双孢蘑菇品质的近红外漫反射光谱无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双孢蘑菇味道鲜美、营养丰富,且具有一定的药用价值,是人们日常生活中较喜爱的食用菌之一。双孢蘑菇的褐变度、硬度、含水率可溶性固形物和蛋白质等成分的含量给双孢蘑菇的风味品质和口感带来很大影响。目前在双孢蘑菇营养评价、食品加工及贮运储藏上,迫切需要了解和掌握双孢蘑菇的褐变度、硬度、水分、灰分、可溶性固形物、蛋白质等成分的含量。传统分析方法属于有损检测,而且存在实验操作麻烦,费时费力,实验废弃物易污染环境等不足。因此,探索基于近红外光谱技术快速、无损检测双孢蘑菇内部品质具有重要的科学意义和实用价值。
     论文基于近红外光谱分析技术,运用NIRcal软件对双孢蘑菇的褐变度、硬度及其中的水分、灰分、可溶性固形物、蛋白质含量的检测进行了研究。主要结论有:
     1.异常样品的剔除,更有利于模型的建立;剔除异常样品后所建模型的预测精度更高。
     2.分析比较了4种常规预处理方法对双孢蘑菇内部品质近红外PLS校正模型的影响,得出二阶导数是适合建立双孢蘑菇硬度、可溶性固形物和水分定量分析模型的光谱预处理方法;多元散射校正适合灰分、蛋白质和褐变度中a*、b*指标定量分析模型的建立;而对于褐变度中的亮度指标L*来说一阶导数是较适合的光谱预处理方法。并建立了基于优化预处理方法和PLS的双孢蘑菇内部品质检测的近红外定量分析模型。
     3.所用模型的主成分数由测试集的RMSEP和校正集的RMSECV共同优化确定。RMSECV/RMSEP越小,模型的预测能力越强。选取RMSECV/RMSEP达到最小时所对应的主成分数的最小值。
The Agaricus bisporus not only tastes delicious,is of nutrition richly,also has certain medicinal value, is one of vegetables that people like in daily life. The browning degree, hardness, solube solid, moisture, ash, protein of Agaricus bisporus has a great impact on Agaricus bisporus's flavor quality and taste. At present it is urgent to understand and grasy how many the content of soluble solid, moisture, ash, protein in the agaricus bisporus in its quality breeding, food processing and storage and transportation field. The traditional analysis methods belong to destructive measurement, and exist shortcomings of experiment trouble, time-consuming and laborious, and expensive drugs with experiment could easily lead to pollute environment, and so on. So it is of great scientific significance and practical value to explore green, rapid, nodestructive method to determine agaricus bisporus interior quality based on the near-infrared spectroscopy technology.
     Based on Near Infrared Spectroscopy technology, the research of nondestructive methods about testing browning, hardness, soluble solids, moisture, ash, protein of agaricus bisporus was studied by using of NIRcal software.The main conclusions are as follows:
     1.Its is more conducive to the establishment of the model, after removed the abnormal samples the model has the higher precision.
     2.In order to search an appropriate pretreatment method to nondestructive mensure the interior quality of agaricus bisporus, the effect of4conventional pretrement methods on PLS calibration model has been compared, it can be obtained that the second derivative was the best effect on establishing agaricus bisporus hardness, soluble solids and the moisture quantitative analysis model; the MSC was an efficient method to nondestructive measure to ash, a*, b*, protein in agaricus bisporus with near-infrared spectroscopy; the first derivative was the best effect on establishing agaricus bisporus L*quantitative analysis model. The quantitative analysis models were established by application of partial least squares, in order to measure interior quality of agaricus bisporus nondestructively by near infrared spectroscopy based on the optimization pretreatment methods.
     3.The principal components of the model was determined by RMSECV/RMSEP. The RESECV/RMSEP is smaller, the stronger of the model predictive ability. Select the smallest principal component corresponding to the minimum value of RMSECV/RMSEP.
引文
[1]卞生珍,杨清香.双孢菇采后的生理生化变化.新疆师范大学学报,2007,44(S2):32-35.
    [2]史琦云,邵威平.八种食用菌营养成分的测定与分析[J].甘肃农业大学学报,2003,38(2):336-339.
