模型转向完全二室模型;二者消除速度均有减缓,CL呈下降趋势;AUC与给药剂量呈现非剂量依赖性,在高剂量下,AUC增加显著。在8个葛根主要黄酮成分[3,-羟基葛根素(P3)、3′-甲氧基葛根素(P4)、葛根素芹菜糖苷(P5)、大豆苷(P6)、大豆苷元、大豆苷元-7,4′-二葡萄糖苷(P2)、未知物Ⅰ(U1)、未知物Ⅱ(U2)]和代谢物(M1)中,M1、U1、P4、P5的药代动力学过程符合二室模型;P2显示出明显的雌雄差异,雌性符合二室模型,雄性符合一室模型;P6、U2呈一室模型;P3表现为类似口服给药的一级吸收过程。M1的血浆浓度在3~8h出现第二个峰平台,P3在1h时出现吸收峰;大豆苷元、U1、P4、P5在体内的药动学特征与葛根素相近。人参皂苷Rb_1、Rd、Rg_1及三七皂苷R_1在大鼠体内的药代动力学过程均符合二室模型。人参皂苷Rg1和三七皂苷R1在大鼠体内均快速分布,消除速度较慢;人参皂苷Rb_1和Rd则分布和消除速度均较慢,在体内可存在蓄积现象。与给予单体人参皂苷Rb_1或三七总皂苷比较,给予脑得生后人参皂苷Rg_1和三七皂苷R_1的分布速度加快、消除延缓,消除半衰期显著延长。
     大鼠静脉注射脑得生后,人参皂苷Rb_1、Rd、Re、Rg_1、Rh_1、三七皂苷R_1、红花黄色素A、葛根素和大豆苷元迅速向组织分布。红花黄色素A主要分布于心脏,其分布量相当于血浆中的3.3倍、肝脏中的7倍、肾脏中的2.1倍。大豆苷元脂溶性较强,在大鼠的17个脏器中均有分布,在多数脏器中的分布量随时间延长而下降。但在1.5 h时主要分布于小肠和胃中,且分布量分别是10 min时的7.5倍和5.3倍,在结肠中也有较高的分布量,说明大豆苷元在大鼠体内存在较强的肝-肠循环。大豆苷元在大脑中有一定的分布(分布量相当于血浆中浓度),在1.5h时大脑和心脏中的分布量显著高于单独给予大豆苷元。人参皂苷Rb_1和Rd均存在肝-肠循环,人参皂苷Rd同时为Rb_1的肠道代谢产物,在注射10min时仅在肺、心、子宫、胃及小肠中可检测到;在1.5和4 h时可在多数脏器中检出;人参皂苷Rg_1注射10 min时主要分布于膀胱和肾,在心脏和大脑中有少量分布,在1.5h时仅在膀胱中检测到,4h后主要分布于肝脏;人参皂苷Rh_1同时为人参皂苷Rg_1的肠道代谢产物,在大鼠体内的分布范围亦较广、但滞留时间较短。在三七总皂苷中,Rb_1和Rd仅在心脏中有分布,其他成分在心脏和大脑中均有分布。
     脑得生具有活血化瘀、通经活络之功效,主要用于瘀血阻络所至的心脑血管病症的治疗,本研究主要对该方的活血化淤作用进行研究。研究结果显示:家兔给予脑得生注射液后,对家兔血液流变学、凝血因子活力和凝、出血时间均有显著性影响,且作用具有时间依赖性。在给药30min时红细胞的聚集性开始呈现下降趋势;1h时血液粘度开始下降;1.5h时红细胞聚集指数显著下降,血浆复钙时间和出血时间开始延长;2.5h时凝血时间开始延长;3h后红细胞压积显著下降,血液流变学开始部分恢复;血浆复钙和凝、出血时间的恢复在6h以后。经含药血清回注验证:脑得生在家兔体内的作用时间滞后约1~1.5h,且该时间滞后主要是由于脑得生中有效成分(包括具有相互协同或拮抗作用的成分)在家兔体内动力学过程(在靶标部位达到某种平衡)所致。红花黄色素可显著延长家兔的血浆复钙时间,三七皂苷有一定作用,葛根黄酮则呈现负相关;葛根黄酮和红花黄色素对降低红细胞压积有一定作用,三七皂苷则呈现负相关;三七皂苷对降低红细胞聚集性有显著作用,红花黄色素有一定作用;葛根黄酮对红细胞变形能力的提高有显著作用,红花黄色素有一定作用。脑得生对大鼠和家兔的血液流变学特性和凝血因子活力的影响趋势一致,对高切变率下的全血粘度、凝血时间和血浆复钙时间的作用有延长趋势。对家兔血液流变学特性的改变强于单独给予三七总皂苷,复方中的川芎、红花、葛根和山楂对三七改变血液流变学特性具有协同作用;脑得生灌胃给药有效剂量相当于注射给药剂量的4倍;但体内的效应受体具有饱和性,同一给药途径的药理效应与给药剂量之间无显著的线性量效关系。
     血清药化学与药代动力学(PK)和药效动力学(PD)相结合是中药复方药效物质基础研究方法的尝试。本研究采用线性模型拟合,以不同时间点的血浆药物浓度与药效学表征为指标,将脑得生中各指标成分在大鼠血浆中的动力学过程与其对血液流变学特性和凝血因子活力的改变趋势进行相关性分析,探索脑得生的药效物质基础。研究结果显示:三七中的三七皂苷R_1是抗凝血的主要药效物质,人参皂苷Rg_1、Rd和Rb_1亦具有较强的抗凝血(主要表现为抑制凝血因子活力)作用,大豆苷元和3′-羟基葛根素具有一定的作用;大豆苷元、红花黄色素A及其他葛根黄酮(葛根素芹菜糖苷、葛根素、3′-甲氧基葛根素、3′-羟基葛根素)主要具有降低血液粘度的作用,人参皂苷Rb_1和人参皂苷Rd具有一定的作用;人参皂苷Rg_1和三七皂苷R_1具有降低血液“浓”度的作用,与红细胞压积的下降具有相关性;葛根黄酮的代谢物M1与全血粘度、红细胞压积、红细胞聚集性的下降和血浆复钙时间的延长均具有一定的作用,而与凝血时间的延长具有负相关;人参皂苷Rb_1和Rd与红细胞聚集指数的下降存在相关性,而人参皂苷Rg_1和三七皂苷R_1与红细胞聚集指数的下降则存在负相关,但人参皂苷Rb_1和Rd的t_(1/2β)约为3d,连续多次给药后临床表现为主导作用,故而三七总皂苷与红细胞聚集指数的降低存在显著相关性。上述结果说明,在中药复方中各有效成分的药理作用存在相互协同和相互制约的现象,药效的终端表现是多成分、多途经、多靶点药理作用的综合表现。
Naodesheng, consisted of radix notoginseng, rhizoma chuanxiong, flos carthami, radix puerariae lobatae and fructus crataegi, is one of traditional Chinese medicine recipe for dredging the meridian passage and activating blood circulation to dissipate blood stasis In this dissertation, Naodesheng was systematically studied with Pharmacokinetics (PK) and pharmacodynamics (PD) methods to illuminate therapeutical basis, and to explore the rule of