黑曲霉产单宁酶与固定化酶制备没食子酸及其丙酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单宁酶是一种酰基水解酶,是在单宁酸等诱导剂存在下合成的诱导酶,已广泛应用于食品饮料、化妆品和饲料工业等方面。但由于目前酶法的生产水平较低,限制了其在工业生产中的应用。同时,没食子酸及其没食子酸酯类化合物是重要的医药和化工原料,市场上的这类产品基本是由五倍子单宁及塔拉单宁酸水解生产而来的,因为酸碱法水解会造成的环境污染、设备腐蚀等问题。多年来,人们一直在寻求用单宁酶法来生产没食子酸及其没食子酸酯类化合物方法来替代原有工艺。因此,开展相关研究以提高单宁酶生产水平及酶法转化没食子酸及其没食子酸酯类化合物具有积极的现实意义。
     本文采用实验室保藏的黑曲霉菌株为产单宁酶的出发菌株,采用紫外和氮离子注入方式对其进行诱变选育,并对黑曲霉发酵产单宁酶条件、黑曲霉发酵动力学、单宁酶的固定化及酶学性质进行研究,对固定化单宁酶转化没食子酸和没食子酸丙酯条件进行优化。主要研究结果如下:
     产单宁酶菌株选育以黑曲霉产单宁酶菌株为试验菌株,经筛选培养得到酶活为86U/mL的菌株N5。以N5为出发菌株经过紫外诱变,得到酶活为158U/mL的菌株N5-U5-3。用N+离子对N5-U5-3进行诱变选育,经过筛选后得到编号为03号的菌株,酶活力为198U/mL。该菌株具有较好的遗传稳定性,是一株比较理想的单宁酶高产菌株,命名为黑曲霉111(Aspergillus niger111)。
     产单宁酶条件优化通过单因素试验、中心组合实验设计及响应面法对黑曲霉的产单宁酶条件进行优化。确定对发酵产酶影响最大的因素依次为单宁浓度、培养温度、培养时间,以及其最适产酶条件为:30℃,转速180r/min,单宁浓度1.76%,初始pH6.0,接种量10%.,装液量20%,培养时间82.2h。在此条件下,发酵单宁酶活力可达380.34U/mL。
     黑曲霉发酵动力学研究以Aspergillus niger111为实验菌种,对其进行分批发酵动力学研究。以该菌株在5L发酵罐中分批发酵的数据为依据,建立分批发酵生产单宁酶的菌体生长、单宁酶合成以及基质消耗动力学模型。
     单宁酶固定化筛选LX-1000HA树脂作为载体,对游离单宁酶进行固定化,通过中心组合实验设计和RSM,对LX-1000HA树脂固定化单宁酶的条件进行优化,得出最佳工艺条件为酶液/载体比17.6(v/m)、pH6.9、时间24h、温度36.5℃,该条件下固定化酶活力达到(18495±200)U/g,对温度和pH的适应性更广,酶活回收率为45.25%。
     固定化酶制备没食子酸及其丙酯固定化单宁酶作为水解五倍子单宁转化制备没食子酸的催化剂,优化工艺条件,在pH6.5、温度50℃、固定化酶酶量4.5g、时间30h的条件下,没食子酸浓度达到27.93mg/mL,单宁酸转化率为93.1%。筛选环己烷为有机介质,在非水相中用固定化酶催化合成没食子酸丙酯,优化工艺条件,在温度52℃、环己烷和正丙醇比例4:1、没食子酸浓度1.8%、时间40h条件下,没食子酸丙酯得率90.64%。
Tannase as an acyl hydrolase, which is produced by certain microorganisms with inducers, for example tannic acid, has been widely applied in such areas as food and beverages, cosmetics and feed industries. Gallic acid and its ester derivatives are important pharmaceutical and chemical raw materials, which are manufactured by the Tala acid and tannic acid hydrolysis. For acid hydrolysis causes environmental pollution, corrosion problems, the replacement of acid method by tannase method to produce gallic acid and its esters has been explored for many years. But the current low yield of tannase method limited its application in industrial production, therefore to undertake research to raise the acticity of tannase then enzymatic conversion yield of gallic acid and gallic acid esters have positive practical significance.
     This thesis uses Aspergillus strains preserved in laboratory as original strains to screen by UV and nitrogen ion injection. And the conditions of fermentation of tannase from Aspergillus niger, Aspergillus niger fermentation kinetics, tannase immobilization and enzyme properties were studied. Tannase enzymatic conversion conditions for gallic acid and its ester were also optimized. Main findings are as follows:
     Ten tannase-producing strains were selected as test strains from Aspergillus strains preserved in laboratory. Strain N5with86U/ml of enzymic activity was screened out. Through3min UV mutation, a mutant strain named N5-U5-3was obtained. The tannase activity of which reached158U/ml,83.7%higher than that of original strain. Though the genetic stability verification, its enzyme performaned relatively stable.
     N5-U5-3was treated with10KeV and3×1015N+/cm2. After prescreening and rescreening experiments in rotation-flask, a high-yield strain Aspergillus nigerlll was obtained. The tannase activity of which reached198U/mL, almost25.3%higher than that of N5-U5-3. The genetic stability of Aspergillus niger111was comparative stable.
     Single factor experiments, central composite design and response surface method(RSD) were used for optimization on Aspergillus niger tannase producing conditions. The most three important factors of determining the tannase production were tannic acid concentration, temperature and incubation time. The optimum conditions for enzyme production are as follows:30℃; speed,180r/min; tannic acid concentration,1.76%; initial pH,6.0; inoculum,10%; bottling volume,20%and culture time,82.2h. In these conditions, the fermentation tannase activity reached380.34U/ml.
