包含溶解性微生物产物形成与降解及同时贮存与生长机理的新活性污泥数学模型建立与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前污水生物处理最主要的方法,其数学模型的建立及工艺优化过程中如何把各种反应过程及机理正确地表达在数学模型中是关键。目前人们对溶解性微生物产物(SMP)的研究越来越重视。SMP产生于污水处理系统中与微生物直接相关的细胞新陈代谢过程中,在许多方面影响着污水处理工艺,如它是构成出水中化学需氧量(COD)的重要组成部分,限定了污水的最低处理极限,影响出水的排放指标等。同时,研究者发现微生物在利用有机质进行生长的过程中并不是如国际水质协会(IWA)提出的活性污泥数学模型3号(ASM3)所描述的先把进水有机物贮存、再利用胞内贮存物进行生长的过程,而是存在着利用基质同时贮存与生长(Simultaneous substrate storage and growth, SSSG)的现象。因此,如何把上述两种机理正确地反映在活性污泥数学模型中,并验证新建模型的有效性是本课题的研究重点。
     本课题以国际水质协会IWA提出的活性污泥数学模型3号(ASM3)为平台,首先把SMP的概念融入到ASM3模型中,建立了SMP-ASM3模型。其中SMP形成与降解机理分为两部分:一是基质利用相关型产物(Substrate Utilization Associated Products, UAPs),它与基质消耗及微生物生长有关,其产生速率与基质利用率成正比;另一个是生物量相关型产物(Biomass Associated Products, BAPs),它与微生物的内源代谢有关,其产生的速率与微生物的浓度成正比。在该模型中SMP降解过程的动力学是以Monod方程的形式表达的。其次,将微生物利用有机物进行同时贮存与生长的机理融入到SMP-ASM3模型中,建立了SSSG-SMP-ASM3模型。在此新建立的模型中,微生物利用有机物进行同时贮存与生长,即微生物在基质充足时贮存一部分有机物为胞内贮存物,同时,直接利用额外的进水中易生物降解有机物进行生长;在基质不足时,微生物利用胞内贮存物进行生长。在此基础上,对SSSG-SMP-ASM3模型建立的机理进行了探讨,特别是“同时贮存与生长机理”,即认为微生物在基质充足期代谢有机物的过程有三这途径:直接消耗一部分进水有机物进行生长、贮存额外的进水有机物和消耗一部分胞内贮存物进行生长,这三个过程是同时进行的;另外,本研究也对"SMP的降解机理”进行了简化,认为SMP的分子量很大,不能直接透过细胞膜进入微生物内部,因而假设SMP先被胞外酶水解成小分子状的有机物,之后再被微生物代谢。据此,建立了可实用化的ASMP模型。
     对模型参数进行评估,识别新建模型中灵敏度高的参数,从而为模型的校准提供依据。本研究采用全局灵敏度分析法的一种,即区域灵敏度分析(RSA),来评估参数的随机变化对出水水质浓度的影响幅度。结果表明:对溶解性COD (SCOD)、氨氮(SNH)和硝态氮(SNO)影响最大的参数,即影响系统中SCOD代谢的参数主要有23个,分别是基质贮存比例系数(fSTO)、微生物利用基质直接进行生长的好氧产率系数(Y1,O)、颗粒性缓慢水降解有机物的水解速率常数(kH)、贮存物的好氧产率系数(YSTO,O)、好氧贮存速率系数(kSTO,O)、微生物基于基质生长过程中UAP的缺氧产率(kUAP,NO)、自养菌硝态氮饱和常数(KA,NO)、控制XSTO代谢的常数(K1)、UAP的水解速率常数(kH,UAP)、基于胞内贮存物的好氧最大比生长速率(μH2,O)、微生物利用胞内贮存物生长过程中UAP的缺氧产率(kUSTO,NO)、异养菌缺氧产率系数(Y1,No)、微生物利用胞内贮存物生长过程中UAP的好氧产率(kUSTO,O)、自养菌氧饱和常数(KA,O)、微生物好氧内源代谢过程中BAP的产率(kBAP,O)、基于基质的好氧生长速率(μH,O)、基于基质的缺氧最大比生长速率(μH,NO)、自养菌碱度饱和常数(KA,ALK)、异养菌的缺氧内源呼吸速率(bH,NO)、微生物直接利用进水基质进行生长过程中UAP的好氧产率(kUAP,O)、基于胞内贮存物的缺氧生长速率(μH2,NO)、饱和常数(K2)和饱和常数(KS);影响系统中SNH的参数主要有21个,分别是fSTO、自养菌最大比生长速率(μA)、YSTO,O、微生物利用胞内贮存物进行生长的好氧产率系数(Y2,O)、Y1,O、kUAP,NO、kUSTO,NO、kH、μH2,O、μH,NO、氧饱和常数(KO)、Y1,NO、硝态氮饱和常数(KNO)、缺氧贮存速率系数(kSTO,NO)、异养菌的好氧内源呼吸速率(bH,o)、自养菌产率(YA)、KA,ALK、微生物缺氧内源代谢过程中BAP的产率(kBAP,NO)、自养菌氨氮饱和常数(KA,NH)、kSTO,O和饱和常数(KNH);影响出水SNO变化的参数主要有16个,分别是fSTO、kH、μA、KA,ALK、KO、kH,UAP、μH2,O、kSTO,NO、Y1,O、Y1,NO、KA,NH、K1、μH2,NO、自养菌硝态氮饱和常数(KA,NO)、K2和饱和常数(KNo)。
     模型机理评估及模型参数校准是检验新建模型的有效性和准确性的重要部分。本研究提出了一种新的适用于评估新建模型机理和参数的校准方法,主要由以下几个步骤组成:a、在文献值的基础上对参数进行灵敏度分析,找出显著影响模型预测结果的参数;b、对进水组分进行划分;c、用耗氧呼吸速率(OUR)法来评估模型的机理;d、用实际工艺的数据进一步检验和校准模型;e、用该工艺的另一种不同运行条件下的实验数据验证模型校准的结果,如改变污泥停留时间(SRT)、曝气方式、进水流量等;f、若第e步不成功,则用第e步的工艺校准模型,并用第d步的工艺运行方式验证校准的结果;g、用另外一种活性污泥工艺进一步验证模型校准的结果;h、若验证不成功,重复d、e、f步骤,直到验证成功。
     根据新提出的校准方案,本研究用从OUR实验中获得的数据对模型进行评估。模拟结果指出ASMP模型比SSSG-SMP-ASM3模型更准确地模拟活性污泥系统中OUR的动态变化(相关系数R分别为0.893和0.848,误差平方和SSE分别为0.013和0.023);ASMP模型比ASM3模型更准确地模拟SCOD的动态变化(R分别为0.981和0.977,SSE分别为79.2和354.9),说明:a、在基质充足时微生物消耗基质的过程有三种途径,即直接利用一部分进水基质进行生长、额外的基质被贮存、微生物利用胞内贮存物进行生长,这三个过程是同时发生的;b、有必要将SMP的形成与降解机理结合到ASM3模型中。同时,用从小试规模的序批式间歇反应器(SBR)中获取的一周期内水质(SCOD、SNH和SNO)的动态变化数据和稳态出水数据(SCOD、UAP、BAP、SNH、SNO、TN和混合液悬浮固体浓度MLSS)校准及模拟三种模型(ASMP、SMP-ASM3和ASM3),结果表明ASMP模型比SMP-ASM3和ASM3模型更准确地模拟SCOD(R分别为0.939、0.876和0.929,SSE分别为737.1、1757.7和8370.3)、SN(R分别为0.992、0.991和0.979,SSE分别为1.72、12.85和12.12)和SNO(R分别为0.992、0.972和0.952,SSE分别为1.19、10.8和11.53)的动态变化,和稳态出水的SCOD(SSE分别为0.25、4和571.2)、UAP(SSE分别为0.01、0.49和—)、BAP(SSE分别为0.16、1.69和—)、SNH(SSE分别为0.01、0.09和0.09)、SNO(SSE分别为0.09、4.41和4)、TN(SSE分别为1.69、8.41和7.84)和MLSS(SSE分别为7395、67081和123000)。另外,用相同进水水质的连续流完全混合式反应器(CSTR)的出水数据检验SBR的校准结果,用ASMP模型对稳态出水SCOD、UAP、BAP、SNH和SNO的模拟结果表明模型获得了良好的校准,其SSE分别为0.04、0.25、0.09、0.01和1.69。在此基础上,用ASMP模型对SBR工艺进行了优化及不同运行条件下的出水水质进行了预测。
     采用ASMP和ASM3模型分别对上海市某污水处理厂3—6月份的动态出水水质进行了模拟研究,结果表明ASMP模型可以很好地模拟该污水处理厂的出水水质,其实测出水COD、SNH和SNo动态变化值与模拟值的平均偏差分别为0.8(-16.1—12.5)、0.3(-3.6—7.6)和-5.4(-21.7—1.7),优于实测值与ASM3模型模拟值的平均偏差(分别为8.6(-6.9—19.8)、2.0(-4.3—8.5)和-7.0(-28—1.7));同时,模拟结果也表明出水中SMP占有相当部分比例(约25%),是构成出水中COD的重要组成部分。
Activated sludge process is currently one of the main biological methods for wastewater treatment. It is a key point to correctly reflect various reaction processes and mechanisms in modeling establishment and process optimization in simulation procedure. So far, more and more researches are focused on the soluble microbial products (SMPs). SMP which is generated in wastewater treatment process is relative to biomass metabolism. It influences wastewater treatment process in various aspects, for instance, consisting of important part in effluent COD, affecting effluent discharge standard, limiting the lowest treatment threshold, etc. On the other hand, unlike the mechanism of initial storage then growth for substrate described in activated sludge model no.3 (ASM3) proposed by IWA, many researchers found that simultaneous substrate storage and growth happened. Hence, the aim of this project is to propose a new activated sludge model with the above two mechanisms involved and further to calibrate its availability.