compatibility and the mechanism of effectiveness of the traditional Chinese recipe.By using modern techniques, active sites (active components groups) of crud drugs were isolated and prepared into Naodesheng injections. On the base of quantitative analytical methods for ginsenoside Rg_1, Rb_1, safflor yellow A and puerarin, the HPLC fingerprint chromatograph of Naodesheng injection was developed, in which 35 common peaks were standardized and 13 characteristic peaks were identified. The methods for simultaneous determination of multi-components in Naodesheng injection were developed, including HPLC-UV method for gensenoside Rg_1, Rb_1 safflor yellow A, ferulic acid and puerarin, and HPLC-MS method for gensenoside Rb_1, Rd, Re, Rg_1, Rg_2, Rh_1, notoginsenonide R_1, safflor yellow A, puerarin and daidzein.Simultaneous determination of multi-compounds in rat plasma were developed and were applied to pharmacokinetic research, including HPLC-UV method for safflor yellow A, puerarin, 3'-hydroxyl-puerarin (P3), 3'-methoxyl-puerarin (P4), puerarinapioside (P5), daidzeine (P6), daidzein-7,4'-diglucoside (P2) and HPLC-MS method for safflor yellow A, puerarin, daidzein, ginsenoside Rg_1, Rb_1, Rd, and notoginsenoside R_1. The results showed that by dosage increasing, the pharmacokinetic property of safflor yellow A alter from two-compartment model to one-compartment model while puerarin from approximate two-compartment model to complete two-compartment model; the rate of elimination and the CL of the both decrease when given a high dosage. In the eight of the main flavones, including 3'-hydroxyl-puerarin (P3), 3'-methoxyl-puerarin (P4), puerarinapioside (P5), daidzeine (P6), daidzein-7,4'-diglucoside (P2), unknownⅠ(U2), unknownⅡ(U2) and metabolite (M1), four of them (M1, U1, P4, P5) showed a two-compartment model; P2 showed a significant difference between male and female, the female followed two-compartment model and the male follows one-compartment model; P6 and U2 consistented with one-compartment model; while P3 was consistent with oral first-order absorption process. The plasma concentration of M1 showed a second platform between the 3rd and the 8th hour and P3 showed a peak absorption at the 1st hour. Daidzein, U1, P4 and P5 show similar pharmacodynamic property with puerarin. Ginsenoside Rb_1, Rd, Rg_1 and notoginsenoside R_1 were consistent with the two-compartment model. While ginsenoside Rg_1 and notoginsenoside R_1 had quick distribution and slow elimination rate; ginsenoside Rb_1 and Rd showed slow rate in both distribution and elimination, which may cause aceumulation in vivo. Compared with single chemicals, ginsenoside Rg_1 and notoginsenoside R_1 in Naodesheng injection had quick distribution rate, slow elimination rate and longer elimination half life.