     Based on the data gotten from Aspergillus niger111batch fermentation in the5L fermenter, kinetic models of cell growth, synthesis of tannase and substrate consumption were established.
     Compared with various carriers, LX-1000HA were chosen to immobilize tannase. Then Box-Behnken experimental design and RSD were used to optimize the conditions for immobilizing tannase by LX-1000HA resin. The results showed that the best conditions were17.6(v/m) of the enzyme solution/carrier ratio, pH6.9,24h and36.5℃. Under these conditions, the activity of the immobilized enzyme was (18495±200) U/g with activity recovery of45.25%. The optimal reaction temperature, pH for immobilized enzyme were50℃,6.5, respectively.
     Immobilized tannase by LX-1000HA was applied to hydrolyse tannic acid to produce gallic acid. The best conditions were got by the monofactorial experiment which were pH,6.2-6.8; temperature range,48℃-52℃; immobilized enzyme,3.5-4.5g; time range,25-35h. Conditions were optimized by orthogonal experimental design and the best converting conditions were:pH6.5,50℃,4.5g of immobilized tannse and30h. Under these conditions, the concentration of gallic acid could reach27.93mg/ml and the conversion of tannin could reached93.1%.
     Immobilized tannase by LX-1000HA was applied to synthetize propyl gallate in the system of organic reaction. Firstly, cyclohexane was chosen as the best organic reaction media, then the best synthesize conditions were obtained through monofactorial experiment and orthogonal experimental design as follow:52℃,4:1of cyclohexane to propanol,1.8%of gallic acid and40h. Under these conditions, the production of propyl gallate could reach90.64%.
引文
[1]石碧,狄莹.植物多酚[M].北京:科学出版社,2000:216.
    [2]Freudenberg k. Dier schardinger dextrine and strike [J]. Liebigs Ann Chen, 1935,20:517-521.
    [3]Bate-Smith, E C. Vegetable tannin[M]. London:Academic Press,1962.
    [4]张亮亮MALDI-TOF质谱联合NMR及HPLC分析植物单宁结构及抗氧化能力研究[D].厦门:厦门大学,2009.
    [5]苏小宝.黑荆树单宁络合性质的研究[D].福州:福建师范大学,2007.
    [6]Vania B, Gabriel a A M. Tannase production by Paecilomyces variotii[J]. Bioresource Technology,2007,98(3):1832-1837.
    [7]Takuya S, Takashi S, Eiki S, et al. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins[J]. J Chem Ecol,2006,32:1165-1180.
    [8]Yu X W, Li Y Q, Zhou S M. Synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent[J]. World J Microbiol Biotechnol,2007,23:1091-1098.
    [9]Yamada H, Adachi O, Watanabe M. Studies on fungal tannase part 1 formation, purification and catalytic properties of tannase of Aspergillus flavus. Agl Biol. Chem,1968,32(9):1070-1078.
    [10]王元凤,王登良,魏新林.酶技术在茶叶深加工中的应用研究[J].饮料业,2000:25-29.
    [11]Mohapatra P K, Maity C, Rao R S, et al. Tannase production by Bacillus licheni formis KBR6:Optimization of submerged culture conditions by Taguchi DOE methodology[J]. Food Research International,2009,42:430-435.
    [12]Hadi TA, Banerjee R, Bhattacharyya B C. Optimization of tannase biosynthesis by a newly isolated Rhizopus oryzae[J].Bioprocess Engineering,1994(11): 239-243.
    [13]Mondal KC, Banerjee R, Pati BR. Tannase production by Bacillus licheni formis [J]. Biotechnology Letters,2000,0:767-769.
    [14]Ayed L, Hamdi M. Culture conditions of tannase production by Lactobacillus plantarum[J]. Biotechnology Letters,2002,24:1763-1765.
    [15]刘小兰,杨顺楷,王忠彦.青霉单宁酶高活性菌株的诱变选育[J].微生物学杂志,2006,26(3):108-110.
    [16]Sharma S, Agarwa L, Saxena K R. Statistical optimization for tannase production from Aspergillus niger under submerged fermentation[J]. Indian J. Microbiol,2007,47:132-138.
    [17]谷文,杨亦陈,王石发.产单宁酶真菌的筛选及产酶条件[J].南京林业大学学报(自然科学版),2010,34(3):6-10.
    [18]Kumar R, Kumar A, Nagpal R, et al. A novel and sensitive plate assay for screening of tannase-producing bacteria[J]. Ann Microbiol,2010,60:177-179.
    [19]Yosuke N, Eiki S, Tomohiko F, et al. Ccnotypic analyses of lactobacilli with a range of tannase activities isolated from human faces and fennented foods [J]. System Appl Microbiol 2004,27:109-117.
    [20]Anoop B, Saxena R K. Potential tannase producers from the genera Aspergillus and Penicillium[J]. Process Biochemistry.2005,40:1553-1557.
    [21]Murugan K, Saravanababu S, Arunachalam M. Screening of tannin acyl hydrolase(E.C 3.1.1.20) preducing tanneryefuent fungal isolates using simple ager plate and SmF Process[J]. Bioresource Technology.2007,98:94-949.
    [22]Iibuehi S, Minoda Y, Yomada K. Studies on tannin acyl hydrolase of microorganisms part Ⅲ.Purification of the enzyme and some properties of it[J]. Agl. Biol. Chem,1968,32(7):803-809.