     In this project, firstly, a new proposed SMP-ASM3 model was established with the combination of SMP concept into ASM3. In which SMP was categorized into two parts:one was substrate utilization associated products (UAP) which is related to both substrate utility and biomass growth, and its producing rate is in proportion to substrate utilization rate. The other is biomass associated products (BAP) which is related to biomass respiration, and its producing rate is in proportion to biomass concentration. And the expression of SMP degradation is based on Monod model. Secondly, SMP-ASM3 model was further modified into SSSG-SMP-ASM3 model by combination of the simultaneous substrate storage and growth mechanism into SMP-ASM3. In which storage and growth occur simultaneously in the feast phase, and only after the depletion of the primary substrate the microorganisms would utilize the stored polymers as a carbon and energy source in the famine phase. Then, based on SSSG-SMP-ASM3 model, a further ASMP model was focused on the evaluation of the simultaneous storage and growth process, which indicated that the consumption of substrate by biomass should contain three processes which occurred simultaneously, i.e. substrate storage, biomass ditrect growth on substrate and biomass growth on storage products. In addition, from the practical application point of view, the mechanism of SMP degradation was simplified, i.e. SMP is first hydrolyzed into small molecular weight organic matters before being utilized by biomass. The reason for the assumption was due to the big molecular weight of SMP that can not get through the cell membrane.
     It is necessary to assess and indentify the high sensitive model parameters in order to provide guidances for model calibration. In this study, regional sensitivity analysis (RSA) was used to evaluate the effects of parameter random disturbances on effluent quality. It was found that the parameters fSTO,Y1,O,kH,YSTO,O,kSTO,O,kUAP,NO,KA,NO,K1,kHUAP,μH2,O,kUSTO,NO, Y1,NO,kSTO,NO,KA,O,kBAP,O,μH,O,μH,NO,KA,ALK,bH,NO,kUAP,O,μH2,NO and K2 affected evidently on effluent COD; the parametersμA,μH1,μH2,fSTO, kSTO,kSTOU and kSTOB contributed more to oxygen profile;the parameters fSTO,μA, YSTO,O, Y2,O, Y1,O,kUAP,NO,kUSTO,NO, kH,μH2,O,μH,NO,KO, Y1,NO,KNO,kSTO,NO,bH,O,YA, KA,ALK,kBAP,NO,KA,NH and kSTO,O affected evidently on effluent SNH and the parameters fSTO, kH,μA,KA,ALK, KO,kHUAP,μH2,O,kSTO,NO, Y1,O, Y1,NO,KA,NH, K1,μH2,NO,KA,NO and K2 took more responsibility for SNO concentration.
     It is an important part in model evaluation and calibration procedure to assure the model's validation and accuracy in its application. In this study, a very applicable method was proposed for the new proposed model calibration which mainly consists of the following eight steps:a. identify the sensitive parameters; b. classify the influent components using experiments according to the model requirements; c. evaluate the model mechanism with OUR tests; d. calibrate and assess the proposed model with activated sludge processes; e. change the operation parameters and compare the experimental data with the simulated results by the calibrated model; f, if there is a obvious deviation, use the data in step e to recalibrate the model, and use the data in step d to check the model simulation; g. validate the calibrated model with another kind of activated sludge process with the same influent characteristic; h. if there is a obvious deviation in step g, repeat steps d-f, till the validation is successful.
     According to the new proposed protocol, the evaluations of models with data from OUR tests have been carried out. The results indicated that ASMP model was more accurate than SSSG-SMP-ASM3 in simulating OUR dynamic variation (the correlation coefficient R were 0.893 and 0.848, and the sum of squared errors (SSE) were 0.013 and 0.023) respectively; ASMP model was more accurate than ASM3 in predicting SCOD dynamic variation (R were 0.981 and 0.977, and SSE were 79.2 and 354.9 respectively), which means:a) there are three processes occurred simultaneously for biomass growth, i.e. substrate storage, growth direct on substrate and growth on storage products; b) it is necessary to add SMP mechanism into ASM3. Meanwhile, models (ASMP, SMP-ASM3 and ASM3) have also been calibrated and evaluated with data from a lab-scale sequential batch reactor (SBR). The simulations of SCOD, SNH and SNO dynamic variations during one cycle of SBR and effluent SCOD, UAP, BAP, SNH, SNO, TN and mixed liquid suspended solid (MLSS) were focused on. The results indicated that ASMP was more accurate than SMP-ASM3 and ASM3 in predicting the dynamic variations of SCOD (R were 0.939,0.876 and 0.929; SSE were 737.1,1757.7 and 8370.3 respectively), SNH (R were 0.992,0.991 and 0.979; SSE were 1.72,12.85 and 12.12 respectively) and SNO (R were 0.992,0.972 and 0.952; SSE were 1.19,10.8 and 11.53 respectively), and in predicting of effluent SCOD (SSE were 0.25,4.0 and 571.2), UAP (SSE were 0.01,0.49 and—), BAP (SSE were 0.16,1.69 and—), SNH (SSE were 0.01,0.09 and 0.09), SNO (SSE were 0.09,4.41 and 4), TN (SSE were 1.69,8.41 and 7.84) and MLSS (SSE were 7395,67081 and 123000). In addition, the effluent data (SCOD, UAP, BAP, SNH and SNO) from a lab-scale completely stirred tank reactor (CSTR) with same influent characteristic were used to validate the calibrated ASMP model by SBR data, and the comparative results between measured and simulated values demonstrated the well calibration of the model as the SSE were 0.04,0.25,0.09,0.01 and 1.69 respectively. Based upon above results, the optimization of SBR process was conducted with ASMP model and the predicted effluent qualities under various operational conditions were investigated.
     Eventually, ASMP and ASM3 models were applied to simulate the dynamic variations of effluent from March to June of one Wastewater Treatment Plant (WWTP) in Shanghai. The simulated results suggested that ASMP was more accurate than ASM3 in predicting effluent COD,SNH and SNO, as the average deviations between measured and simulated values by ASMP were 0.8 (-16.1-12.5),0.3 (-3.6-7.6) and-5.4 (-21.7-1.7) less than that by ASM3 which were 8.6 (-6.9-19.8),2.0 (-4.3-8.5) and-7.0 (-28-1.7), respectively. It also indicated that SMP consisted to part of effluent COD (about 25%) and be an important component in effluent COD.