     After intravenous administration of Naodesheng injection, ginsenoside Rb_1, Rd, Rg_1, Rh_1, notoginsenoside R_1, safflor yellow A, puerarin and daidzein showed a quick distribution into tissue in rat. Safflor yellow A mainly exist in heart, about 3.3 times to serum, 7 times to liver and 2.1 times to kidney. Daidzein was fond in 17 tissues in rat. Although the concentration decreases, in the 1.5th hour daidzein mainly exist in small intestine and stomach with 7.5 times and 5.3 times concentrations compared with that in the 10th minutes respectively. Daidzein was also found in colon with a high concentration. All of this illuminated that daidzein goes through a strong enterohepatic circulation (EHC). Daidzein exists in cerebrum with a similar concentration with that in plasma while the concentration in cerebrum and heart were much higher than given alonly daidzein. Both ginsenoside Rb_1 and Rd go through EHC and ginsenoside Rd, which can be found in lung, heart, uterus, stomach, small intestine at 10th minute after administration and can be also found in most tissues from the 1.5th to the 4th hour, is a metabolite of Rb_1 in intestine. Ginsenoside Rg_1 was found a lot in urinary bladder and kidney but a little in brain 10 minutes after administration, while can only be found in urinary bladder 1.5 hours later and in liver 4 hours later. Ginsenoside Rh_1, widely distributed in rat tissue but has a short residence time, is also a metabolite of Rg_1 in intestine. In the total notoginsenosides, Rb_1and Rd only exist in heart while others exist in both heart and cerebrum.
     Naodesheng, which has an effect in dredging the meridian passage and activating blood circulation to dissipate blood stasis, is mainly used to heal heart and cerebrum disease caused by blood stasis. This study mainly aims at its effect that dissipates blood stasis. The result of research on rabbit shows that Naodesheng injection has remarkable effects on rabbit's hemorrheology and blood coagulation effect and the effects show a significant dependency on time. The erythroeyte aggregation decreased 30 minutes after administration; the plasma recalcification time (RT) and bleeding time (BT) extend 1.5 hours after injection. 2.5 hours after administration, the clotting time (CT) extended; the hemorheology partly recover 3 hours later while the other effects will stretch to the 6th hour. It was proved that the effect of Naodesheng on rabbit in vivo will lag for about 1 to 1.5 hours and the lag is mainly caused by dynamic process in vivo.
     In the formula of Naodesheng, safflor yellow (SY) significantly prolonged the recalcifieation time (RT), notoginsenosides (NGs) had assist effect and puerariae flavones (PF) showed negative effect; PF and SY illustrated some effect on hematocrit (HCT) while NGs seems to be negative; effect of NGs on depressing erythroeyte aggregation index (EAI) was noticeable and SY had certain effect on it; PF had a significant effect on heightening erythrocyte deformability, SY had certain effect and NGs shows negative effect on it. The effects of Naodesheng on improving hemorheology index and activity of blood coagulation factor were similar on both rat and rabbit, the effects prolonged the clotting time (CT), RT, and blood viscosity (BV) under high shear pressure seems to be more remarkable for rats than for rabbits. In the recipe, chuanxiong, carthami, pueraria and erataegi had a joint effect with nogoginseng on hemorheology compared with given single NGs to rabbits. Although oral dosage is about 4 times to injection, it showed no better effect because the aceeptor are saturable and the effect shows no dependency on dosage.
     The combination of serum pharmachemistry, pharmacokinetics and pharmacodynamics is a new way to illuminate the therapeutical basis of traditional Chinese medicine recipe. Correlation analysis was used to analyze the relationship between pharmacodynamics of the main ingredients and pharmacodynamic actions. It was proved that notoginsoside R_1 was the main anticoagulated blood substance, and ginsenoside Rg_1, Rd and Rb_1 had strong effects on anticoagulating blood while daidzein and 3'-hydroxyl-puerarin have some effect on it; daidzein, sail]or yellow A and other puerariae flavones mainly decrease BV while ginsenoside Rb_1 and Rd had certain effect; ginsenoside Rg_1 and notogensenoside R_1 could reduce the "concentration" of blood, and the effect may be connected with depression of the HCT. Metabolite (M1) of Puerariae flavone has a positive effect on reduce of BV, HCT and erythrocyte aggregation, and prolongation of RT, but it showed a negative dependency on the elongation of CT. Ginsenoside Rd, safflor yellow A, daidzein, P2, P3, P4, P5 and puerarin showed negative dependency on reduce of HCT. Gensenoside Rb_1、Rd、Rg_1 and P3 also showed negative dependency on the elongation of CT. All of above show that ingredients in traditional Chinese medicine recipe active cooperatively and restrict each other.
     Above all, under the direction of Chinese medical science and the practice, this study had conjoined traditional Chinese pharmacology, analytical chemistry, pharmacology and serum pharmaceutical chemistry to develop the quality control method, approach the rule of compatibility, find out the therapeutical basis and illuminate the maehanism of Naodesheng injection. It is a meaningful approach for the way of researching traditional Chinese medicine recipe.