    [23]Doi S, Shinmyo A. Growth-assoeiated production of tannase by astrain of Aspergillus oryzae[J]. Hakko Kogaku Zasshi,1973,51(11):768-774.
    [24]Beverini M, Metche M. Identification, purification and physicovhemical properties of tannase of Aspergillus orizae[J]. Sciences des Aliments,1990, 10(4):807-816.
    [25]Hatamoto O, Watarai T, Kikuehi M. etal. Cloning and sequencing of the Gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae[J]. Gene,1996,175:215-221.
    [26]Lane R W, Yamakoshi J, Kikuchi M, Mizusawa. Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae. J Vet Med Sci,1995, 57(5):921-926.
    [27]Abdel-Naby M A, Sherif A A, El-Tanash A B, et al. Immobilization of Aspergillus oryzae tannase and properties of immobilized enzyme[J]. Journal of Applied Microbiology,1999,87:106-114.
    [28]Barthomeuf C, Regerat F, Pourrat H. production, purification and characterization of a tannase from Aspergillus niger LCF8[J]. Journal of Fermentation and Bioengineering,1994,77(3):320-323.
    [29]Lekha P K, Lonsane B K. Comparative titres, location and properties of tannin acyl drolaseproduced by Aspergillus niger PLK 104 in solid-state, liquid surfase and submerged fermentations[J]. Process Biochemistry.1994,29: 497-503.
    [30]王征,谢达平,谭淑宜.单宁酶的研究与应用[J].湖南农业大学学报,1998,24(4):331-336.
    [31]郭鲁宏,杨顺楷.单宁酶产生菌的筛选和发酵条件研究[J].应用于环境生物学报,1998,4(4):386-389.
    [32]龚加顺,刘勤晋,肖琳等.沸石固定化单宁酶及其在茶饮料澄清中的应用[J]中国食品工业,1999,12:40-41.
    [33]Sharma S, Bhat T K, Dawra R K. Isolation, purification and properties of tannase from Aspergillus niger van tieghem[J]. World Journal of Microbiology & Biotechnology,1999,15(6):673-677.
    [34]刘如石,李清明,谢达平,等Asp. niger No.3液态发酵生产单宁酶条件的研究[J].食品科学,2001,22(2):28-32.
    [35]Aguilar C N, Favela-Torres E. Culture conditions dictate protease and tannase production insubmerged and solid-state cultures of Aspergillus niger Aa-20[J]. Enzyme Engineering and Biotechnology.2002,102:2273-2289.
    [36]Malini S, Subhash C. Biosynthesis of tannase and hydrolysis of tannins to gallic acid by Aspergillus awamori-optimisation of proees sparameters[J]. Process Biochemistry,2000,36(1-2):39-44.
    [37]Lambraki M, Marakis S, Roussos S, et al. Effects of initial sugar and mineral concentrations of carob substrates on the growth of Aspergillus carbonarius in solid state fermentation system[J]. Micologia Neotropical Aplicada,1996,9: 1-14.
    [38]Bajpai B, Patil S. Induction of tannin acyl hydrolase (EC3.1.1.20) activity in some members of fungi imperfecti[J]. Enzyme and Microbial Technology, 1997,20:612-614.
    [39]Bradoo S, Gupta R, Saxena R K. Parametric optimization and biochemical regulation of extracelluar tannase from Aspegillus japonicus[J].Process Biochemistry,1997,32(2):135-139.
    [40]Gupta R, Bradoo S, Saxena R K. Rapid purification of extracellular tannase using polyethylene glycol-tannic acid complex [J]. Letters in Applied Microbiology,1997,24:253-255.
    [41]Chae S K, Yu T J. Experimental manufacture of acorn wine by fungal tannase Han'gu k Sikp'um Kwahakhoe Chi,1983,15 (4):326-332.
    [42]Rajakumar G S, Nandy S C. Isolation, purification, and some properties of Penicillium chrysogenum tannase[J].Applied and Environmental microbiology, 1983,46(2):525-527.
    [43]Kar B, Banerjee R, Bhattacharyya B C.Microbial production of gallic acid by modified solid state fermentation [J]. Journal of Industrial Microbiology & Biotechnology.1999,23:173-177.
    [44]Aoki K, Shinke R, Nishira H. Purification and some properties of yeast tannase[J]. Agr Biol Chem,1976,40(1):79-85.
    [45]Reshetnikova I A, Uspenskaya G D, Buzun G A, et al. Tannase of some Aseochyta Lib. species[J]. Mikologuya I Fitopatologiya,1984,18:483-488.
    [46]Alain M D,Gulten O, Jean-Michel L.Production of tannase and degradation of chestnut tannin by bacteria[J]. J. Ferment. Technol,1983,61(1):55-59.
    [47]Ajay K R, Gunasekaran P, Lakshmanan M. Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent[J]. Journal of Basic Microbiology,1999,39(3):161-168.
    [48]Nemoto K, Osawa R, Hirota K, et al. An investigation of gram-negative tannin-protein cpmplex degrading bacteria in fecal flora of various mammals[J]. Journal of Veterinary Medical Science,1995,57(5):921-926.
    [49]Osawa R,Kuroiso K, Goto S, et al. Isolation of tannin-degrading lactobacilli from humans and fermented foods[J]. Applied and Environmental Microbioligy,2000,66(7):3093-3097.
    [50]Hong J S, Kim M K, Yoon S, et al. Production and properties of tannase from Lenzites betulina[J]. Korean Journal of Applied Microbiology and Biotechnology,1990,18(6):591-598.