引文
[1]Henze M. Characterization of wastewater for modeling of activated sludge processes. Water Science and Technology.1992,25(6):1-15
    [2]Nyberg U, Aspegren H, Andersson B, Jansen J la C, Villadsen IS. Full-scale application of nitrogen removal with methanol as carbon source. Water Science and Technology. 1992,26(5-6):1077-1086
    [3]Chang CH, Hao OJ. Sequencing batch reactor system for nutrient removal:ORP and pH profiles. Journal of Chemical Technology and Biotechnology.1996,67(1):27-38
    [4]Katsogiannis AN, Kornaros M, Lyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Water Science and Technology.2003,47(11):53-59
    [5]Demuynck C, Vanrolleghem PA, Mingneau C, Liessens J, Verstraete W. NDBEPR process optimization in SBRs:Reduction of external carbon source and oxygen supply. Water Science and Technology.1994,30(4):169-179
    [6]Lin YF, Jing SR. Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactor. Water Environment Research.2001, 73(5):526-33
    [7]Larrea L, Larrea A, Ayesa E, Rodrigo JC, Lopez-Carrasco MD, Cortacans JA. Development and verification of design and operation criteria for the step feed process with nitrogen removal. Water Science and Technology.2001,43(1):261-268
    [8]Pulg S, Vives MT, Corominas LI, Balaguer MD, Colprim J. Wastewater nitrogen removal in SBRs, applying a step-feed strategy:from lab-scale to pilot-plant operation. Water Science and Technology.2004,50(10):89-96
    [9]Guo J, Yang Q, Peng Y, Yang A, Wang S. Biological nitrogen removal with real-time control using step-feed SBR technology. Enzyme and Microbial Technology.2007, 40(6):1564-1569
    [10]Pai TY, Tsai YP, Chou YJ, Chang HY, Leu HG, Ouyang CF. Microbial kinetic analysis of three different types of EBNR process. Chemosphere.2004,55(1):109-118
    [11]Zhu GB, Peng YZ, Zhai LM, Wang Y, Wang SY. Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding. Biochemical Engineering Journal.2009,43(3):280-287
    [12]Ge S, Peng Y, Wang S, Guo J, Ma B, Zhang L, Cao X. Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology.2010,101 (23):9012-9019
    [13]Tam NFY, Wong YS, Leung G. Effect of exogenous carbon sources on removal of inorganic nutrients by the nitrification denitrification process. Water Research.1992, 26(9):1229-1236
    [14]Chang HY, Ouyang CF. Improvement of nitrogen and phosphorus removal in the anaerobic-oxic-anoxic-oxic (AOAO) process by stepwise feeding. Water Science and Technology.2000,42(3-4):89-94
    [15]Henze M, Gujer W, Mino T, van Loosdrecht MCM. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report no.9 IWA, London, 2000
    [16]Barker DJ, Stuckey DC. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research.1999,33(14):3063-3082
    [17]Rittmann BE, Bae W, Namkung E, Lu CJ. A critical evaluation of microbial product formation in biological processes. Water Science and Technology.1987,19(3-4):517-528
    [18]Jiang T, Myngheer S, De Pauw DJW, Spanjers H, Nopens I, Kennedy MD, Amy G, Vanrolleghem PA. Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Research.2008, 42(20):4955-4964
    [19]Lu SG, Imai T, Ukita M, Sekine M, Higuchi T, Fukagawa M. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Research.2001,35(8):2038-2048
    [20]Lu, SG, Imai T, Ukita M, Sekine M, Higuchi T. Modeling prediction of membrane bioreactor process with the concept of soluble microbial product. Water Science and Technology.2002,46(11-12):63-70
    [21]Oliveira-Esquerre KP, Narita H, Yamato N, Funamizu N, Watanabe Y. Incorporation of the concept of microbial product formation into ASM3 and the modeling of a membrane bioreactor for wastewater treatment. Brazilian Journal Chemical Engineering.2006, 23(4):461-471
    [22]Fan J, Lu SG, Qiu ZF, Wang XX, Li WZ. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation. Environmental Technology.2009,30(7):641-649
    [23]Ni BJ, Yu HQ. Growth and storage process in aerobic granules grown on soybean wastewater. Biotechnology and Bioengineering.2008,100(4):664-672
    [24]Karahan-Gul O, van Loosdrecht MCM, Orhon D. Modification of activated sludge no.3 considering direct growth on primary substrate. Water Science and Technology.2003, 47(11):219-225
    [25]Krishna C, van Loosdrecht MCM. Substrate flux into storage and growth in relation to activated sludge modeling. Water Research.1999,33(14):3149-3161
    [26]Sin G, Guisasola A, De Pauw DJW, Baeza JA, Carrera J, Vanrolleghem PA. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions. Biotechnology and Bioengineering.2005, 92(5):600-613
    [27]Ni BJ, Yu HQ. A new kinetic approach to microbial storage process. Applied Microbiology and Biotechnology.2007,76(6):1431-1438
    [28]Ni BJ, Yu HQ. Kinetic modeling microbial storage process in activated sludge under anoxic conditions. Chemical Engineering Science.2008,63(10):2785-2792
    [29]Ni BJ, Xie WM, Liu SG, Yu HQ. Modeling and simulation of the sequencing betch reactor at a full-scale municipal wastewater treatment plant. Environmental and Energy Engineering.2009,55(8):2186-2196
    [1]Henze M, Grady CPL Jr, Gujer W, Marais GvR, Matsuo T. Activated sludge model no.1. IWA scientific and technical report no.1, London IWA,1987
    [2]Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, Marais GvR. Activated sludge model no.2. IWA scientific and technical report no.3, London IWA,1995
    [3]Henze M, Gujer W, Mino T, Matsuo T, Wentzel MC, Marais GvR, van Loosdrecht MCM. Activated sludge model no.2d, ASM2d. Water Science and Technology.1999, 39(1):165-182
    [4]Gujer W, Henze M, Mino T, van Loosdrecht MCM. Activated sludge model no.3. Water Science and Technology.1999,39(1):183-193
    [5]杨青,甘树应,陈季华,刘振鸿.活性污泥3号模型(ASM3)简介.中国给水排水.2000,16(11):26-30.
    [6]姚重华,刘勇弟.活性污泥过程数学模型进展.环境化学.2002,21(6):521-527.
    [7]国际水协废水生物处理设计与运行数学模型课题组.张亚雷,李咏梅译.活性污泥数学模型.上海:同济大学出版社,2002.
    [8]姚重华.环境工程仿真与控制(第二版).北京:高等教育出版社,2005.
    [9]Beccari M, Dionisi D, Giuliani A, Majone M, Ramadori R. Effect of different carbon sources on aerobic storage by activated sludge. Water Science and Technology.2002, 45(6):157-168
    [10]Carucci A, Dionisi D, Majone M, Rolle E, Smurra P. Aerobic storage by activated sludge on real wastewater. Water Research.2001,35(16):3833-3844.