引文
[1] 肖培根,肖小河.21世纪与中药现代化.中国中药杂志.2000,25(2):67~70
    [2] 谢培山.中药现代化的取向与质量控制模式.中药新药与临床药理.2002,13(4):201~203
    [3] 王智民.中药药效物质基础的系统研究是中药现代化的关键.中国中药杂志.2003,28(12):1111~1113
    [4] 张永忠,郑晓柯,毕跃峰,等.中药复方药效物质研究进展.世界科学技术—中药现代化.2001,3(4):37~40
    [5] 薛燕,等著.中药复方霰弹理论.中国环境科学出版杜,北京,1996
    [6] 黄熙,任平.防治高血压、冠心病难点与突破口:方剂的药物监测.中国中西医结合杂志.1997,17(9): 515
    [7] 黄熙.方剂体内/血清成分谱与靶成分概念的提出及意义.第四军医大学学报.1999,10(4):177
    [8] 吴凤锷.从单方成药到“分子中药学”和“组合中药学”.中草药.2002,33(9):769~771
    [9] 姜廷良,霍海如.重视中药多组分整合作用的研究.世界科学技术—中医药现代化.2003,5(2):1~3
    [10] 罗国安,王义明.中药复方的化学研究体系.世界科学技术—中药现代化.1999,1(1):11~15.
    [11] 周立东.建议在天然药物研究中建立“定量组效关系”(QCAR)概念.全球华人中药现代化学术研究讨会.1998
    [12] 夏云,李志明,等.生脉散复方化学动态变化与药效关系的研究.中国中药杂志.1998,23(4):230~231
    [13] 朱华旭,丁林生,等.白头翁汤汤剂化学成分的分离研究.中成药.1999,21(6):313
    [14] 杨奎,郭力,等.中药复方组合化学研究方法初探.中药药理与临床.1998,14(3):42~44
    [15] 田代真一.和汉药实验的研究诸问题—Invitro实验问题.和汉医药学会志.1991,(8):218~22122
    [16] 田代真一.“血清药理学”“清药化学”.现代东洋医学.1992,13(1):113~11723
    [17] 任平,黄熙,等.中草药.2000,31(8):637
    [18] 中华人民共和国卫生部药典委员会.中华人民共和国药典:一部.广州:广东科技出版社,1995,579~581
    [19] 国药典委员会.中华人民共和国药典(2000年版):一部.北京:化学工业出版社,2000,560~561
    [20] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,571~572
    [21] 谢颖,杨红芸,张榕,等.RP-HPLC测定脑得生胶囊中人参皂苷Rgl的含量.华西药学杂志.2002,17(3):215~216
    [22] 吴晓,周玲英.薄层扫描法测定脑得胶囊中葛根素的含量.成都中医药大学学报.1998,12 (4):39~40
    [23] 谭生建,汪海东,邱夏.RP-HPLC测定脑得生片中葛根素的含量.中成药.1997,19(5):17~18
    [24] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,10~11
    [25] 陈贵廷主编.本草纲目通译.北京:学苑出版社,1992,536
    [26] 王梅,范亚刚.RP~HPLC梯度法测定血塞通滴丸中三七皂苷R1、人参皂苷Rbl及人参皂苷Rg1的含量.中成药.2002,24(9),681~683
    [27] 梁宁,赵怀清,周迎春,等.HPLC法同时测定三七总皂苷中人参皂苷Rgl与Rbl的含量.中草药.2002,33(8),704~705
    [28] 鲁歧,李向高.人参、三七根挥发油中性成分的研究.中草药,1988,19(1):5~7
    [29] 魏均娴,王菊芬,张良玉,等.三七的化学成分研究—三七绒根的成份研究.药学学报.1980,15(6):359~364
    [30] 吴兰鸥,詹合琴,闫俊岭,等.三七皂苷Rgl对大鼠脑缺血-再灌注损伤的保护作用及机制探讨.中草药.2006,37(2):229~233
    [31] 刘海燕,陈孝文,刘华峰,等.三七总皂苷尿毒血清诱导的人肾小管上皮细胞外基质分泌及降解的影响.中草药.2006,37(2):245~248
    [32] 赵国强,王秀训.三七止血成分.中草药.1986,17(6);34~35
    [33] 王甲东,陈俊秀.三七总皂甙对心脏血流动力学的作用.中国药理学报.1984,5(3):181~185
    [34] 关永源,贺华,陈俊华.三七总皂甙对兔主动脉条收缩反应的影响.中国药理学报.1985,6(4):267~269
    [35] 石琳,范盘生.三七皂甙升高颈动脉前列腺素I_2及降低血小板血栓素A_2有作用.中国药理学报,1990,11(1):29~32
    [36] 李洪泰,石琳.三七总皂甙对心肌细胞Ca~(2+)内流的影响.中国药理学报.1990,11(3):213~217
    [37] 郝朝庆,许振朝.三七总皂甙对小鼠免疫功能的影响.中成药研究.1986(8):31~32
    [38] 陈其奎,李立.三七总皂甙对急性缺氧时脑损伤及血中有关生化指标影响的探讨.中国病理生理杂志.1990,6(6):472~476
    [39] 杨秀伟,郝美荣,服部征雄(日)主编.中药成分代谢分析.北京:中国医药科技出版社,2003,346~388
    [40] 张继,赵朝伟,赵睿.三七的药理作用研究进展.中国药业.2003,12(11):76~77
    [41] 陈重华,粟晓黎,张俊霞,等.三七皂苷R_1、人参皂苷R_d对微循环及凝血作用的影响.华西医科大学学报.2002,33(5):550~552
    [42] 马丽焱,王春兰,等.三七皂甙对脑组织血液供应和能量代谢的影响.中国药理通报.1998,14(1):27~29