    [51]Osawa R, Fujisawa T, Sly L I. Streptococcus dallolyticus sp. Nov:gallate degrading organisms formerly assigned to Streptococcus bovis[J]. Systematic and Applied Microbiology,1995,18(1):74-78.
    [52]Farias G M, Gothea C, Elkins J R. Purification, characterization, and substrate relationships of the tannase from Cryphonectria Parasitica [J]. Physiological and Molecular Pldnt Pathology,1994,44(1):51-63.
    [53]Niehaus J U, Gross G G. A gallotannin degrading esterase from leaves of Peduneulate oak[J].Phytochemistry,1997,45(8):1555-1560.
    [54]Gross G G, Geibel M, Treutter D, et al. In vitro studies on the biosynthesis of gallotannins and ellagitannins[J]. Acta Horticulturae,1994,381:74-80.
    [55]Adaehi O, Watanabe M, Yamada H. Studies on fungal tannase Part II. Physicochemieal properties of tannase of Aspergillus flavu[J]. S. Agl. Biol. Chem.1968,32(9):1079-1085.
    [56]Chae S K, Yu T J. Purification of acorn tannin-hydrolyzing enzyme of Aspergillus sp. AN-11 and its physicochemical properities[J]. Hsan'guk sikp'um Kwahakhoe Chi,1983,15(4):333-341.
    [57]郭鲁宏,杨顺楷,曾仲奎.黑曲霉单宁酶的纯化及部分性质研究[J].四川大学学报(自然科学版),1999,36(3):578-582.
    [58]王征,谢达平,谭周进,等.黑曲霉单宁酶提纯及其性质的研究[J].湖南农业大学学报(自然科学版),2001,27(1):60-62.
    [59]王维维,邱树毅,谢晓莉,等.胞外单宁酶纯化及酶学性质的研究[J].食品科学,2011,32(13):239-243.
    [60]Parthasarathy N, Bose S. M. Glyeoprotein nature of tannase in Aspeillus niger[J]. Acta Bio.Chem Pol,1976,23(40):293-298.
    [61]游见明.黑曲霉单宁酶发酵工艺[J].现代食品科技,2005,21(3):96-101.
    [62]Mario C, Christopher A, Raul R, et al. Evaluation ofculture conditions for tannase production by Aspergillus niger GH1[J]. Food Technol Biotechnol, 2006,44(4):541-544.
    [63]曾维丽,姚开,贾冬英,等.塔拉单宁水解酶产生条件的研究[J].天然产物研究与开发,2006,18:592-595.
    [64]Mahendran B, Raman N, Kim D J. Purification and characterization of tannase from Paecilomyces variotii:hydrolysis of tannic acid using immobilized tannase[J]. Appl Microbiol Biotechnol,2006,70:444-450.
    [65]余钧池,谢庆武.米曲霉单宁酶产酶条件及其应用的研究[J].广西轻工业,2007,(7):12-13.
    [66]刘如石,谢达平,王革生,等.单宁酶的固定化及其性质的研究,湖南农业大学学报(自然科学版),2000,26:386-388.
    [67]喻晓蔚.有机介质体系单宁酶生物合成棓酸酯键的研究[D].杭州:浙江大学,2006.
    [68]Miller D A, Pruasnizt M J, Blnach H W. Kinetics of lipase catalyzed interesteri-fication of triglycerides in cyclohexane[J]. Enzyme Mcrob.Technol,1991,13: 98-103.
    [69]Stamatis H, Xenakis A, Provelegiou M, Kolisis F N. Kinetic study of lipase-catalyzed esterification reactions in water-in-oil emulsions[J]. Biotchnol. Boieng.,1993,42:931-937.
    [70]李秧针,邱树毅,石瑞丽,等.黑曲霉B0201生料发酵产单宁酶的提取及酶学性质研究[J].食品工业科技,2009,30(12):99-101,104.
    [71]陈志仕.米曲霉单宁酶基因在大肠杆菌和毕赤酵母中的表达[D].广州:中山大学,2001.
    [72]郑穗兰.重组米曲霉单宁酶在毕赤酵母中的分泌表达与性质分析[D].广州:中山大学,2004.
    [73]黄小凤,韦宇拓,韦传东,等.单宁酶基因在黑曲霉ST31中的克隆与农[J].中国生物工程杂志,2005,25(9):74-77.
    [74]Abdolhassan K, Mohammad A Z, Abbsali J. Identification, isolation,cloning and sequencing of tannase gene from Aspergillus niger[J]. Jundishapur Journal of Microbiology,2011,4(Supplement 1):S27-S34.
    [75]Iibuchi S, Minoda Y, Yamada K. Studies on tannin acly hydrolase of micro-organisms Ⅱ. A new method of determing the enzyme act ivity using the change of uitra violet absorption[J]. Agri. Bio. Chem,1967,31 (5):513-518.
    [76]Shanna S, Bhat T K, Dawra R K. A spectrophotometric method for assay of tannase using rhodanine[J]. Analytical Biochemistry,2000,279(1):85-89.
    [77]保玉心,邱树毅,李秧针,等.一种胞外单宁酶的活力检测方法[J].精细化工,2008,25(6):621-624.
    [78]Iacazio G, Perissol C, Faure B. A new tannase substrate for spectro-Photometric assay[J]. Journal of Microbiologcal Methods,2000,42:209-214.
    [79]王征,谢达平,杨虹奇,等.单宁酶活力测定方法的研究[J].生物技术,2000,10(6):40-42.