    [3]杨春梅,李宁,赵学玒,等.用于果蔬内部品质无损检测的NIRS技术新进展[J].激光与红外,2009,39(11):1137-1141.
    [4]Camps C, Guillerm in P, Mauget J C, et al.Discrimination of storage duration of apples stored in a cooled room and shelf-life by visible-near infrared spectroscopy[J]. Journal of Near Infrared Spectroscopy,2007,15(3):169-177.
    [5]Huang H B,Yu H Y,Xu H R, et al.Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages[J]. Journal of Food Engineering,2008,87(3):303-313.
    [6]Davies A.M.C.,William Herschel and the discovery of near infrared. Spectrosc[J]. Eur. 2000,12,10-16.
    [7]Walsh K B.,Guthrie J A.,Burney J W. Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit[J]. Aust. J. Plant Physiol.,2000,27,1175-1186.
    [8]Fraser D G., Kunnemeyer R., McGlone V.A., et al. Near infrared light penetration into an apple[J].Postharvest Biol. Technol.2000,22,191 - 194.
    [9]Schaare P.N,Fraser D G. Comparison of reflectance interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruitfJ]. Postharvest Biol. Technol.,2000,20,175-184.
    [10]Lammertyn J, Peirs A., De Baerdemaeker J, et al. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment[J]. Postharvest Biol. Technol.,2000,18,121-132.
    [11]Ventura M, De Jager, A, de PutterF H, et al. Nondestructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS)[J]. Postharvest Biol. Technol. 1998.14,21 - 27.
    [12]Walsh K B., Guthrie J.A, Burney, J W. Application of commercially available, low-cost, miniaturised NIR spectrometers to the assessment of the sugar content of intact fruit[J]. Aust. J. Plant Physiol.,2000,27,1175 - 1186.
    [13]Hernandez Sanchez N, Lurol S, Roger J M, et al. Robustness of models based on NIR spectra for sugar content prediction in apples[J]. J. Near Infrared Spectrosc.2003,11, 97-107.
    [14]Zude M, Herold B, Roger J-M, et al. Nondestructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life[J]. J. Food Eng. 2006,77,254-260.
    [15]Greensill C V, Walsh K B. Optimisation of instrument precision and wavelength resolution for the performance of NIR calibrations of sucrose in a water-cellulose matrix[J]. Appl. Spectrosc.2000b,54,426 - 430.
    [16]Nicola"1 B M, Theron K I, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple[J]. Chemom. Intell. Lab. Syst. 2006a,85,243 - 252.
    [17]Wold S, Sj"ostr"om M, Eriksson L. PLS-regression:a basic tool of chemometrics[J]. Chemom. Intell. Lab. Syst.2001,58,109-130.
    [18]Isaksson T, N?s T. The effect of multiplicative scatter correction and linearity improvement in NIR spectroscopy[J]. Appl. Spectrosc.1988,42,1273- 1284.
    [19]Chauchard F, Roger J M, Bellon-Maurel. V. Correction of the temperature effect on near infrared calibration—application to soluble solid content prediction[J]. J. Near Infrared Spectrosc..2004,12,199 - 205.
    [20]Li Y, Brown C W, Lo S. Near infrared spectroscopic determination of alcohols:solving non-linearity with linear and non-linear methods[J]. J. Near Infrared Spectrosc.1999,7, 55-62.
    [21]Lov'asz T, Mer'esz P, Salg'o A. Application of near infrared transmission spectroscopy for the determination of some quality parameters of apples[J]. J.Near Infrared Spectrosc. 1994,2,213 - 221.
    [22]Guthrie J A, Wedding B, Walsh K B. Robustness of NIR calibrations for soluble solids in intact melon and pineapple[J]. J. Near Infrared Spectrosc.1998,6,259 - 265.
    [23]McGlone V.A, Kawano S. Firmness dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR-spectroscopy[J]. Postharvest Biol.Technol.1998,13,131 -141.
    [24]Peirs A, Tirry J, Verlinden B, et al. Effect of biological variability on the robustness of NIR-models for soluble solids content of apples[J]. Postharvest Biol. Technol.2002b,28, 269-280.