    [43] 张之武,金士翱,等.三七皂甙单位Rbl对心肌细胞膜Ca~(2+)通道的影响.中国药理学通报.1998,14(1)33~35
    [44] 马丽焱,肖培根.三七总皂甙对脑细胞内游离钙浓度的影响.中国药学杂志.1998,33(8) 467~469
    [45] 石琳,范盘,等.二七总皂甙升高颈动脉PG12及降低TXA2的作用.中国药理学通报.1990, 11(1):29~32
    [46] 徐皓亮,季勇.等.二七皂甙对大鼠实验血栓形成、血小板聚集及血小板内游离钙水平的影响.中国药理学与毒理学杂志.1998,12(1)40~42
    [47] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,28
    [48] 阴健,郭力功主编.中药现代研究与临床应用.北京:学苑出版社,1993,33
    [49] 许正春,陈文为.活血化瘀川芎的研究现状.北京中医学院学报.1987,10(2):48~50
    [50] 温元笙,贺庄容,薛孔方,等.川芎化学成分的研究.中草药.1986,17(3):26~26
    [51] 王普善.中药川芎化学成分及其生理活性研究的回顾与展望.医药工业.1988,19(12):553~558
    [52] 马永江,朱顺生.川芎的化学成分及药理作用研究现状.中西医结合杂志.1984,4(9):574~576
    [53] 史荫绵,张亚霏,郑惠民,等.川芎对球结膜和软脑膜慢性微循环障碍影响的实验研究.中华医学杂志,1980,60(10):623~623
    [54] 罗光,申翠,杨旭,等.川芎嗪和山莨菪碱对兔全血粘度及红细胞变形性的影响.中华医学杂志,1987,67(11):607~609
    [55] 北京中医学院,中医研究院.活血化瘀药物对大鼠体外血栓形成的影响—冠心Ⅱ号方、川芎总生物碱和川芎嗪的抗血栓形成作用的研究.新医药学杂志.1978,(6):41~43
    [56] 尹钟洙,张凌云,徐理纳.当归及其成分阿魏酸对大鼠血小板聚集和5-HT释放的影响.药学学报,1980,15(6):321~326
    [57] 徐理纳,徐德成,张白嘉,等.阿魏酸钠抗血小板聚集作用机理研究—对TXA_2/PGI_2平衡的影响.中国医学科学院学报.1984,6(6):414~417
    [58] 刘众,史荫绵,陈达仁,等.川芎对急性实验性脑缺血大白兔血浆和脑脊液中强啡肽含量的影响.中西医结合杂志.1990,10(3):160~163
    [59] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,103~104
    [60] J Onoderd, H Obara, N Osone, et al. The structure of safflomin-A, a component of safflower yellow. Chem Lett. 1981: 433~436
    [61] J Onodera, H Obara, R Hirose, et al. The structure of safflomin C, a constituent of safflower. Chem Lett. 1989:1571~1574
    [62] 李艳梅.红花化学成分的研究.药学学报.1998,33(8):626~628
    [63] 杭丽君,唐寅轩.中药红花的化学成分研究.现代应用药学.1995,12(2):19~20
    [64] Y Takahashi, S Miyasaka, I Miura, et al. Constitution of two coloring matters in the flower petals of Carthamus tinctorius L. Tetrahedron Lett. 1982, 23:5163~5166
    [65] Y Takahashi, K Saito, M Yanagiya, et al. Chemical constitution of sallor yellow B, a quinochalcone C-glycoside from the flower petals of Carthamus tinctorius L. Tetrahedron Lett. 1984, 5:2471~2474
    [66] 李中原,涂秀华.红花黄色素的药理研究进展.中药新药与临床药理.2005,16(2):153~156
    [67] 杨志福,梅其炳,蒋永培,等.红花有效成分及药理作用.西北药学杂志.2001,16(3):131~133
    [68] Takahashi Y, Miyassaka N, Tasaka SH, et al. Constitution of two coloring matters in the flower petals of earthamus tinctorius L. Tetrahedron Lett. 1982, 23 (49): 5163
    [69] 李文,金鸣,李金荣,等.红花黄色素对培养人脐静脉血管内皮细胞作用的研究.中国药理学通报.2001,17(6):700~701
    [70] 朴永哲,金鸣,臧宝霞,等.红花黄色素改善大鼠缺氧心肌能量代谢的研究.中草药.2003,34(5):436~439
    [71] 徐春祥,刘风之,李延平,等.红花黄色素对缺血再灌注大鼠心肌LAD和MAD的影响.中国中医药科技.1999,6(1):9
    [72] 李芳,娄延平,王孝铭,等.红花黄色素对豚鼠心室乳头肌缺氧和复氧损伤的保护作用.哈尔滨医科大学学报,1999,33(1):6~9
    [73] 单宏丽,徐晨光.红花黄素对氧自由基所致的心肌细胞电生理异常的保护作用.哈尔滨医科大学学报.2002,36(4):259~262
