贵州紫云猴场晚石炭世大型生物骨架礁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受弗拉斯/法门期(F/F)生物集群绝灭事件及南半球大冰期的影响,石炭纪生物礁相对较少,国际上关于石炭纪生物礁的研究集中于一些藻礁,关于后生动物骨架礁研究相对薄弱。
     贵州紫云猴场地区发育一个大型生物骨架礁,产于马平组Triticites带内,时间上隶属于晚石炭世。礁体中四射珊瑚Fomitchevella为主要的造礁生物,其它造礁生物还有叶状藻、蓝细菌等。Fomitchevella是新发现的一种晚石炭世重要的造礁生物,是一种从状复体珊瑚。Fomitchevella通过出芽生殖方式形成笙丛状群体骨架,出芽方式包括两种:侧部生殖和中心生殖。大型生物骨架礁发育在碳酸盐台地边缘,由于受到环境频繁变化的影响,礁体发生了明显的造礁群落取代现象。
     通过对大型生物骨架礁组合中生物群落的详细研究,将其自下而上划分为两个不同的生长阶段和组合面貌不同的四个群落:珊瑚Ivanovia cf. manchurica群落、叶状藻群落、菌藻类蓝细菌群落、珊瑚Fomitchevella群落。前三者各种不同生物在不同环境中独立发育构成小点礁,彼此平行排列,形成了下部点礁层;后者构成其上部主礁体。这些群落代表了生物礁不同的发展阶段,显示了在造礁过程中生物种类更替演化的特征,而群落演化与造礁有一致的对应关系,并控制着生物礁的发育和规模。
     大型生物骨架礁建造过程:在不同的台地边缘环境所形成的生物碎屑滩之上,由蓝细菌、Ivanovia cf.manchurica和叶状藻分别建立的造礁群落建造了下部点礁层。随着环境的变化,开始了Fomitchevella的第一次发展,但由于Fomitchevella在群落中分散发展,并没有形成规模,造礁失败。后来Fomitchevella集中定殖并迅速向周围发展,占据了大部分空间,建立了以Fomitchevella为主的造礁群落,Fomitchevella在稳定的生态环境中得到极度的发展,最终建造了罕见的石炭纪大型珊瑚骨架礁。
     本文通过对紫云猴场晚石炭世大型生物骨架礁的研究发现,以特征生物Fomitchevella为代表的造礁群落的组成、结构、生态特征、和礁体生长发育模式在中国乃至世界上的石炭纪礁体中都是独特的,构成了石炭纪罕见的非藻造架生物礁。紫云猴场晚石炭世大型生物骨架礁的发现,丰富了世界石炭纪造礁生物群落的类型,为研究中国石炭纪造礁生物群落的类型和演化,提供了新的实例。
By the effect of Frasnian-Famennian extinct and the ice age in the south hemisphere, there is few reefs in the carboniferous, and the research about the reefs in the carboniferous are centralized on some algae, the research on the metazoan framework reefs is comparatively weak.
     A large-scale of framework reefs is found in Houchang Town of Ziyun city in Guizhou province. The reefs lies in the Triticites zone of Maping Formation and formed in the late stage of late Carboniferous, Fomitchevella is a kind of new discovered reef-building biology of late carboniferous,it is a familiar kind of colony tetracoral, other reef-building organisms are Phylloid algae, Ivanovia cf.manchurica, cyanobacteria It forms the colony framework like pipes by buding, there are two types:lateral multiplication and central multiplication.The large-scale of assemblage reefs develops at the margin of carbonate platform, as the influence of change of environment, the reefs-building community changes clearly in the reefs.
     By the research of the reefs, it is divided into 2 growth stage,4 communities from lower to upper portions. The reef-building communities are Ivanovia cf.manchurica, Phylloid algae, cyanobacteria and colony tetracoral Fomitchevella community. The three formers grew individually in various environments and formed dot-reefs in parallel mode. The latter formed upper major reef by large phacelloid Fomitchevella. These communities represent different developing stages of the reefs and reveal biologic succession features of the reefs in the reef-building process. There is a consistent and corresponding relation that controlled the growth of distribution of the reefs between the evolution of communities and the reef-building process.