    [25]Guthrie J.A, Reid D J, Walsh K B. Assessment of internal quality attributes of mandarin fruit II. NIR calibration model robustness[J]. Aust. J.Agric. Res.2005b,56,417 - 426.
    [26]Golic M, Walsh K B. Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content[J]. Anal. Chim. Acta.2006,555,286 - 291.
    [27]Greensill C V, Wolf P J, Spiegelman C H, et al. Calibration transfer between PDA-based NIR spectrometers in the NIR assessment of melon soluble solids content[J]. Appl. Spectrosc.2001,55,647 - 653.
    [28]Alamar M C, Bobelyn E, Lammertyn J, et al. Calibration transfer between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids content of apple[J]. Postharvest Biol. Technol.2007,45,38 - 45.
    [29]Peirs A, Scheerlinck N, Nicola"i B M. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents[J]. Postharvest Biol. Technol.2003a,30,233 - 248.
    [30]Roger J M, Chauchard F, Bellon-Maurel V. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits[J]. Chemom. Intell. Lab. Syst.2003,66,191 - 204.
    [31]Kawano S, Abe H, Iwamoto M.Development of a calibration equation with temperature compensation for determining the Brix value in intactpeaches[J]. J. Near Infrared Spectrosc.1995,3,211-218.
    [32]Kawano S. Newapplication of nondestructive methods for quality evaluation of fruits and vegetables in Japan[J]. J. Japan. Soc. Hort. Sci.1998,67,1176-1179.
    [33]Lammertyn J, Nicola"i B, Ooms K, et al. J.Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR spectroscopy[J]. Trans. ASAE.1998.,41,1089-1094.
    [34]Ventura M, De Jager A, de PutterF H,et al. Nondestructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS)[J]. Postharvest Biol. Technol,1998,14,21-27.
    [35]Nicola"1 B M, Theron K I, Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple.Chemom[J]. Intell. Lab. Syst, 2006a,85,243-252.
    [36]Peirs A, Scheerlinck N, Nicola"1 B.M. Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents[J]. Postharvest Biol. Technol,2003a,30,233-248.
    [37]章海亮,孙旭东,刘燕德,等.近红外光谱检测苹果可溶性固形物[J].农业工程学报,2009,25(2):340-344.
    [38]Antihus Herna'ndez Go'mez, Yong He, Annia Garci'a Pereira. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques[J]. Journal of Food Engineering,2006,77,313 -319.
    [39]Panmanas Sirisomboon, Munehiro Tanaka, Shuji Fujita, et al. Evaluation of pectin constituents of Japanese pear by near infrared spectroscopy[J]. Journal of Food Engineering,2005,27,701 -707.
    [40]Golic M, Walsh K B. Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content[J]. Anal. Chim. Acta,2006,555,286-291.
    [41]Long R L, Walsh K B. Limitations to the measurement of intact melon total soluble solids using near infrared spectroscopy[J]. Aust. J. Agric. Res,2006,57,403-410.
    [42]Ying Yinbin,Liu Yande, Wang JuanPing, et al. Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches[J]. Trans.ASAE,2005,48,229-234.
    [43]Guthrie J A, Wedding B, Walsh K.B. Robustness of NIR calibrations for soluble solids in intact melon and pineapple[J]. J. Near Infrared Spectrosc,1998,6,259 - 265.
    [44]GolicM, Walsh K B. Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content[J]. Anal. Chim. Acta,2006.555,286-291.
    [45]Slaughter D C, Cavaletto C G, Gautz L.D.Paull.R.E.Non-destructive determination of soluble solids in papayas using near infrared spectroscopy[J]. J.Near Infrared Spectrosc,1999,7,223-228.
    [46]Saranwong S, Sornsrivichai J, Kawano S. Improvement of PLS calibration for Brix value and dry matter of mango using information from MLR calibration[J]. J. Near Infrared Spectrosc,2001,9,287 -295.
    [47]McGlone V A, Jordan R B, Martinsen P J. Vis/NIR estimation at harvest of pre-and post-storage quality indices for'Royal Gala'apple[J]. Postharvest Biol. Technol,2002a,25,135-144.
    [48]Herrera J, Guesalaga A, Agosin E. Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes[J]. Meas.Sci. Technol,2003,14, 689-697.