    [74] 单宏丽,徐长庆,刘凤之,等.红花黄素对豚鼠单个心室肌细胞动作电位和钙电流的影响.中国药理学通报.1999,15(4):351~354
    [75] 陈铎葆,郑为超,赵辉,等.红花总黄素对心肌缺血——再灌注损伤大鼠心功能的影响.中国中医药科技.2003,10(5):290~292
    [76] 董华进,马秀英.红花对大鼠心脏功能的影响.中药药理与临床.1997,13(4):31~33
    [77] 陈铎葆,刘建国,管风云,等.红花黄素Ⅲ对犬缺血心肌的影.中国药理学通报.2000,16(5):590~591
    [78] 黄正良,崔祝梅,高其铭.红花黄色素降血压作用及机理的初步析.中成药研究.1986(7): 27~29
    [79] 莫尚武,陈恒留,刘宇.用~(45)Ca研究红花对大鼠脑主动脉Ca~(2+)内的影响.中草药.1995,26 (10):532~534
    [80] 李红芳,汪龙得.红花水煎剂对家兔离体主动脉血管的舒张作用.中草药.2003,34(5):430~433
    [81] 陆梁,胡书群,张光毅.黄色素抑制血管平滑肌细胞增殖与3种白激酶的关系.药学学报.2000, 35(3):169~172
    [82] 李江伟.红花黄色素对家兔血浆纤溶酶原激活剂及其抑制剂水平的影响.中草药.1999,30(2):128~129
    [83] 黄正良,崔祝梅,任远,等.红花黄色素的抗凝血作用研究.中草药.1987,18(4):22~25
    [84] 陈文梅,金鸣,吴伟,等.红花黄色素抑制血小板激活因子介导的血小板活化作用的研究.中国药学杂志.2000,35(11):741~744
    [85] 金鸣,吴伟,陈文梅,等.红花总黄色素体外抑制血小板激活因子受体结合作用的研究.中国药学杂志.2001.36(3):167~169
    [86] 臧宝霞,金鸣,司南,等.羟基红花黄色素A对血小板活化因子的拈抗作用.药学学报.2002,37(9):696~699
    [87] 郑为超,陈铎葆,李兵,等.红花黄素对大鼠心肌缺血—再灌注模型的作用及机研究.中国药 理学通报.2003.19(9):1032-1034
    [88] 陆正武,刘发,胡坚,等。红花总黄素对免疫功能的抑制作用.中国药理学报.1991,12(6):537~542
    [89] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,233~234
    [90] 徐国钧,何宏贤,徐路珊,等主编.中国药材学.北京:中国医药科技出版社,1993,316
    [91] 陈妙华,张思巨.葛根化学成分的研究.中药通报.1985,10(6):34~36
    [92] 黄漫翔,斐红,林万莲.葛根素对心血管系统作用的研究进展.广东药学.2000.10(2):9~12
    [93] 王海燕,彭亚丽.葛根素药理研究进展.山东医药工业.2001.20(4):36~37
    [94] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,22~22
    [95] 国药典委员会.中华人民共和国药典(2005年版):一部.北京:化学工业出版社,2005,22~23
    [96] 徐国钧.生药学.北京:人民卫生出版社,1987,223~224
    [97] 谢玉如,戴伦凯,薛曼颖.山里红叶制剂中牡荆素鼠李糖甙的分离和鉴定.中草药.1985,16(1):37~37
    [98] 孙晓飞,姚乾元.山楂核的化学成分.中草药.1987,18(10):9~9
    [99] 丁杏苞,姜岩青,仲英,等.山楂叶化学成分的研究.中国中药杂志.1990,15(5):39~41
    [100] 孙敬勇,杨书斌,谢鸿霞,等.山楂化学成分研究.中草药.2002,23(6):483~486
    [101] 薛洁,夏昌隆.山楂药理研究进展.新疆中医药.2002,20(4):69~71
    [102] Tsutomu Odani, Hisayuki Tanizawa, Yoshio Takino. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. Ⅲ. The absorption, distribution and excretion of ginsenoside Rbl in the rat. Chem Pharm Bull. 1983, 31 (1): 292
    [103] 马郁琪,李彤,肖建初,等.~3H-三七皂苷Rgl在大鼠体内的药物动力学研究.中草药.1987,18(9):21
    [104] 陈昕,周秋丽,王本祥.人参皂苷Rbl的肠内菌代谢.药学学报.1999,34(6):410
    [105] 王毅,刘铁汉,王巍,等.肠道菌群对人参皂苷Rgl的代谢转化作用的研究.中国中药杂志.2001,26(3):188
    [106] 常明向,徐莲英,陶建生.川芎中阿魏酸兔体内药代动力学研究.中国药学杂志.1996,31(1):43
    [107] 尚刚伟,黄熙,蒋永培,等.正常人口服川芎单煎剂后体内阿魏酸药代动力学研究.中药药理与临床.1998,12(6):38
    [108] 刘月庆,李康,毕开顺.红花黄色素A在大鼠体内的药动学研究.中草药.2003,34(8):725~727
    [109] 熊全美,闵砀,刘英,等.羟基红花黄色素A在大鼠体内药物动力学研究.中国医药工业杂志.2004,35(4):228~230
    [110] 杨志福,文爱东,梅其炳,等.红花黄色素在急性血瘀大鼠体内的药代动力学研究.中药材.2004,24(10):730~732
    [111] 金昔陆,朱秀嫒.葛根素在大鼠、家兔、犬中的药物动力学.中国药理学报.1992,13(3): 284
    [112] 金昔陆,程桂芳,朱秀媛.葛根素在健康志愿者的药代动力学.中国临床药理学杂志.1991,7(2):115