     The process of the large-scale of framework reefs is:formed in different platform margin environment on the bioclast beach, the reef-building community builded by cyanobacteria, Ivanovia cf.manchurica and Phylloid algae formed the dot-reefs layer. Along with the
     changing of enviroment, Fomitchevella replaces the underpart community, the first development of Fomitchevella begins. But as Fomitchevella growing decentralized and no forms the reef-building community, so the development of Brachiopoda restricts the living space of Fomitchevella,at last,most of spaces are took up by Brachiopoda,so Fomitchevella doesn't joint together and the reef-building fails. At the evening, Fomitchevella fixes up centralized, develops around, takes large spaces and formed the reef-building community base on Fomitchevella. Then Fomitchevella develops exceeding under steady entironment and builds the unusual large coral framework reefs of Carboniferous finally.
     By the research of the large-scale of framework reefs in Houchang Town of Ziyun county in Guizhou province, we found that their model of growth, development and structure characterized by Fomitchevella communities are very different from other reefs of late Carboniferous in China and the world. The discovery of Houchang Town of Ziyun county in Guizhou province reefs increases biological types of Carboniferous communities in the world. It offers a new example for evolution of reef-building community and reef growth.
引文
1.巩恩普.中国石炭纪生物礁[M],沈阳:东北大学出版社,1997,1-132.
    2.钟建华,温志峰,李勇,郭泽清,王海侨,柳祖汉,冀国盛,吴孔友.生物礁的研究现状与发展趋势[J],地质论评,2005,51(3):288-300.
    3. Riding R. Structure and composition of organic reefs and carbonate mud mounds:concepts and categories[J], Earth-Science Reviews,2002,58(1-2):163-231.
    4. Fliigel E, Kiessling W. A new look at ancient reefs[J], In:Kiessling W, Flugel E, Colonka J. (eds.), Phanerozoic Reef Patterns, SEPM Special Publication, Tulsa,2002,72:3-20.
    5.范嘉松,张维.生物礁的基本概念、分类及识别特征[J],岩石学报,1985,(3):45-59.
    6.范嘉松.古生代生物礁研究中的若干问题,兼论我国西南地区二叠纪生物礁类型[J],石油与天然气地质,1988,9(1):46-54.
    7. Dorlodot H de. Le calcaire carbonifere des Fonds-de Tahaux et de la vallee de la lesse[J], Ann. Soc. Geol. Belgique,1900,27:141-255.
    8. Douglas J A. The Carboniferous limestone of County Clare (Ireland)[J], Quart J. Geol. Soc. London, 1909,65:538-586.
    9. Dorlodot H de. Description succincte des assises du calcaire carbonifere de la Belgique[J], Bull. Soc. belge Geol., Men,1909,23:175-193.
    10. Dorlodot H de. Veritable nature des pretendus stromatoporoides du Waulsortien[J], Bull. Soc. belge Geol., Men,1911,25:119-155.
    11. Demanet F. La Waulsortien de sosoye et ses rapports fauniques avec le Waulsortien dage Tournaisien superieus[J], Mem. Inst. Geol. Univ. Louvain,1923,2:36-286.
    12. Ball S M, Pollard W D, Roberts J W. Importance of phylloid algae in development of Depositional topography-reality or myth?[J], In:Frost S H, Weiss M P, Saunders J B. (eds.), Reefs and related carbonates-ecology and sedimentology, Amer. Ass. Petrol. Geol. Stud. Geol.,1977,4:239-259.
    13. Toomey D F, Wilson J L, Rezak R. Evolution of Yucca mound complex, late Pennsylvanian phylloid-Algal buildup, Sacramento Mountains, New Mexico[J], Am. Assoc. Petrol. Geologists Bull.,1977, 61:2115-2133.