    [80]Osawa R, Walsh T R. Visual reading method for deteetion of baeterial tannase [J]. Applied and Environmental Microbiolonogy,1993,59 (4):1251-1252.
    [81]Mondal K C, Banerjee D, Jana M, Pati B R. Colorimetric assay method for determination of the tannin acyl hydrolase (EC 3.1.1.20) activity[J]. Anal Biochem,2001,295 (2):168-171.
    [82]Nishitani Y, Osawa R. A novel colorimetric method to quantify tannaseactivity of viable bacteria[J]. J Microbiol Meth,2003,54 (2):281-284.
    [83]聂光军,刁金山,刘会,等.应用平板显色法测定单宁酶活力[J].应用与环境生物学报,2010,16(6):883-887.
    [84]Jean D, Pourrat H, Pourrat A, Carnet A. Assay of tannase (tannin acylhydrolase EC 3.1.1.20) by gas chromatography. Anal Biochem,1981,110:369-372.
    [85]Barthomeuf C, Regerat E, Pourrat H. Improvement in tannase recovery using enzymatic disruption of mycelium in combination with reverse micellar enzyme extraction[J].Biotechnology Techniques,1994,8(2):137-142.
    [86]Hagerman A, Butler L. Protein precipitation method for the quantitative determination of tannins. J Agric & Food Chem,1978,26 (4):809-812.
    [87]Chang F S, Chen P C, Chen R L, Lu F M, Cheng T J. Real-time assay of immobilized tannase with a stopped-flow conductometric device. Bioelectrochem,2006,69 (1):113-116.
    [88]郭鲁宏,杨顺楷.黑曲霉单宁酶高活性菌株的诱变选育[J].微生物学通报.2000,27(2):105-108.
    [89]龚加顺.单宁酶的固定化及其在红茶饮料澄清化中的应用研究[J].西南农业大学硕士学位论.1998.
    [90]周纪东.黑曲霉产单宁酶的研究和有机相中固定化黑曲霉细胞生物合成没食子酸丙酯的初探[D].杭州:浙江大学硕士学位论文.2002.
    [91]宋志萍,蔡俊鹏,曹丽芳.香蕉及茶叶中单宁降解菌株的筛选[J].现代食品科技,2005,21(3):39-41.
    [92]Rintu B, Gargi M. Microbial transformation of tannin-rich substrate to gallic acid through co-culture method[J]. Bioresourcc Technology,2005,96(8): 949-953.
    [93]Jogeswar S P. Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae[J].Bioresource Technology,2006, 97(6):795-801.
    [94]Murugan K, Aravanababu S, Arunachalam M. Screening of tannin acyl hydrolase (E. C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF proces[J]. Bioresource Technology,2007,98: 946-949.
    [95]栾丽杰,杨永涛.产涩柿单宁酶菌株的筛选及鉴定[J].安徽农业科学,2010,38(20):10499-10501.
    [96]谷文,杨亦陈,王石发.产单宁酶真菌的筛选及产酶条件[J].南京林业大学学报(自然利学版),2010,34(3):6-10.
    [97]李秧针,邱树毅,保玉心,等.单宁酶发酵生产的研究进展[J].中国酿造,2008,(11):1-6.
    [98]Pradeep K, Das M. Production of tannase through Submerged Fermentation of tannin-containing plant extracts by Bacillus licheniformis KBR6[J]. Polish Journal of Microbiology,2006,55(4):1733-1331.
    [99]王征,罗泽民,卢向阳.不同培养基中黑曲霉产单宁酶的变化及没食子酸生产[J].农业生物技术学报,2002,10(3)增刊96-98.
    [100]Mukherjee G, Banerjee R. Biosynthesis of tannase and gallic acid from tannin rich substrates by Rhizopus oryzae and Aspergillus fbetidus[J]. Journal of Basic microbiology,2004,44(1):231-233.
    [101]Sabu A, Pandey A, Jaafar D M, et al. Tamarind seed powder and palm kernel cake:two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620[J]. Bioresource Technology,2005,96(11):1223-1228.
    [102]Sabu A, Angur C, Swati C, et al. Tannase production by Lactobacillus sp. ASR-S1 under Solid-state fermentation[J]. Process Biochemistry,2006,41: 575-580.
    [103]Rakesh K., Jitender S, Randhir S. Production of tannase from Aspergillus niger under solid-state fermentation using jamun(Syzygium cumini)leaves[J]. Microbiological Research,2007,167(4):384-390.
    [104]Trevino-Cueto B, Luis M, Contreras-Esquivel J C, et al. Gallic acid and tannase accumulation during fungal solid state culture of atannin-rich desert plant (Lanrrae tridentate Cov.)[J]. Bioresource Technology,2007,98(26): 721-724.
    [105]林健辉,黄曼曼,陈雪香,等.曲霉T3-5-1产单宁酶培养条件优化[J].食品科学,2010,31(19):245-249.
    [106]马如意,赵祥颖,刘建军.单宁酶产生菌的发酵培养基优化[J].中国酿造,2011,(6):153-155.
    [107]Bratali K, Rantu B. Effect of additives on the behavioural properties of tannin acyl hydrolase[J]. Process Biochemistry,2003,38(9):1285-1293.
    [108]Banerjee D, Pati B R. Optimization of tannase production by Aureobasidium pullulans DBS66[J]. J Microbiol Biotech,2007,17(6):1049-1053.
    [109]Enemuor S C, Odibo F J C. Culture conditions for the production of a tannase of Aspergillus tamarii IMI388810(B)[J]. Afr J Biotech,2009,8(11): 2554-2557.