    [113] Yasuda T, Kano Y, Saito K, et al. Urinary and biliary metabolites of puerarin in rats. Biol Pharm Bull. 1995, 18 (2): 300~303
    [114] 杜力军,於兰,常琪,等.新工艺制备的葛根黄酮的药代动力学研究.中药药理与临床。1997,13(2):19~24
    [115] Xu QF, Fang XL, Chen DF, et al. Studies on formulations of Panax notoginsenosides for intranasal administration. Acta Pharm Sin. 2003, 38 (11) 859~862
    [116] Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenoside Rbl and Rgl from Panax notoginseng in rats. J Ethnopharmacology. 2003, 84 (2~3): 187
    [117] Tsutomu Odani, Hisayuki Tanizawa, Yoshio Takino. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. Ⅲ. The absorption, distribution and excretion of ginsenoside Rbl in the rat. Chem Pharm Bull. 1983, 31 (3): 1059
    [118] 吴云娟,朱晓艺,沙先谊,方晓玲.三七总皂苷鼻腔给药的药代动力学与药效学.药学学报.2005,40(4):377~381
    [119] 何希辉,炎彬,潘卫松,等.三七皂苷中R1、Rg1在正常和脑缺血再灌大鼠中的动力学变化.中国药理与临床.2001,17(6):12~14
    [120] 卢弘,邢东明,孙虹,等.金森脑泰注射剂中葛根素在正常和缺血再灌模型大鼠体内的动力学研究.中国药学杂志.2002,37(1):41~44
    [121] 李敏,卢弘,杜力军,等.中药有效部位复方CBN药代动力学研究.中药药理与临床.1999,15(4):38~41
    [122] 杜力军,邢东明,炎彬,等.对葛根素与葛根黄酮体内动力学关系的探讨.世界科学技术—中医药现代化.2004,6(6):26~30
    [123] 杜立军,邢东明,赵玉男,等.两种中药复方的药效动力学与测试成分药代动力学拟合—兼论中药药代动力学研究方法.世界科学技术—中医药现代化.2005,7(3):29~33
    [124] 鞠静,罗旭,毕开顺.脑得生丸药效物质基础与质量评价指标的研究.沈阳药科大学理学硕士学位论文.1998
    [125] 欧来良,李家政,王瑞芳,等.提取工艺对脑得生抗大鼠局灶性脑梗死的影响.中草药.2005,36(3):393~395
    [126] 唐红芳,毛丽珍,徐世芳.正交试验法研究三七提取工艺.中草药.2001,32(1):26~28
    [127] 刘旭,杨雪梅,徐江平,等.正交试验法优化三七提取纯化工艺.广州医学院学报.2003, 31(4):65~67
    [128] 魏凤玲,朱春波,朱立平,等.三七总皂苷提取工艺优选.中国中药杂志.2000,25(12):722~723
    [129] 刘中秋,蔡雄,赖小平,等.大孔吸附树脂富集纯化三七总皂苷工艺研究.中国实验方剂学 杂志.2001,7(3):4~6
    [130] 石召华,熊富良,李崇明,王永平,陈鹏.大孔吸附树脂分离纯化三七总皂苷工艺研究.中成药.2004,26(1):10~12
    [131] 刘于杰,白志川,付超美.人参茎叶总皂甙提取精制工艺研究.西南农业大学学报(自然科学版).2004,26(4):479~482
    [132] 杨志福,文爱东,蒋永培,等.不同提取方法对红花黄色素含量的影响.西北药学杂志.2000,15(6):255~256
    [133] 周平兰,夏新华.红花黄色素提取工艺的研究.湖南中医学院学报.2004,24(1):11~12
    [134] 王义潮,李多伟,孙诗清,等.从红花中提取红花黄色素最佳工艺条件的研究.中国新医药.2004,3(2):27~28
    [135] 郁晓艺,刘红,李炳奇,等.均匀设计优化红花黄色素提取工艺.时珍国医国药.2005,16(5):291~392
    [136] 金鸣,高子淳,李金荣,等.大孔树脂柱色谱法制备红花黄色素和羟基红花黄色素A.中草药.2004,35(1):25~27
    [137] 赵浩如,邹风香.葛根总黄酮的提取方法研究.中成药.2000,22(11):756~758
    [138] 王昌利,薛红,罗宏锁.葛根总黄酮提取工艺研究.中成药.1995,17(6):6~8
    [139] 郭建平,孙其荣,周全,等.葛根总黄酮不同提取工艺的探讨.中草药.1995,26(10):52~53
    [140] 刘产明,杨洪,秦春燕,等.葛根的提取工艺研究.南京中医药大学学报.1998,14(4):225~226
    [141] 崔九成,蒙跃龙,杨钧.大孔树脂分离葛根总黄酮研究.西北药学杂志.1999,14(4):154~155
    [142] 向大雄,李焕德,吴大勇,等.不同纯化工艺对葛根总黄酮质量的影响.中国药房。2002,13(6):325~330
    [143] 霍丹群,刘佳,张伟,等.正交实验优选葛根复方的半仿生提取工艺.中成药.2004,26(2):96~99
    [144] 向大雄,李焕德卜,朱叶超,等.大孔吸附树脂分离纯化葛根总黄酮的研究.中国药学杂志.2003,38(1):35~37
    [145] 曹建敏,魏海,王巧娥.正交实验法优选川芎内酯类化合物的提取工艺.现代中药研究与实践.2004,18(增刊):73~74