    14. Kotila D A. Calcareous algae and their role in the deposition of some Morrowan carbonates of northeast Oklahoma[J], Geol. Soc. Amer., Abstr.,1978,31-32.
    15. Duncan H M. Mississippian chaetetid from kentucky[J], U.S. Geol. Survey Prof. Paper, Washington, 1965,525-A:122.
    16. Duncan H M. Mississippian occurrence of Chaetetes[J], U.S. Geol. Survey Prof. Paper, Washington, 1966,550-A:112.
    17. Davies G R, Nassichuk W W. The Hydrozoan? Palaeoaplysina from the Upper Paleozoic of Ellesmere Island, Arctic Canada[J], Journal of Paleontology,1973,47(2):251-265.
    18. Wiedenmayer F. Modern sponge bioherm of the Great Bahama Bank and their likely ancient analogues[J], Coll. Int. CNRS,1978,291:289-296.
    19.Toomey D F. European fossil reef models[M], Soc. Eco. Pal. Min. Spec. Pub.,1981,30:1-546.
    20. Fagerstrom J A. The evolution of reef communities[M], New York, John Wiley and Sons,1987,1-600.
    21. Suchy D R., West R R. A Pennsylvanian cryptic community associated with laminar chaetetid colonies[J], Palaios,1988,3:404-412.
    22. Fagerstrom J A. A structural model for reef communities[J], Palaios,1988,3:217-220.
    23. West R R. Temporal changes in Carboniferous reef mound communities[J], Palaios,1988,3:152-169.
    24. Breuninger R H, Canter K L, Isaacson P E. Pennnsylvanian-Permian palaeoaplysina and algal buildup, Snaky Canyon Formation, east-central Idaho, U.S.A.[J], In:Geldsetzer H H, James N P and Tebbutt G E. (eds.), Reefs, Canada and Adjacent Area, Memoir,1989,13:631-637.
    25.方少仙,侯方浩.广西田林县浪平碳酸岩台地石炭纪沉积环境及大塘期苔藓虫—珊瑚点礁[J],沉积学报,1986,4(3):30-42.
    26.谭代友.贵州紫云县猴场翁刀湾红藻礁特征[J],天然气勘探与开发,1991,3:78-84.
    27. Fan Jiasong, Rigby J K. Upper Carboniferous phylloid algal mounds in southern Guizhou, China[J], Brigham Young Univesity Geology Studies,1994,40:17-24.
    28.巩恩普,关广岳.石炭纪生物礁造礁群落演化[J],地质论评,1998,44(2):160-164.
    29.巩恩普,关长庆,孙宝亮,姚玉增.黔南地区石炭纪大型珊瑚礁研究[J],中国科学(D辑),2003,7:644-649.
    30. Gong Enpu, Yang Hongying, Guan Changqing, Sun baoliang, Yao yuzeng. Unique recovery stage of reef communities after F/F event in a huge coral reef of Carboniferous, Southern Guizhou, China[J], Science in china Ser.D Earth Sciences,2004,47(5):412-418.
    31.关长庆,巩恩普,姚玉增,孙宝亮.黔南扁平村晚石炭世生物礁生物群落分析[J],古地理学报,2004,6(3):339-346.
    32.关长庆,巩恩普,张永利,孙宝亮.黔南晚石炭世造礁珊瑚Ivanovia cf.manchurica古生态特征 及成礁机制探讨[J],地质论评,2006,52(2):178-183.
    33.郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社.2000:143-217.
    34.王俊达,李华梅.贵州石炭纪古纬度与铝土矿[J],地球化学,1998,27(6):575-578.
    35.贵州省区域地质矿产局.贵州省区域地质志,北京:地质出版社,1987,164-194.
    36.王增吉.中国的石炭系[M],北京:地质出版社,1990,215-248.
    37.秦建华,吴应林,颜仰基,朱忠发.南盘江盆地海西—印支期沉积构造演化[J],地质学报,1996,70(2): 99-107.