    [1 10]李秧针,邱树毅,保玉心,等.单宁酶发酵生产的研究进展[J].中国酿造,2008,(11):1-6.
    [111]陶素芬.单宁酶产生菌的筛选及发酵条件的优化[D].济南:山东轻工业学院硕士学位论文,2011.
    [112]马如意.单宁酶产生菌的筛选及发酵条件的研究[D].山东泰安:山东农业大学硕士学位论文,2011.
    [113]汤茜.真菌单宁酶的研究[D].中山大学硕士学位论文,1999.
    [114]栾丽杰.分泌涩柿单宁酶的微生物筛选及其酶特性的研究[D]西安:陕西师范大学硕士学位论文,2007.
    [115]谢晓莉,刘明,邱树毅,等.黑曲霉B0201液体发酵产单宁酶最佳工艺条件研究[J].中国酿造,2010,(8):30-33.
    [116]王挥,张蕾,黎继烈,等.响应面法优化黑曲霉产单宁酶条件[J].中南林业科技大学学报,2011,31(10):122-125.
    [117]谢晓莉,邱树毅,刘明,等.黑曲霉半固体发酵产单宁酶的工艺优化[J].贵州农业科学,2010,(11):153-155.
    [118]Chatterjee R, Dutta A, Banerjee R, et al. Production of tannase by solid-state fermentation[J]. Bioprocess Engineering,1996,14:159-162.
    [119]Rana N K, Bhat T K. Effect of fermentation system on the production and properties of tannase of Aspergillus niger van tieghem MTCC 2425[J]. The ournal of General and Applied Microbiology,2005,51(4):203-212.
    [120]Cristobal N A, Christopher A. Induction and repression patterns of fungal tannase in solid-state and submerged cultures [J]. Process Biochemistry,2001, 36(6):565-570.
    [121]Cruz-Hernandez M, Augur C, Rodriguez R, et al. Evalution of culture conditions for tannase production by Aspergillus niger GHI[J]. Food Technology and Biotechnology,2006,44(4):541-544.
    [122]Cruz-Hernandez M, Contreras J C, Lima N, et al. Production of Aspergillus niger GHI tannase using solid-state fermentation [J]. J Pure Appl. Microbiol, 2009,3(1):21-26.
    [123]保玉心,邱树毅,李秧针,等.固态发酵黑曲霉产单宁酶发酵条件研究[J].食品与发酵工业,2008,34(6):54-56,61.
    [124]石瑞丽,邱树毅,李秧针,等.黑曲霉利用五倍子生料固体发发酵产单酶优化发酵条件研究[J].中国食品添加剂,2009,(3):107-111.
    [125]Tigressa HS Rodrigues, Maria Alcilene A Dantas, Gustavo AS Pinto, et al. Tannase production by solid state fermentation of cashew apple bagasse[J]. Applied Biochemistry and Biotechnology,2007,136-140:675-688.
    [126]李秧针,邱树毅,石瑞丽,等.响应曲面法优化五倍子生料发酵产单宁酶的条件[J].食品科技,2009,34(7):9-13.
    [127]邱树毅,王广莉,保玉心,等.一种用五倍子生料固体发酵生产单宁酶的方法[P].中国专利:200810301169,2008-9-10.
    [128]Kar B, Banerjee R. Biosnythesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions[J]. Journal of Industrial Microbiology & Biotechnology.2000,25:29-38.
    [129]Van de Lagemaat, D L Pyle.Solid-state fermentation and bioremediation: development of a continious process for the production of fungal tannase[J]. Chmical Engineering Joural.2001,84(2):115-123.
    [130]Maskos W K, Maskos C.The use of tannin in the estimation and isolation of histones[J]. Zooiogica Poloniae,1970,20:403-413.
    [131]Aoki K., Shinke R, Nishira H. Chemical composition and molecular weight of yeast tannase[J]. Agr Biol Chem.1976,40(2):297-302.
    [132]Parthasarathy N, Bose S M. Glycoprotein narure of tannase in Aspergillus niger[J]. Acta Biochin Pol.1976:293-298.
    [133]Hossam S. Hamdy. Purification and characterisation of a newly isolated stable longlife tannase produced by F. subglutinans [J]. J Pharm Innov (2008) 3: 142-151.
    [134]倪田表,王菊芳.两步法快速分离纯化单宁酶的研究[J].中国酿造,2010(5):109-113.
    [135]Kadam K L. Reverse micelles as a bioseparation tool[J].Microb. Technol., 1986,8(5):266-273.
    [136]Giovenco S, Verheggen F. Purification of intracellular enzymes from whole bacterial cells using reversed micelles[J]. Enzyme Microb. Technol,1987,9: 470-473.
    [137]田桂玲,邢国文,叶蕴华.在非水介质中进行酶促反应的几个重要问题[J].有机化学,1998,18:10-19.
    [138]赵永芳,生物化学技术原理及其应用[M].武汉:武汉大学出版社,1995.
    [139]Chibata I. Immobilized enzymes-research and development[M], Kodanska Scientific Limited,Tokyo and Wiley and Sons Ltd,New York and London. 1978.
    [140]张宪锋,郑裕国.酶活拆分手性化合物HPBE[J]生物加工过程,2003,1(2):34-38.
    [141]陈石根,周润琦.酶学[M].上海:复旦大学出版社,2001.
    [142]Weetall H H, Detar C C. Immobilized tannase[J]. Biotechnology and Bioengi neering,1974,16(8):1095-1102.