    [146] 赵慧萍.川芎提取工艺的研究.中华医学丛刊.2004,4(10):21~22
    [147] 李冶姗,阿堤坎木·海力力,安彩贤.葛根与山楂叶中总黄酮的提取及纯化比较研究.西北药学杂志.2004,19(2):64~65
    [148] 郑亚杰,张长弓,李晓斌.大孔吸附树脂分离纯化山楂总黄酮的研究.华中科技大学学报(医学版).2004,33(2):136~138
    [149] 北京制药工业研究所.川芎生物碱的提取和分离.中草药通讯,1977,3:8~10
    [150] 赵新先.中药注射剂学.广州:广东科技出版社,2000,597~598
    [151] 北京制药工业研究所.川芎成分的化学研究.药学通报,1980(10):39~39
    [152] 北京医学院.中草药成分化学.第1版.北京:人民卫生出版社,1980:40~40
    [153] 中国医学科学院药物研究所.中药志第1册.北京:人民卫生出版社,1981
    [154] 吴冬青,林敏,王学文,等.红花黄色素稳定性研究.江西学院学报.2003,19(5):32~36
    [155] 刘淑玲,仝建波,李美萍,等.EDTA对红花黄色素的稳定性效应.食品科学与技术.2003,24(3):31~33
    [156] 谭生建,汪海东,邱夏.RP-HPLC测定脑得生片中葛根素的含量.中成药.1997,19(5):17~18
    [157] 李江英,张亚军.注射用葛根素的质量标准研究.中成药.2003,25(8):622~624
    [158] 周迎春.红花指纹图谱的研究.沈阳药科大学硕士学位论文.2003
    [159] 何建涛,石志红,赵美萍,等.反相高效液相色谱法测定葛根素和大豆苷元.分析化学研究简报.2004,32(4):519~521
    [160] 杨南林,吴永江,程翼宇.反相高效液相色谱法同时测定三七药材中4种皂苷的含量.分析化学研究简报.2003,31(6):731~734
    [161] Li L, Zhang J L, Sheng Y X, et al. Simultaneous quantification of six major active saponins of Panax notoginseng by high-performance liquid chromatography-UV method. Pharm Biomed Anal. 2005, 38:45~51
    [162] 李顺意,李国庆,李紫,等.高效液相色谱—质谱法鉴定葛根有效成分及测定小儿腹泻宁泡腾片中层根索的含量.湖北大学学报(自然科学版).2000,22(3):282~285
    [163] 徐智秀,肖红斌,王加宁,等.高效液相色谱-质谱-质谱法分析人参皂甙.色谱.2000,18(6)521~524
    [164] Liu J H, Wang X, Cai S Q, et al. Analysis of the constituents in the Chinese drug notoginseng by liquid chromatography-electrospray mass spectrometry. Chin Pharm Sci. 2004, 13 (4): 225~237
    [165] 翟为民,袁永生,周玉新,等.人参、西洋参及三七参指纹图谱鉴别.中国中药杂志.2001,26(7):481~482
    [166] 王雁,毕开顺.三七HPLC指纹图谱的建立.中国中药杂志.2003,28(4):316~320
    [167] 周玉新,袁永生,高霞,等.三七药材及其制剂指纹图谱研究.中国中药杂志.2001,26(2):122~123
    [168] 崔秀明,董好霞,陈中坚,等.三七及其混淆品的HPIJC指纹图谱鉴定.中草药.2002,33(10):941~943
    [169] 陈奇,主编.中药药理研究方法学.人民卫生出版社,1993:493,481,1103
    [170] 徐晓娟.化瘀止痛片对血瘀模型大鼠血液流变学和小鼠微循环的影响.成都中医药大学学报.2004,12(4):36~39
    [171] 黄华,孙玉华,林红洲,等.雪莲花口服液的活血镇痛和抗炎作用研究.中国药理与临床.2002,18(1):14~17
    [172] 鲁汉兰,彭智聪,刘勇,等.莪术炮制后对止痛及活血化瘀作用的影响.中成药.2000,22(2):135~137
    [173] 《化学药物非临床药代动力学研究技术指导原则》课题研究组.化学药物非临床药代动力学研究技术指导原则.2004
    [174] 程军,于治国.复方中药脑得生丸的药代动力学比较研究.沈阳药科大学硕士学位论文.2004
    [175] 杨志福,文爱东,梅其炳,等.红花黄色素在急性血瘀大鼠体内的药代动力学研究.中药材.2004,24(10):730~732
    [176] 仇风,钟大放.大豆苷元及其前体药物的药物动力学研究.沈阳药科大学博士学位论文.2004
    [177] Tsutomu Odani, Hisayuki Tanizawa, Yoshio Takino. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. Ⅲ. The absorption, distribution and excretion of ginsenoside Rbl in the rat. Chem Pharm Bull. 1983, 31 (1): 292
    [178] Pietta P, Mauri P. Hydrolysis of ginsenosides in artificial gastric fluid monitored by HPLC. J Chromatogr A. 1986, 362 (3): 291