    [11]Dircks K, Henze M, van Loosdrecht MCM, Mosbaek H, Aspegren H. Storage and degradation of poly-B-hydroxybutyrate in activated sludge under aerobic conditions. Water Research.2001,35(9):2277-2285
    [12]Pratt S, Yuan Z, Keller J. Modelling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnology and Bioengineering.2004,88(2):135-147
    [13]Beun JJ, Paletta F, van Loosdrecht MCM, Heijnen JJ. Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism in aerobic, slow growing activated sludge cultures. Biotechnology and Bioengineering.2000,67(4):379-389
    [14]Krishna C, van Loosdrecht MCM. Substrate flux into storage and growth in relation to activated sludge modeling. Water Research.1999,33(14):3149-3161
    [15]van Loosdrecht MCM, Pot MA, Heijnen JJ. Importance of bacterial storage polymers in bioprocesses. Water Science and Technology.1997,35(1):41-47
    [16]Grady JrCPL, Williams, DR. Effects of influent substrate concentration on the kinetics of natural microbial populations in continuous culture. Water Research.1975,9(2):171-180
    [17]Daigger GT, Grady JrCPL. A model for the bio-oxidation process based on product formation concepts. Water Research.1977,11(12):1049-1057
    [18]Boero VJ, Eckenfelder JrWW, Bowers AR. Soluble microbial product formation in biological systems. Water Science and Technology.1991,23(4/6):1067-1076
    [19]Rittmann BE, Bae W, Numkung E, Lu CJ. A critical evaluation of microbial product formation in biological processes. Water Science and Technology.1987,19(3-4):517-528
    [20]Numkung E, Rittmann BE. Soluble microbial products (SMP) formation kinetics by biofilms. Water Research.1986,20(6):795-806
    [21]Noguera DR, Araki N, Rittmann BE. Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengineering.1994,44(9):1040-1047
    [22]Baker DJ, Stuckey DC. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research.1999,33(14):3063-3082
    [23]余萍,于鑫,戢启宏,齐枝花,魏谷,翟建平.废水生物处理出水中溶解性微生物产物的形成机制与特征.环境污染与防治.2006,28(5):352-355
    [24]Aquino SF, Stuckey DC. Characterization of soluble products (SMP) in effluents from anaerobic reactors. Water Science and Technology.2002,45(10):127-132
    [25]Eckenfelder WW, Mustermann JL姜文焯,朱光编译.工业废水的活性污泥处理法.北京:中国建筑工业出版社,1997
    [26]Numkung E, Rittmann BE. Effects of SMP on biofilm-reactor performance. Environ Eng Div ASCE.1988,114(1):199-210
    [27]方卫,许玫英,岑英华,李云路,孙国萍.废水处理中的可溶性微生物产物.微生物通报.2006,33(6):112-116
    [28]Rappaport SM, Richard MG, Hollstein MC, Talcott RE. Mutagenic activity in organic wastewater concentrates. Environmental Science and Technology.1979,13(8):957-961
    [29]Chudoba J. Inhibitory effect of refractory organic compounds produced by activated sludge micro-organisms on microbial activity and flocculation. Water Research.1985, 19(2):197-200
    [30]Ross N, Deschenes L, Bureau J, Clement B, Comeau Y, Samson R. Ecotoxicological assessment and effects of physicochemical factors on biofilm development in groundwater condition. Environmental Science and Technology.1998,32(8):1105-1111
    [31]张锡辉.高等环境化学与微生物学原理及应用.北京:化学工业出版社,2001
    [32]Huang X, Liu R, Qian Y. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry.2000,36(5):401-406
    [33]Zhang B, Yamamoto K. Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process. Water Science and Technology.1996,34(5):606-609
    [34]刘锐,黄霞,范彬,藤本真由美,钱易.膜-生物反应器中溶解性微生物产物的研究进展.环境污染治理技术与设备.2002,3(1):1-7
    [35]Aemanuelsson AC, Arcangeli JP, Givingston AG. The anoxic extractive membrane bioreactor. Water Research.2003,37(6):1231-1238
    [36]Parkin GF, McCarty PL. Characteristics and removal of soluble organic nitrogen in treated effluents. Progress in Water Technology.1975,7(3):435-445
    [37]Randtke SJ, Mccarty PL. Removal of soluble secondary effluent organics. Environ Eng Div ASCE.1979,105(EE4):727-743
    [38]Kim BR, Snoeyink VL, Saunders FM. Influence of MCRT on adsorption. Journal of Environmental Engineering-ASCE.1976,102(EE1):55-70
    [39]Schultz JR, Keinath TM. Poedered activated carbon treatment process mechanisms. WPCF.1984,56(2):143-151
    [40]李菊,唐书娟,王志伟.温度对膜生物反应器运行特性及膜污染的影响.环境科学与管理.2010,35(5):110-114
    [41]何品晶,赵有亮,郝丽萍,吕凡,邵立明.模拟废水高温厌氧消化出水中SMP的特性研究.中国环境科学.2010,3:315-321
    [42]董滨,段妮娜,何群彪.不同污泥龄下溶解性微生物产物对膜污染的影响.同济大学学报(自然科学版).2010,38(3):403-406
    [43]齐康申,陈谊,孙宝盛,陈宏宇.膜生物反应器中贫营养条件下SMP的产出研究.环境科学与技术.2010,33(2):52-56
    [44]王盛勇,孙宝盛,王金翠.贫营养条件下溶解性微生物产物的产出研究.水处理技术.2009,35(7):17-21
    [45]黄光团,杨艳琼,张留璨,刘勇弟.好氧完全混合式反应器中水力停留时间对溶解性微生物产物的影响.华东理工大学学报(自然科学版).2009,35(1):66-70
    [46]王琳,元新艳,孙磊,李世峰.低有机负荷对SMBR系统的影响.中国海洋大学学报:自然科学版.2008,38(3):479-482
    [47]王娜,孙宝盛,臧倩,张海丰.优化曝气方式对减缓SMBR一体式反应器中膜污染的影响.水处理技术.2007,33(12):77-80
    [48]苏欣捷,张强.低浓度有机底物好氧降解趋势及SMP的产出.上海环境科学.2002,21(8):503-505
    [49]多金环,安景辉.可溶性微生物产物的产生及影响因素分析.化工环保.2004,24(3):169-172
    [50]Luedeking R, Piret EL. A kinetic study of the lactic acid fermentation batch process at controlled pH. Journal of biochemical and microbiological technology and engineering. 1959,1(4):393-412
    [51]Eckhoff DW, Jenkins D. Activated sludge systems kinetics of the steady and transient states. Berkeley, Calif:SERL Report,1967, No.67-79
    [52]Sykes RM. Limiting nutrient concept in activated sludge models. Journal Water Pollution Control Federation.1981,53(7):1213-1218
    [53]Daigger GT, Grady JrCPL. A model for the biooxidation process based on product formation concepts. Water Research.1977,11(12):1049-1057
    [54]Rittmann BE, Bae W, Namkung BE, Lu CJ. A critical evaluation of microbial product formation in biological processes. Water Science and Technology.1987,19(3/4):517-528
    [55]Artan N, Orhon D, Baykal BB. Implications of the task group model-I:the effect of initial substrate concentration. Water Research.1990,24(10):1251-1258
    [56]Huang JYC, Cheng MD. Transient responses incorporating products formation. Journal of Environmental Engineering.1987,113(4):868-880
    [57]Orhon D, Artan N, Cimsit Y. The concept of soluble residual product formation in the modeling of activated sludge. Water Science and Technology.1989,21(4-5):339-350
    [58]Namkung E, Rittmann BE. Soluble microbial products (SMP) formation kinetics by biofilms. Water Research.1986,20(6):795-806
    [59]Boero VJ, Eckenfelder JrWW, Bowers AR. Soluble microbial product formation in biological systems. Water Science and Technology.1991,23(4/6):1067-1076
    [60]Furumai H, Rittmann BE. Advanced modeling of mixed populations of heterotrophs and nitrifiers considering the formation and exchange of soluble microbial products. Water Science and Technology.1992,26(3-4):493-502
    [61]Noguera DR, Araki N, Rittmann BE. Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengineering.1994,44(9):1040-1047
    [62]Rittmann BE, McCarty PL. Environmental biotechnology:principles and applications. New York:McGrawHill,2001, p176-178
    [63]Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research.2002,36(11): 2711-2720
    [64]Laspidou CS, Rittmann BE. Non-steady state modeling of extracellular polymeric substances, soluble microbial products and active and inert biomass. Water Research. 2002,36(8):1983-1992
    [65]Baskir CI, Hansford GS. Product formation in the continous culture of microbial populations grown on carbohydrates. Biotechnology and Bioengineering.1980, 22(9):1857-1875
    [66]Lu SG, Imai T, Ukita M, Sekine M, Higuchi T, Fukagawa M. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Research.2001,35(8):2038-2048
    [67]Oliveira-Esquerre KP, Narita H, Yamato N, Funamizu N, Watanabe Y. Incorporation of the concept of microbial product formation into ASM3 and the modeling of a membrane bioreactor for wastewater treatment. Brazilian Journal of Chemical Engineering.2006, 23(4):461-471
    [68]van Aalst-van Leeuwen MA, Pot MA, van Loosdrecht MCM, Heijnen JJ. Kinetic modeling of poly(P-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply. Biotechnology and Bioengineering.1997, 55(3):773-782
    [69]Karahan-Gul O, van Loosdrecht MCM, Orhon D. Modification of activated sludge no.3 considering direct growth on primary substrate. Water Science and Technology.2003, 47(11):219-225