    [49]Lee K, Kim G, Kang S,et al. Measurement of sugar content in citrus using near infrared transmittance[J]. Key Eng. Mater,2004,270-273,1014- 1019.
    [50]傅霞萍,应义斌,陆辉山,等.应用多种近红外建模方法分析梨的坚实度[J].光谱 学与光谱分析,2007,27(5):911-915.
    [51]张淑娟,张海红,王凤花,等.柿子可溶性固形物含量的可见-近红外光谱检测[J].农业工程学报,2009,25(2):345-347.
    [52]马广,傅霞萍,周莹,等.大白桃糖度的近红外漫反射光谱无损检测试验研究[J].光谱学与光谱分析,2007,27(5):907-910.
    [53]朱伟兴,江辉,陈全胜,等.梨可溶性固形物含量NIR与变量筛选无损检测[J].农业机械学报,2010,41(10):129-133.
    [54]宋丽华,刘立峰,陈焕英,等.花生籽仁蛋白质含量近红外光谱模型的建立[J].中国农学通报,2011,27(15):85-89.
    [55]杨帆,李雅婷,顾轩,等.便携式近红外光谱仪测定苹果酸度和抗坏血酸的研究[J].光谱学与光谱分析,2011,13(9):2386-2389.
    [56]Fan Guoqiang, Zha Jianwen, Du Ran,et al.Determination of soluble solids and firmness of apples by Vis/NIR transmittance[J].Journal of Food Engineering,2009,93,416-420.
    [57]Ying Yibin, Liu Yande. Nondestructive measurement of internal quality in pear using genetic algorithms and FT-NIR spectroscopy[J]. Journal of Food Engineering,2008,84,206 - 213.
    [58]Tan C, Li M L, Qin X, et al.Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples[J]. Analytical Sciences,2008,24(5):674-653.
    [59]刘洁,李小昱,李培武,等.基于近红外光谱的板粟水分检测方法[J].农业工程学报,2010,26(2):338-341.
    [60]LI Xiaoli, HE Yong. Non-destructive measurement of acidity of Chinese bayberry using VIS/NIR techniques[J]. Eur Food Res Technol,2006,223:731-736.
    [61]李桂峰苹果果肉褐变机理和近红外无损检测技术研究[D].西北农林科技大学,2008
    [62]谢丽娟,刘东红,张宇环,等.近红外光谱技术定量测定杨梅汁可溶性固形物[J].光谱学与光谱分析,2007,27(7):1332-1335.
    [63]刘燕德,陈兴苗,欧阳爱国.梨表面色泽的可见/近红外漫反射光谱无损检测研究[J].红外与毫米波学报,2008,27(4):266-268.
    [64]马兰.基于近红外光谱检测番茄内部品质的研究[D].华中农业大学,2008
    [65]孙旭东,郝勇,高荣杰,等.脐橙糖度近红外光谱在线检测数学模型优化研究[J].光谱学与光谱分析,2011,31(5):1230-1235.
    [66]李成华,张永丹,刘吟,等.采收期对双孢蘑菇采后耐贮性品质影响研究[J].中国食用菌,2009,28(5):46-49.
    [67]石吉勇,殷晓平,邹小波,等.基于模拟退火波长优化的草莓坚实度近红外光谱检 测[J].农业机械学报,2010,41(9):99-103.
    [68]吕强,汤明杰,赵杰文,等.近红外光谱预测猕猴桃硬度模型的简化研究[J].光谱学与光谱分析,2009,29(7):1768-1771.
    [69]王丽,郑小林,郑群雄.基于近红外光谱技术的桃品质指标快速检测方法研究[J].中国食品学报,2011,11(3):205-209.
    [70]章海亮,孙旭东,刘燕德,等.近红外光谱检测苹果可溶性固形物[J].农业工程学报,2009,25(增刊2):340-344.
    [71]Mizukami Sawai, Yamaguchi Y. Moisture Content Measurement of Tea Leaves by Electrical Impedance and Capacitance[J]. Biosystems Engineering,2006,93(3):293-299.
    [72]魏立立.近红外光谱技术在面制品品质检测中的应用[D].河南工业大学,2010.