    38.冯增昭,杨玉卿,鲍志东.中国南方石炭纪岩相古地理[J],古地理学报,1999,1(1):75-86.
    39.陈宏明,吴祥和等.中国南方石炭纪岩相古地理与成矿作用[M],北京:地质出版社,1994,1-118.
    40.焦大庆,马永生,邓军等.黔桂地区石炭纪层序地层格架及古地理演化[J],现代地质,2003,17(3):294-302.
    41. Wood R. Reef evolution[J], Oxford Univ. Press,1999,414.
    42. Wood R. Biodiversity and the history of reefs[J], Geological Journal,2001b,36:251-263.
    43. Folk R L. Practical petrographic classification of limestones[J], Am. Assoc. Pet. Geol. Bull.,1959,43: 1-38.
    44. Dunham R J. Classification of carbonate rocks according todepositional texture[J], In:Ham W E. (Ed.), Classification of carbonaterocks, Am. Assoc. Pet. Geol. Mem.,1962,1:108-121.
    45. Embry III A F, Klovan J E. A late Devonian reef tract onnortheastern Banks Island[J], N.W.T. Bull. Can. Petrol. Geol.,1971,19:730-781.
    46. Klement K W. Practical classification of reefs and banks, bioherms and biostromes[J], Am. Assoc. Pet. Geol. Bull,1967,51:167-168.
    47. Tsien H H. Ancient reefs and reef carbonates [J], Proc.4thlntern. Coral Reef Symp.,1981, Manila 1: 601-609.
    48. Cuffey R J. Expanded reef-rock textural classification andthe geologic history of bryozoan reefs[J], Geology,1985,13:307-310.
    49. Insalaco E. The descriptive nomenclature and classificationof growth fabrics in fossil scleractinian reefs[J], Sediment. Geol,1998,118:159-186.
    50. Toomey D F, Finks R M. Middle Ordovician (Chazyan) mounds, southern Quebec, Canada:a summary report[J]. New York State Geological Association,41st Ann. Mtg, Guidebook to Field Excursions. Plattsburgh, New York,1969,121-134.
    51. Fagerstrom J A. The evolution of reef communities[M], Wiley, New York,1987,600.
    52. Watts N R, Riding R. Growth of rigid high-relief patchreefs, Mid-Silurian, Gotland, Sweden[J], Sedimentology,2000,47:979-994.
    53.俞建章,林英铴,时言,黄柱熙,俞学光.石炭纪二叠纪珊瑚[M],长春:吉林人民出版社,1983,17-354.
    54.杨式溥古生态学原理与方法[M],北京:地质出版社,1993,1-200.
    55.沈国英,施并章.海洋生态学[M],北京:科学出版社,2002,140-152.
    56. Wood R. The ecological evolution of reefs[J], Annu. Rev. Ecol. Syst.,1998,29:179-206.
    57. Delgado O, Lapointe B E. Nutrient-limited productivity of calcareous versus fleshy macroalgae in a entrophic, carbonate-rich tropical marine environment[J], Coral Reefs,1994,13:151-159.
    58. Wilson M A, Palmer T J.,1992. Hardgrounds and hardground faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications 9, pp.1-131.
    59. Taylor P D, Wilson M A.,2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews,62:1-103.
    60. Wood R.,1993. Uutrients, Predation and the history of reef-building. PALAIOS,8:526-543.
    61. Wood R.,1998. The ecological evolution of reefs. Annu. Rev. Ecol. Syst.29:179-206.
    62. Wilson M A, Curran H A, White B.,1998a. Paleontological evidence of a brief global sea-level event during the last interglacial. Lethaia,31:241-250.
    63. Wilson M A, Ozanne C R, Palmer T J.,1998b. Origin and paleoecology of free-rolling oyster accummulations (ostreoliths) in the Middle Jurassic of southwestern Utah, USA. Palaios,13:70-78.
    64. Wood R.,1999. Reef Evolution. Oxford University Press, Oxford,414