    [70]Dircks K, Beun JJ, van Loosdrecht MCM, et al. Glycogen metabolism in aerobic mixed cultures. Biotechnology and Bioengineering.2001,73(2):85-94
    [71]Krishna C, van Loosdrecht MCM. Effect of temperature on storage polymers and settleability of activated sludge. Water Research.33(10):2374-2382
    [72]van Loosdrecht MCM, Heijnen JJ. Modeling of activated sludge process with structured biomass. Water Science and Technology.2002,45(6):12-23
    [73]Beun JJ, Dircks K, van Loosdrecht MCM, Heijnen JJ. Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water research.2002, 36(5):1167-1180
    [74]Sin G, Guisasola A, De Pauw DJW, Baeza JA, Carrera J, Vanrolleghem PA. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions. Biotechnology and Bioengineering.2005, 92(5):600-613
    [75]Ni BJ, Yu HQ. Growth and storage process in aerobic granules grown on soybean wastewater. Biotechnology and Bioengineering.2008,100(4):664-672
    [76]Ni BJ, Yu HQ. A new kinetic approach to microbial storage process. Applied Microbiology and Biotechnology.2007,76(6):1431-1438
    [77]Ni BJ, Yu HQ. Kinetic modeling microbial storage process in activated sludge under anoxic conditions. Chemical Endgineering Science.2008,63(10):2785-2792
    [78]Ni BJ, Xie WM, Liu SG, Yu HQ. Modeling and simulation of the sequencing betch reactor at a full-scale municipal wastewater treatment plant. Environmental and Energy Engineering.2009,55(8):2186-2196
    [1]Barker DJ, Stuckey DC. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research.1999,33(14):3063-3082
    [2]Jarusutthirak C, Amy G. Understanding soluble microbial products (SMP) as a component of effluent organic matter (Efom). Water Research.2007,41(12):2787-2793
    [3]Rittmann BE, Bae W, Namkung E, Lu CJ. A critical evaluation of microbial product formation in biological processes. Water Science and Technology,1987,19(3-4):517-528
    [4]Rittmann BE, Huck PM. Biological treatment of public water supplies. Critical Reviews in Environmental Science and Technology.1989,19(2):119-184
    [5]Henze M, Grady CPL, Gujer W, Marais GVR and Matsuo T. Activated Sludge Models No.1. IAW Publishing, London,1987
    [6]Gujer W, Henze M, Takahashi M, van Loosdrecht MCM. Activated sludge model no.3, Water Science and Technology.1999,29(1):183-193
    [7]Lu SG, Imai T, Ukita M, Sekine M, Higuchi T. Modeling prediction of membrane bioreactor process with the concept of soluble microbial product. Water Science and Technology.2002,46(11-12):63-70
    [8]Oliveira-Esquerre KP, Narita H, Yamato N, Funamizu N, Watanabe Y. Incorporation of the concept of microbial product formation into ASM3 and the modeling of a membrane bioreactor for wastewater treatment. Brazilian Journal of Chemical Engineering.2006, 23(4):461-471
    [9]Fan J, Lu SG, Qiu ZF, Wang XX, Li WZ. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation. Environmental Technology.2009,30(7):641-649
    [10]Rittmann BE, McCarty PL. Environmental biotechnology:principles and applications. McGrawHill, New York,2001
    [11]de Silva DGV, Rittmann BE. Nonsteady-state modeling of multispeces activated-sludge processes. Water Environment Research.2002,72 (5):554-565
    [12]Laspidou CS, Rittmann BE. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research.2002,36 (8): 2711-2720
    [13]Furumai H, Rittmann BE. Advanced Modeling of Mixed Populations of Heterotrophs and Nitrifiers Considering the Formation and Exchange of Soluble Microbial Products. Water Science and Technology.1992,26(3-4):493-502
    [14]Lu SG, Imai T, Ukita M, Sekine M, Higuchi T, Fukagawa M. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Research.2001,35(8):2038-2048
    [15]Hornberger G, Spear R. An approach to the preliminary analysis of environmental systems. Journal of Environmental Management.1981,12(1):7-18
    [16]Henze M, Gujer W, Mino T, van Loosdrecht MCM. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report no.9 IWA, London, 2000
    [17]Beccari M, Dionisi D, Giuliani A, Majone M, Ramadori R. Effect of different carbon sources on aerobic storage by activated sludge. Water Science and Technology.2002, 45(6):157-168
    [18]Carucci A, Dionisi D, Majone M, Rolle E, Smurra P. Aerobic storage by activated sludge on real wastewater. Water Research.2001,35(16):3833-3844
    [19]Dircks K, Henze M, van Loosdrecht MCM, Mosbaek H, Aspegren H. Storage and degradation of poly-B-hydroxybutyrate in activated sludge under aerobic conditions. Water Research.2001,35(9):277-2285
    [20]Pratt S, Yuan Z, Keller J. Modelling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements. Biotechnology and Bioengineering.2004,88(2):135-147
    [21]Beun JJ, Paletta F, van Loosdrecht MCM, Heijnen JJ. Stoichiometry and kinetics of poly-P-hydroxybutyrate metabolism in aerobic, slow growing activated sludge cultures. Biotechnology and Bioengineering.2000,67(4):379-389
    [22]Krishna C, van Loosdrecht MCM. Substrate flux into storage and growth in relation to activated sludge modeling. Water Research.1999,33(14):3149-3161
    [23]van Loosdrecht MCM, Pot MA, Heijnen JJ. Importance of bacterial storage polymers in bioprocesses. Water Science and Technology.1997,35(1):41-47
    [24]Benu JJ, Dirck KS, van Loosdrecht MCM, Heijnen JJ. Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research.2002, 36(5):1167-1180
    [25]GuisasolaA, Sin G, Baeza JA, Carrera J, Vanrolleghem PA. Limitations of ASM1 and ASM3:A comparison based on batch OUR profiles from different full-scale WWTPs. In Proceedings 2nd IWA congress, Marrakech, Morocco,19-24 September 2004
    [26]Karahan-Gul O, van Loosdrecht MCM, Orhon D. Modification of activated sludge no.3 considering direct growth on primary substrate. Watter Science and Technology.2003, 47(11):219-225
    [27]Sin G, Guisasola A, De Pauw DJW, Baeza JA, Carrera J, Vanrolleghem PA. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions. Biotechnology and Bioengineering.2005, 92(5):600-613
    [28]Namkung E, Rittmann B E. Soluble microbial products (SMP) formation kinetics by biofilms. Water Research.1986,20(6):795-806
    [29]Huang JYC, Cheng MD. Transient responses incorporating products formation. Journal of Environmental Engineering.1987,113(4):868-880
    [30]Orhon D, Artan N, Cimsit Y. The concept of soluble residual product formation in the modeling of activated sludge. Water Science and Technology.1989,21(4-5):339-350
    [31]Boero VJ, Eckenfelder JrWW, Bowers AR. Soluble microbial product formation in biological systems. Water Science and Technology.1991,23(4-6):1067-1076
    [32]Jiang T, Myngheer S, De Pauw DJW, Spanjers H, Nopens I, Kennedy MD, Amy G, Vanrolleghem PA. Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Research.2008, 42(20):4955-4964
    [33]van Hulle SWH, Volcke EIP, Teruel JL, Donckels B, van Loos drecht MCM, Vanrolleghem PA. Influence of temperature and pH on the kinetics of the Sharon nitritayion process. Journal of Chemical Technology and Biotechnology.2007, 82(5):471-480
    [34]Lay-Son M, Drakides C. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste:pH as key factor. Water Research.2008,42(3):774-780
    [35]Hiatt WC, Grady CPL. Application of the activated sludge model for nitrogen to elevated nitrogen conditions. Water Environment Research.2008,80(11):2134-2144
    [36]Tyson RV, Simonne EH, Davis M, Lamb EM, White JM, Treadwell DD. Effect of nutrient solution, nitrate-nitrogen concentration, and pH on nitrification rate in perlite medium. Journal of Plant Nutrition.2007,30(4-6):901-913
    [37]Zhu NW, Chen W, Zheng XY. Effectiveness of pH as control parameter for nitrogen removal via SND in a sequencing batch reactor.2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Vols 1-11:4794-4798
    [1]刘毅,陈吉宁,杜鹏飞.环境模型参数优化方法的比较研究.环境科学.2002,23(2):1-6
    [2]Chen J. The Modeling and Control of activated sludeg process:Towards a systematic framework. PhD. Thesis, Imperial College, London, Engl, UK,1993, pp:54-94.