    [143]程琦,程启坤,李名君.单宁酶的固定化及其在酯型儿茶素水解反应中的应用[J].生物化学杂志,1996,12(4):423-426.
    [144]Boadi D K, Neufeld R J. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme and Microbial Technology,2001,28:590-595.
    [145]刘冠卉,屠洁,马海乐,等.壳聚糖固定化单宁酶及其澄清绿茶汤的应用研究[J].食品与发酵工业,2008,34(10):16-169.
    [146]刘冠卉,屠洁,吴娴.均匀设计法在固定化单宁酶澄清绿茶汤工艺中的应 用[J].江苏科大学学报(自然科学版),2009,23(5):446-449
    [147]范超,黎继烈,王挥.玉米芯固定化单宁酶的工艺条件优化[J].食品科学,2011,32(11):123-128.
    [148]王挥,袁强,范超,等.LX-1000HA树脂固定化单宁酶的工艺优化[J].食品与机械,2011,27(5):168-171.
    [149]苏祝成,钱利生,冯云.利用单宁酶改善绿茶滋味品质的研究[J].食品科学,2008,29(12):305-307.
    [150]严鸿德.茶叶深加工技术[M].北京:中国轻工业出版社,1998.
    [151]中森薰.单宁酶在茶饮料中的应用[J].食品与发,2002(12):14-16.
    [152]Coggon P, Sanderson G W. Manufacture of instant tea[P]. Ger offen 2304073(Cl,A23f).1973-08-16.
    [153]Coggon Philip, Graham Harold Nathaniel, Hoefler Andrew C, et al. Tea leaves ext ractablein cold w ter[P]. Ger Offen,2610533 (Cl. A 23F3/00).1976-10-07.
    [154]Tsai Chee Hway (Procter and Gramble Co). Enzymic treatment of black tea leaf[P]. Eur PatAppl EP,135222 (Cl. A 23F3/00).1985-03-27.
    [155]Shibata Yoshitoshi, Kagei Norio, Mikunikatsuhiko, et al. Quality improvers containing tannase and cyclodextrin for tea ext racts. Jap Kokai Tokkyo K.oho[P].,JP 04346752[92,346,752] (Cl. A 23F3/16).1992-12-02.
    [156]Takino Yosh inori (CoCo-Co la Co). Enzymic solubilization of tea cream[P]. U S,3959497, (Cl.426252;A 23F3/00).1976-05-25.
    [157]Takino Y. Enzymatic solubilization of tea cream[P]. USP 3959497 C1.426-52:A23F3/00).1976-05-25.
    [158]曾洪涛.单宁酶在茶叶加工中的应用[J].中国茶叶加工,1990,1:44-45.
    [159]Nieolas P, Racetz E, Sauvageat J.Preparation of a tea extract[P]. Europeant Patent Aplication, EPO777972AI.1997-10-H0248.
    [160]Lauren S J, Keulee. Chemical forms of iron, calcium, magnesium and zinc in Black, oolong, green and instant black tea[J] J. Food Sci,1988,53(1):181-184.
    [161]Mai J, Chambers L J, Mcdonald R E. Process for inhibiting lipid oxidation in food and composition thereby [P]. USP, US4925681, US347484, 1991-08-Voll5.
    [162]Chae S K,Yu T J. Hydroysis of tannin in foods by fungal tannase I Han'gu k Sikp'umKwahakhoe Chi,1973,5(4):258-267
    [163]Menke K H, Leinmuller E. Tannins in ruminant feeds [J]. In vivo efects. Ubersichtenzur Tierernahrung.1991,19:71-85.
    [164]张晓庆,郝正里,李发弟.植物单宁对反刍动物养分利用的影响[J].饲料工业2006,27(130):44-46.
    [165]Viveros A B, Renes A E, Lices R, et al. Effect of enzyme addition on the nutritive value offaba bean hulls in chickens[J]. Proceedings of the Second InternationalWorkshop, Netherlands,1993,523-527.
    [166]Selingerl L B, Forsberg C W, Cheng K J. The Rumen:A unique source of enzymesfor enhancing livestock production [J]. Anaerobe,1996 (2):263-284.
    [167]保玉心,黄永光,李盛,等.单宁酶的性质与应用研究进展[J].酿酒,2007,34(5):53-57.
    [168]杨亚力,杨维力,刘成君,等.利用黑曲霉单宁酶酶法制取没食子酸的研究[J].天然产物研究与开发,2002,14(2):58-60.
    [169]路雪雅,陈文为.没食子酸丙酯对乙醇诱导鼠肝急性损伤的保护作用[J].药学学报1987,22(8):586-590.
    [170]陈琳,伍现贤,李敏谊,等.桔酸酯类的抗氧化性能研究[J].广东药学院学报,1998,14(1):4-6.
    [171]熊国华,张强,郝红,等.没食子酸丙酯合成工艺研究[J].西北大学学报,1994,24(4):353-356.
    [172]马耀,张建中,丛建波,等.没食子酸及其衍生物抗氧化机制的研究[J].科学通报,1993,(15):1411-1414.
    [173]伍砚贤,李敏谊,陈琳,等.没食子酸酯合成方法改进及其抗血小板聚集作用[J].精细化工,1998,(4):9-11.
    [174]Ikeda Y, Takahashi E, Yokogawa K, et al.J Ferment Technol,1972,50: 361-370.
    [175]Kenji A, Ryu S, Hiroshi N. Purification and some properties of yeast tannase. Agri Biolchen,1976,40(1):79-85.
    [176]Weetall H. Appl Biochem Biotechnol,1985,11:25-28.