    [3]Beck MB. Water quality modeling:a review of the analysis of uncertainty. Water Resource Research.1987,23(8):1393-1442
    [4]刘毅,陈吉宁,杜鹏飞.环境模型参数识别与不确定性分析.环境科学.2002,23(6):6-10
    [5]邓义祥,陈吉宁,杜鹏飞.HSY算法在水质模型参数识别中的应用.上海环境科学.2002,21(8):116-118
    [6]Beven K. Prophecy, reality and uncertainty in distributed hydrological modeling. Advances in Water Resources.1993,16(1):41-51
    [7]Chen J, Beck MB. Quanlity Assurance of Multi2Media Model for Predictive Screening Tasks. USEPA, Report,1998
    [8]Spear RC, Grieb TM, Shang N. Parameter uncertainty and interaction in complex environmental models. Water Resources Research.1994,30 (11):3159-3169
    [9]Spear PC, Hornberger GM. Eutrophication in peel inlet (II):identification of critical uncertainties via generalized sensitivity arudyais. Water Research.1980,14(1):43-49
    [10]Clemson, B, Tang Y, Pyne J, Unal R. Efficient methods for sensitivity analysis. System Dynamics Review.1995,11(1):31-49
    [11]Hamby, DM. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment.1994,32(2):135-154
    [12]Pannell DJ. Sensitivity analysis:strategies, methods, concepts, examples.1997. http://cyllene.uwa.edu.au/-dpannell/dpap971 f.htm
    [13]Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global Sensitivity Analysis. The Primer, John Wiley & Sons,2008
    [14]王建平,程声通.软计算技术在环境复杂模型参数识别中的应用研究.系统工程理论与实践.2006,2:118-126
    [15]Hormberger GM, Cosby BJ. Selection of parameter values in environmental models using sparfe data:a case study. Applied Mathematics and Computation.1985,17(4):335-355
    [16]邓义祥,富国,于涛,雷坤.改进的RSA方法在参数全局灵敏度分析中的应用.环境科学研究.2008,21(3):40-43
    [17]Hornberger G, Spear R. An approach to the preliminary analysis of environmental systems. Journal of Environmental Management.1981,12(1):7-18
    [18]Cho KH, Shin SY, Kolch W, Wolkenhauer 0. Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method:a case study for the TNFa-mediated NF-κB signal transduction pathway. Simulation.2003,79(12):726-739
    [19]Chang FJ, Delleur JW. Systematic parameter estimation of watershed acidification model. Hydrological process.1992,6(l):29-44
    [20]Choi J, Hulseapple SM, Conklin MH, Harvey JW. Modeling CO2 degassing and pH in a stream-aquifer system. Journal of Hydrology.1998,209(1):297-310
    [21]Helton JC, Davis FJ. Illustration of sampling-based methods for uncertainty. Risk Analysis.2002,22(3):591-622
    [1]Ekama GA, Dold PL, Marais GV. Procedures for determining influent cod fractions and the maximum specific growth-rate of heterotrophs in activated-sludge systems. Water Science and Technology.1986,18(6):91-114.
    [2]Henze M, Grady JrCPL, Gujer W, Marais GvR, Matsuo T. Activated sludge model No.1. IAWPRC Sci andTechnol Report 1. IAWPRC, London,1987
    [3]Sollfrank U, Gujer W. Characterization of domestic wastewater for mathematical modelling of the activated sludge process. Water Science and Technology.1991, 23(4-6):1057-1066
    [4]Kappeler J, Gujer W. Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Science and Technology.1992,25(6):125-139
    [5]Vanrolleghem PA, Spanjers H, Petersen B, Ginestet P, Takacs I. Estimating (combinations of) Activated Sludge Model No.1 parameters and components by respirometry. Water Science and Technology.1999,39(1):195-214
    [6]Petersen B, Gernaey K, Henze M, Vanrolleghem PA. Calibration of activated sludge models:a critical review of experimental designs. In:Agathos, S.N., Reineke,2003
    [7]Henze M, Gujer W, Mino T, van Loosdrecht MCM. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report no.9 IWA, London, 2000
    [8]Hulsbeek JJW, Kruit J, Roeleveld PJ, van Loosdrecht MCM. A practical protocol for dynamic modeling of activated sludge systems. Water Science and Technology.2002, 45(6):127-136
    [9]Vanrolleghem PA, Insel G, Petersen B, Sin G, De Pauw D, Nopens I, Weijers S, Gernaey K.. A comprehensive model calibration procedure for activated sludge models. In: Proceedings:WEFTEC 2003,76th Annual Technical Exhibition and Conference. October 11-15,2003, Los Angeles, CA, USA (on CD-ROM).
    [10]Langergraber G, Rieger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert M, Simon J, Maurer M. A guideline for simulation studies of wastewater treatment plants. Water Science and Technology.2004,50(7):131-138.
    [11]Melcer H, Dold PL, Jones RM, Bye CM, Takacs I, Stensel HD, Wilson AW, Sun P, Bury S. Methods for wastewater characterisation in activated sludge modeling. Water Environment Research Foundation (WERF), Alexandria, VA, USA,2003
    [12]Petersen B, Gernaey K, Henze M, Vanrolleghem PA. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. Journal of Hydroinformation.2002,4(l):15-38
    [13]Dochain D, Vanrolleghem PA. Dynamical Modelling and Estimation in Wastewater Treatment Processes. IWA Publishing, London, UK,2001
    [14]Meijer SCF. Metabolic modelling of full-scale biological nitrogen removal and phosphorous removing WWTPs. Water Research.2001,35(11):2711-2723
    [15]Meijer SCF, van der Spoel H, Susanti S, Heijnen JJ, van Loosdrecht MCM. Error diagnostics and data reconcilation for activated sludge modelling using massbalances. Water Science and Technology.2002,45(6):145-156
    [16]Weijers SR. On BOD tests for the determination of biodegradable COD for calibrating activated sludge model no.1. Water Science and Technology.1999,39(4):177-184
    [17]Weijers SR, Vanrolleghem PA. A procedure for selecting best identifiable parameters in calibrating activated sludge model no.1 to full scale plant data. Water Science and Technology.1997,36(5):69-79
    [18]Brun R, Kuhni M, Siegrist H, Gujer W, Reichert P. Practical identifiability of ASM2d parameters-systematic selection andtuning of parameter subsets. Water Research.2002, 36 (16):4113-4127
    [19]Cokgor EU, Sozen S, Orhon D, Henze M. Respirometric analysis of activated sludge behaviour-1:Assessment of the readily biodegradable substrate. Water Research.1998, 32(2):461-475
    [20]Spanjers H, Vanrolleghem PA, Olsson G, Dold P.. Respirometry in control of the activated sludge process. Water Science and Technology.1996,34(3-4):117-126
    [21]Spanjers H. Respirometry in activated sludge. PhD thesis. Landbouwuniversiteit Wageningen, The Netherland. p199,1993
    [22]Spanjers H, Vanrolleghem PA. Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Science and Technology.1995,31(2):105-114
    [23]Vanrolleghem PA, Spanjers H. A hybrid Respirometric method for more reliable assessment of activated sludge model parameter. Water Science and Technology.1998, 37(12):237-246
    [24]Barker DJ, Stuckey DC. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research.1999,33(14):3063-3082
    [25]Jarusutthirak C, Amy G. Understanding soluble microbial products (SMP) as a component of effluent organic matter (Efom). Water Research.2007,41(12):2787-2793
    [26]Logan BE, Jiang Q. Molecular Size Distributions of Dissolved Organic Matter. Journal of Environmental Engineering.1990,116(6):1046-1062
    [27]Logan BE, Wagenseller GA. Molecular Size Distributions of Dissolved Organic Matter in Wastewater Transformed by Treatment in a Full-Scale Trickling Filter. Water Environment Research.2000,72(3):277-281
    [28]国家环保局.《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版,2002
    [29]Gernaey KV, Petersen B, Nopens I, Comeau Y, Vanrolleghem PA. Modeling aerobic carbon source degradation processes using titrimetric data and combined Respirometric-titrimetric data:enperimental data and model structure. Biothecnology and Bioengineering.2002,79(7):741-753
    [30]Vanrolleghem PA, Gernaey K, Coen F, Petersen B, De Clerq B, Ottoy JP. Limitations of short-term experiments designed for identification of activated sludge biodegradation models by fast dynamic phenomena. In Proceedings 7th IFAC Conference on Computer Applications in Biotechnology. Osaka, Japan. May 31-June 4,1998
    [31]Vanrolleghem PA, Sin G, Gernaey KV. Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes. Biotechnology and Bioengineering.2004,86:277-290
    [32]Krishna C, van Loosdrecht MCM. Substrate flux into storage and growth in relation to activated sludge modeling. Water Research.1999,33(14):3149-3161
    [33]Karahan-Gul O, van Loosdrecht MCM, Orhon D. Modification of activated sludge no.3 considering direct growth on primary substrate. Water Science and Technology.2003, 47(11):219-225
    [34]Sin G, Guisasola A, De Pauw DJW, Baeza JA, Carrera J, Vanrolleghem PA. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions. Biotechnology and Bioengineering.2005, 92(5):600-613
    [35]Dircks K, Henze M, van Loosdrecht MCM, Mosbaek H, Aspegren H. Storage and degradation of poly-B-hydroxybutyrate in activated sludge under aerobic conditions. Water Research.2001,35(9):2277-2285
    [36]Vanrolleghem PA, Kong Z, Rombouts G, Verstraete W. An on-line respirographic sensor for the characterization of load and toxicity of wastewaters. Journal of Chemical Technology and Biotechnology.1994,59(4):321-333
    [37]Vanrolleghem PA, Spanjers H. Comparison of two respirometric principles for the determination of short-term biochemical oxygen demand. In:Proceedings 49th Purdue Industrial Waste Conference. Lewis Publ., Chelsea, Michigan,1994, p177-188
    [38]Fan J, Lu SG., Qiu ZF, Wang XX, Li WZ. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation. Environmental Technology.2009,30(7):641-649
    [39]Jiang T, Myngheer S, De Pauw DJW, Spanjers H, Nopens I, Kennedy MD, Amy G, Vanrolleghem PA. Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR). Water Research.2008, 42(20):4955-4964
    [40]Xu SL, Hultman B. Experiences in wastewater characterization and model calibration for the activated sludge process. Water Science and Technology.1996,33(12):89-98
    [41]Rittmann BE, Bae W, Namkung E, Lu CJ. A critical evaluation of microbial product formation in biological processes. Water Science and Technology.1987,19(3-4):517-528
    [42]de Silva DGV, Rittmann BE. Nonsteady-state modeling of multispecies activated sludge process. Water Environment Research.2000,72(5):554-565
    [43]Lavallee B, Lessard P, Vanrolleghem PA. Modeling the metabolic adaptations of the biomass under rapid growth and starvation conditions in the activated sludge process. Journal of Environmental Engineering Science.2005,4(6):533-548
    [44]van Loosdrecht MCM, Heijnen JJ. Modelling of activated sludge processes with structured biomass. Water Science and Technology.2002,45(6):12-23
    [45]Corominas LI, Sin G, Puig S, Dolors Balaguer M, Vanrolleghem PA, Colprim J. Modified calibration protocol evaluated in a model-based testing of SBR flexibility. Bioprocess and Biosystems Engineering.2011,34(2):205-214
    [46]Lu SG, Imai T, Ukita M, Sekine M, Higuchi T, Fukagawa M. A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products. Water Research.2001,35(8):2038-2048
    [47]Lu, SG, Imai T, Ukita M, Sekine M, Higuchi T. Modeling prediction of membrane bioreactor process with the concept of soluble microbial product. Water Science and Technology.2002,46(11-12):63-70
    [48]Takacs I, Patry GG, Nolasco D. A dynamic model of the clarification-thickening process. Water Research.1991,25(10):1263-1271
    [49]Majone M, Massanisso P, Ramadori R. Comparison of carbon storage under aerobic and anoxic conditions. Water Science and Technology.1998,38(8):77-84
    [50]Li X, Zhang R. Aerobic treatment of dairy wastewater with sequencing batch reactor systems. Bioprocess and Biosystems Engineering.2002,25(2):103-109
    [51]Artan N, Orhon D. Mechanism and design of sequencing batch reactors for nutrient removal. IWA Publishing, London,2005
    [l]刘春梅,储金宇.SBR法在农村生活污水处理中的应用.农机化研究.2007,6:229-233
    [2]李琼,姚鹏,王艳博.SBR工艺的发展演变及其应用特性.化学之友.2006,7:28-30
    [3]赵丽珍,缪应祺.SBR技术的研究及进展.江苏理工大学学报(自然科学版).2001,22(3):58-61
    [4]陈冬秀.SBR工艺发展应用综述.铜业工程.2004,1:67-69
    [5]许倩,王增长.处理城市污水的活性污泥法综述.山西能源与节能.2010,1:54-57
    [6]岳强,邹小玲,缪应祺.SBR技术的发展及应用.污染防治技术.2003,16(4):35-37
    [7]魏娜,程晓如,赵海华.间歇式活性污泥法的研究进展.工业用水与废水.2004,35:30-34
    [8]欧阳勇,罗建中,陈宝才,王莎.低浓度废水处理的研究进展.广西轻工业.2009,25(1):85-86
    [9]高大文.污水生物脱氮新技术研究现状与发展方向.现代化工.2004,24(z1):202-206
    [10]王淑莹,顾升波.SBR工艺数学模型研究进展及其应用.环境工程学报.2009,3(12):2113-2121
    [11]Olsson G, Newell B. Wastewater treatment systems:modelling, diagnosis and control. IWA Publishing,1999, London
    [12]Wilderer PA, Irvine RL, Goronszy MC. Sequencing batch reactor technology. IWA publishing,2001, London.