    [177]Bajpai B, PatilSInduction of tannin acydrolase(EC3.1.1.20)activity in some members of fungi imperfecti.Enzyme and Microbial Technology,1997,20: 612-614.
    [178]王蔚文,李务强.工业微生物,1990,20:1-5.
    [179]施巧琴,吴松刚.工业微生物育种学(第二版)[M].科学出版社,2003,68-98.
    [180]余增亮.物理学报,1997,26(6):333-338.
    [181]方华平,程茂基,赵彩艳,等.N+注入选育高产β-葡聚糖酶菌株及其发酵条件优化的研究[J].饲料博览,2006,(10):18-22.
    [182]戚薇,王海燕,王建玲,等.氮离子注入选育耐酸性α-淀粉酶产生菌诱变效应的研究[J].天津科技大学学报,2007,22(3):6-8.
    [183]马英,莫章桦,刘友全,等.低能N+离子注入Spj0104菌株的诱变选育研究[J].湖南环境生物职业技术学院学报,2007,13(2):4-7.
    [184]汪杏莉.低能N+注入L-Ile产生菌诱变选育及发酵条件研究[M].郑州大学,2007,6.
    [185]Yu Z L. Ion beam application in Genentic modification[J]. IEEE Transactions on Plasm a Science,2000,28(1):128-132.
    [186]Yu Z L, Deng J G, He J J. Mutation breedings by Io implantation [J]. Nucl Instr. Meth. Phys. Res,1991,60:705-708.
    [187]余增亮.低能离子生物学[J].科学,1993,(4):36-38.
    [188]Shao C L, Wang X Q, Yu Z L. Phosphate release from N+ ion irradiated 5'-CMP nucleotide and its kinetics [J]. Radict Phys. Chem,1997,6(50): 561-565.
    [189]虞龙,余增亮.一种新型诱变技术在Vc前体(2-KLG)产生菌遗传改良中的作用[J].高技术通讯,2002,(11):41-46.
    [190]Huang W D, Yu Z L, Zhang Y H. Reactions of solid glycinnduced by Kev ion irradation[J]. Chemical physics,1998, (237):223-231.
    [191]钱存柔.微生物学实验.北京:北京大学出版社,1985.
    [192]赵从,张敏,王建玲,等.氮离子注入诱变选育中性蛋白酶高产菌株及发酵条件的研究[J].工业微生物,2008,38(3):12-16.
    [193]Kenji A, Ryu S, Hiroshi N. Purification and some properties of yeast tannase [J]. Agri Biol Chem,1976,40 (1):79-85.
    [194]Barrett J, Birch R, Jones G. Tea processing with zeolites:USA Patent, 5863581[P],1999-01-26.
    [195]Nicolas P, Raetz E, Reymond S, Sauvageat J. Tea extract preparation:USA Patent,5820901 [P],1998-10-13.
    [196]苏二正,夏涛,张正竹.单宁酶的研究进展[J],茶业通报2004,26(1):16-19.
    [197]郭鲁宏.单宁酶的制备及酶法制取没食子酸及其丙酯研究[D].博士论文2001.6.
    [198]Antimicrobial S. Antimicrobial properties of tannins[J]. Phytochemistry,1991, 30(12):3875-3884.
    [199]任露泉.实验优化设计与分析[M].(第二版).北京:高等教育出版社,2003.
    [200]邓祖新.SAS系统和数据分析[M].北京:电子出版社,2001.
    [201]Kenji A, Ryu S, Hiroshi H. Purification and some properties of yeast tannase[J]. Agricultural and Food Chemistry,1976,40(1):78-85.
    [202]Barrett, Matthew John, Birch, et al. Tea processing with zeolites:USA Patent:5863581[P].1999-01-26.
    [203]Nicolas, Pierre, Raetz, et al. Tea extract preparation:USA Patent:5820901 [P]. 1998-10-13.
    [204]肖琳,龚家顺,姚建铭,等.单宁酶的固定化及性质研究[J].中国医药工业杂志,2003,34(11):549-552.
    [205]陈玲,张志平,李炳辉,等.响应面分析法优化紫花杜鹃中黄酮类化合物提取工艺的研究[J].食品与机械,2010,11(4):42-46.
    [206]王正友,王爱荣.由五倍子制取没食子酸的研究[J].中国医药工业杂志.1994,25(12):559.
    [207]杨顺楷,杨亚力.酶法转化五倍子单宁酸生产没食子酸[J].精细与专用化学药品.2005,13(5):12-13.
    [208]郭鲁宏,杨顺楷.利用固定化黑曲霉单宁酶制备没食子酸的研究[J].生物工程学报,2000,16(5):614-617.
    [209]王啸,赵安婷,邱树毅.抗氧化剂没食子酸的酶法转化生产研究[J].中国食品添加剂.2010,4:188-189.
    [210]孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005.
    [211]Howard H.Weetal enzymatic Gallic Acid esterification[J]. Biotechnology and Bioengineering.1985,27:124-127.
    [212]Sharma S, Gupta M N. Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonqueous media[J]. Bioorg. Med. Chem. Lett.2003,13(3):395-397.
    [213]王征,田云,卢向阳等.反胶束中单宁酶催化没食子酸烷基酯的合成[J].农 业生物技术学报.2006,14(3):429-433.
    [214]王征.微乳凝胶固定化单宁酶催化没食子酸烷基脂的合成[J].林产化学与工业.2009,29(3):1-5.
    [215]郭勇.酶工程[M].北京:科学出版社,2009.