    [13]Ronner-Holm SGE, Holm NC. Special automation and regulation strategies for enhancing sequencing batch reactor (SBR) performances. Water Science and Technology. 2009,60(5):1161-1172
    [14]Magri A, Guivernau M, Baquerizo G, Vinas M, Prenafeta-Boldu FX, FlotatsX. Batch treatment of liquid fraction of pig slurry by intermittent aeration:process simulation and microbial community analysis. Journal of Chemical Technology and Biotechnology.2009, 84(8):1202-1210
    [15]任刚.SBR工艺处理有机废水的自动控制研究.哈尔滨工业大学,硕士学位论文,2001年
    [16]Kim Y, Yoo C, Kim Y, Lee IB. Simulation and Activated Sludge Model-Based Iterative Learning Control for a Sequencing Batch Reactor. Environmental Engineering Science. 2009,26(3):661-671
    [17]Kim YH, Yoo C, Lee IB. Optimization of biological nutrient removal in a SBR using simulation-based iterative dynamic programming. Chemical Engineering Journal.2008, 139(1):11-19
    [18]Ronner-Holm SGE, Mennerich A, Holm NC. Specific SBR population behaviour as revealed by comparative dynamic simulation analysis of three full-scale municipal SBR wastewater treatment plants. Water Science and Technology.2006,54(1):71-80
    [19]Dagot C, Sommanawan N, Baudu M, Anderson R. Performances and simulation of intermittent decanted extended aeration treatment plants in a tropical climate. Environmental Technology.2001,22(7):1155-1168
    [20]Li X, Zhang R. Aerobic treatment of dairy wastewater with sequencing batch reactor systems. Bioprocess and Biosystems Engineering.2002,25(2):103-109
    [21]Artan N, Orhon D. Mechanism and design of sequencing batch reactors for nutrient removal. IWA Publishing,2005, London
    [22]Manning JF, Irvin RL. The biological removal of phosphorus in a sequencing batch reactor. Journal of the Water Pollution Control Federation.1985,57(1):87-94
    [23]Lin Y-F, Jing S-R. Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactors. Water Environment Research.2001, 73(5):526-533
    [24]龙北生,刘红波,肖国拾,任何军,聂嘻.两级SBR工艺去除磷、氮及有机物效能分析.环境科学DOI:CNKI:SUN:HJKZ.0.2009-09-022
    [25]黄惠珺,王淑莹,郭建华,王中玮,彭永臻.缺氧条件下进水时间与溶解氧对底物贮存的影响.中国环境科学.2010,8:1056-1061
    [26]郭文姬,冯桂颖,陆磊,闵红,田冬,王燕洁,李琳,呼世斌.乙酸对缺氧/SBR反应系统脱氮除磷效率的影响.西北农业学报.2010,7:190-195
    [27]王海彪,傅金祥,唐玉兰,王洋.SBR循环周期对好氧颗粒污泥结构及稳定性的影响.能源与环境.2009,6:7-8,12
    [28]李燕,丁毅,张雁秋.SBR优化运行对脱氮除磷影响的研究.安徽农业科学.2009,37(9):4238-4239
    [29]闫立龙,张颖,任源.SBR工艺处理高浓度尿素废水影响因素研究.工业水处理.2009,29(3):25-28
    [30]蒋福海,汪慧贞,张彪.SBR法脱氮除磷的影响因素及优化.北京建筑工程学院学报.2006,22(1):26-28
    [31]Sin G, Insel G, Lee DS, Vanrolleghem PA. Optimal but robust N and P removal in SBRs: a model-based systematic study of operation scenarios. Water Science and Technology. 2004,50(10):97-105
    [32]Corominas LI, Traore A, Sin G, Puig S, Balaguer M, Colprim J,Vanrolleghem PA. Model-based evaluation of an on-line control strategy for SBRs based on OUR and ORP measurements. Water Science and Technology.2006,53(4-5):161-169
    [33]Furumai H, Kazmi AA, Fujita M, Furuya Y, Sasaki K. Modeling long term nutrient removal in a sequencing batch reactor. Water Research.1999,33(11):2708-2714
    [34]Larrea L, Albizuri J, Irizar I, Hernandez JM. Design and operation of SBR processes for small plants based on simulations. Water Science and Technology.2007,55(7):163-171
    [35]Cho MH, Lee J, Kim JH, Lim HC. Optimal strategies of fill and aeration in a sequencing batch reactor for biological nitrogen and carbon removal. Korean Journal of Chemical Engineering.2010,27(3):925-929
    [1]郭亚萍,陈士才,张宇坤,李军,顾国伟.ASMs仿真软件在污水处理厂中的应用.中国给水排水.2010,26(14):23-29
    [2]于广平,苑明哲,王宏.基于简化活性污泥数学模型的污水处理仿真研究.系统仿真学报.2007,19(23):5366-5369
    [3]高志广.城市污水处理厂脱氮除磷过程模拟及工艺优化运行研究.同济大学,博士学位论文,2006年
    [4]揭大林.活性污泥1号模型在无锡城北污水厂的应用研究.河海大学,硕士学位论文,2007年
    [5]于薇.活性污泥数学模型的研究应用进展.中国科技信息.2009,2:31-33
    [6]赵振.活性污泥数学模型在天山污水处理厂工艺优化改造中的模拟研究.东华大学,硕士学位论文,2003年
    [7]杨青,甘树应,刘遂庆.面向对象的城市污水处理厂模拟控制软件开发.中国给水排水.2007,23(22):18-23
    [8]李峰,吴敏,杨哲.活性污泥数学模型在我国的研究进展.中国资源综合利用.2007,25(11):21-22
    [9]刘光莲.活性污泥数学模型在污水处理中的研究和应用进展.水科学与工程技术.2009,1:31-33
    [10]董珊燕.上海石洞口污水厂UniTank工艺计算机仿真与优化研究.华东理工大学,博士学位论文,2007年
    [11]Liu YC, Shi HC, Shi HM, Wang ZQ. Study on a discrete-time dynamic control model to enhance nitrogen removal with fluctuation of influent in oxidation ditches. Water Research.2010,44(18):5150-5157
    [12]Fang F, Ni BJ, Xie WM, Sheng GP, Liu SG, Tong ZH, Yu HQ. An integrated dynamic model for simulating a full-scale municipal wastewater treatment plant under fluctuating conditions. Chemical Engineering Journal.2010,160(2):522-529
    [13]Heusch S, Kamradt B, Ostrowski M. Simulation of wastewater treatment plant within integrated urban wastewater models. Water Science and Technology.2010, 61(10):2645-2652.
    [14]Thornton A, Sunner N, Haeck M. Real time control for reduced aeration and chemical consumption:a full scale study. Water Science and Technology,2010,61 (9):2169-2175.
    [15]Cho MH, Lee J, Kim JH, Lim HC. Optimal strategies of fill and aeration in a sequencing batch reactor for biological nitrogen and carbon removal. Korean Journal of Chemical Engineering.2010,27(3):925-929
    [16]Vazquez-Padin JR, Mosquera-Corral A, Campos JL, Mendez R, Carrera J, Perez J. Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration. Biochemical Engineering Journal.2010,49(2):173-184
    [17]Lubello C, Caffaz S, Gori R, Munz G. A modified Activated Sludge Model to estimate solids production at low and high solids retention time. Water Research.2009, 43(18):4539-4548
    [18]Lobos J, Heran M, Grasmick A. Optimization of the operations conditions in membrane bioreactors through the use of ASM3 model simulations. Desalination and Water Treatment.2009,9(1-3):126-130.
    [19]Nopens I, Batstone DJ, Copp JB, et al. An ASM/ADM model interface for dynamic plant-wide simulation. Water Research.2009,43(7):1913-1923.
    [20]Kim Y, Yoo C, Kim Y, Lee IB. Simulation and Activated Sludge Model-Based Iterative Learning Control for a Sequencing Batch Reactor. Environmental Engineering Science. 2009,26(3):661-671.
    [21]Flores-Alsina X, Rodriguez-Roda I, Sin G, Gernaey KV. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty. Water Research.2008, 42(17):4485-4497.
    [22]Moral H, Aksoy A, Golcay CF. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Computers and Chemical Engineering.2008,32(10):2471-2478.
    [23]Kim YH, Yoo C, Lee IB. Optimization of biological nutrient removal in a SBR using simulation-based iterative dynamic programming. Chemical Engineering Journal.2008, 139(1):11-19.
    [24]Larrea L, Albizuri J, Irizar I, Hernandez JM. Design and operation of SBR processes for small plants based on simulations. Water Science and Technology.2007,55(7):163-171.
    [25]Ronner-Holm SGE, Mennerich A, Holm NC. Specific SBR population behaviour as revealed by comparative dynamic simulation analysis of three full-scale municipal SBR wastewater treatment plants. Water Science and Technology.2006,54(1):71-80.
    [26]Liu F, Chen JH, Fan W, Gu GW. Appliction of the modified activated sludge model to WWTP. Future of Urban Wastewater Systems-Decentralisation and Reuse.2005: 1005-1010
    [27]Moussa MS, Rojas AR, Hooijmans CM, Gijzen HJ, van Loosdrecht MCM. Model-based evaluation of nitrogen removal in a tannery wastewater treatment plant. Water Science and Technology.2004,50(6):251-260.
    [28]Gujer W, Henze M, Takahashi M, van Loosdrecht MCM. Activated sludge model no.3. Water Science and Technology.1999 (29):183-193.
    [29]刘芳.城市污水厂活性污泥数学模型的参数测定及模拟研究.同济大学,博士学位论文,2004年
    [30]唐受印,戴友芝,汪大翚.废水处理过程(第二版).北京:化学工业出版社,2004年,P12
    [31]Takacs I, Patry GG, Nolasco D. A dynamic model of the clarification-thickening process. Water Research.1991,25(10):1263-1271
    [32]季民,霍金胜,胡振苓,马文杰,刘文亚,张宝祥.活性污泥法数学模型的研究与应用.中国给水排水.2001,17(8):18-22
    [33]Barker DJ, Stuckey DC. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research.1999,33(14):3063-3082