矿井排风气体利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题对矿井排风气体的利用进行了数值模拟研究,分别采用定向和换向操作流程。通过对固定床反应器一维定态模型和换向反应器一维动态模型的分析及其求解,结合并吸取相关文献研究流程的基础上,提出了带回热装置的三种工艺流程,分别为定态回热操作流程、定态尾部取热操作流程、尾部取热换向操作流程,为改善矿井排风气体自供热燃烧的操作条件提供了重要的流程设计思路。
     本课题采用固定床反应器的一维定态数学模型,对矿井排风气体的自供热燃烧进行模拟计算。考察气体表观流速、原料气入口浓度、回热器面积、取热器面积、反应器长度等设计条件和操作条件对反应器的轴向气体温度分布和浓度分布的影响。采用换向反应器的一维动态数学模型,考察不同换向周期、不同气体表观流速、不同原料气入口浓度、不同反应器长度、不同的固相床层初始温度等设计和操作条件下,反应器的轴向气体温度分布和浓度分布情况,同时也考察了定态操作流程的单因素及双因素操作变量的可操作区域(当反应器固相床层的最高温度大于1300K时,定义反应器处于“飞温”状态;当反应器内的甲烷转化率低于99%时,定义反应器处于“熄火”状态),为工业实际生产提供依据。
     此外,本课题还对两种定态操作流程在不同操作条件下进行了能量分析,主要考察能量损失率和能量利用率,对不同流程、不同操作条件下的能量进行了比较及分析。
In this subject,the numerical simulation of the utilization of mine exhaust gases is studied,thus putting to use orientation and reversal operational processes. The study is based on the the analysis and solutions of the one-dimensional steady state and dynamic mathematical model of catalytic reversal flow reactor (CRFR) and learning from the related literatures about the advantages of the processes, the three kinds of technology processes is proposed, which are heat recovery processes, steady state recovery heat process, steady state heat taking from the tail process, heat taking from the tail of CRFR process respectively. The proposal of three technology processes provides the important design ideas for improving the operation conditions for self-heating combustion.
     The one-dimensional steady state mathematical model of fixed-bed reactor is established, which is used for simulation the self-heating combustion of mine exhaust gases. The operation parameters(the apparent flow rate of gas, the methane volume fraction of inlet gas, the regenerature area, the heat exchanger area, the length of reactor etc.) affect the axial gas temperature and concentration distribution. One-dimensional dynamic mathematical model of CRFR is adopted to determine the axial gas temperature and concentration distribution under different operation conditions(the reverse periods, the apparent flow rate of gas, the methane volume fraction of inlet gas, the length of reactor, the initial temperature of solid bed etc.). The one and two operation factors of the available operating region of fixed-bed reactor(the temperature run-away of solid bed reactor is the state when the average temperature of solid bed is over 1300K; the extinction is the state when the methane conversion rate is low than 99%) are researched, providing the basis for industry practical production.
     In addition, the energy analysis of the two steady state processes are studied under different operating conditions, mainly on the energy loss rate and utilization rate, comparing and analyzing the energy under different processes and operating conditions.
引文
[1]李霄宇.低浓度甲烷催化燃烧整体是催化剂的研究[D].北京:北京化工大学,2008
    [2]王盈.低浓度甲烷流向变换催化燃烧制热技术基础研究[D].北京:北京化工大学,2006
    [3]朱吉钦,危丽琼,王盈,李成岳.有机废气净化催化剂上甲烷催化燃烧动力学研究[J].燃料化学学报,2007,35(4):505-508
    [4]牛国庆.矿井回风流中低浓度瓦斯利用现状及前景[J].工业安全与环保,2002,28(3):3-5
    [5]Eigenberger G, Nieken U. Catalytic Combustion with Periodic Flow Reversal[J]. Chem. Eng. Sci..1988,43(8):2109-2115
    [6]Matros Y S, Noskov A S, Chumachenko V A, Goldman O V. Theory and application of unsteady catalytic detoxication of effluent gases from sulfur dioxide, nitrogen oxides and organic compounds[J]. Chem. Eng. Sci..1988,43(8):2061-2066
    [7]Chaouki J., Guy C., Sapundzhiev C, Kusohorsky D., Klvana D.. Combustion of methane in a cyclic catalytic reactor[J]. Ind. Eng. Chem. Res..1994,33(12):2957-2963
    [8]Matros Y S, Bunmovich G A. Catalytic combustion with periodic flow reversal[J]. Catal Rev.1996(1),38:1-68
    [9]Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions[J]. Computers and Chemical Engineering.2004,28(9):1599-1610
    [10]Salomons S, Hayes R E, Poirier M, Sapoundjie V H. Flow reversal reactor for the catalytic combustion of lean methane mixtures[J]. Catal Today.2003,83(1-4):59-69
    [11]Cunill E, Van de Beld L., Westerterp K. R.. Catalytic Combustion of Very Lean Mix-tures in a Reverse Flog Reactor Using an Internal Electrical Heater[J]. Ind. Eng. Chem. Res..1997,36(10):4198-4206
    [12]Van de Beld L., Westerterp K. R.. Operation of a Catalytic Reverse Flow Reactor For the Purification of Air Contaminated with Volatile Organinc Compounds[J]. Can. J. Chem. Eng..1996,74:566-573
    [13]R.Schwiedernoch, S. Tischer, O. Deutschmann. Experimental and numerical investiga-tion of the ignition of methane combustion in a platinum-coated honeycomb monolithi[J]. Submitted to the 29th Symposium (International)on Combustion.2002,23(8):26-32
    [14]Van de Beld L., Bijl M. P. G., Reiders A., Van de Beld L., Westerterp K. R.. The Catalytic Oxidation of Organic Contaminants in a Packed Bed Reactor[J]. Chem. Eng. Sci.1994,49(24):4361-4373
    [15]叶季蕾,刘源,段华超.制备方法对La改性的Ni/γ-Al2O3催化甲烷部分氧化的研究[J].燃料化学学报.2006,34(5):562-566
    [16]Van de Beld L., Borrnan R. A., Derkx O. R., Van Woezik B. A. A, Westerterp K R.. Removal of VOCs from Polluted Air in a Reverse Flow Reactor:an Experiment Study [J]. Ind. Eng. Chem. Res.1994,33(12):2946-2956
    [17]Sidwell R W, Zhu H Y, Kibler B A, Kee R J, Wickham D T. Experimental investigation of the activity and thermal stability of hexaaluminate catalysts for lean methane air combustion[J]. Appl Catal A.2003,255(2):279-288
    [18]潘智勇,张长斌,余长春,沈师孔.负载型镧锰钙钛矿催化剂上甲烷催化燃烧的研究[J].分子催化.2003,17(4):274-278.
    [19]Kushwaha A, Poirier M, Hayes R E, Sapoundjiev H. Heat extraction from a flow reverse flow reactor in lean methane combustion[J]. Chem Eng Research and Design. 2005,83(2A):205-213
    [20]Marin P, Hevia M A G, Ordonez S, Diez F V. Combustion of methane lean mixtures in reverse flow reactors:Comparison between packed and structured catalyst beds[J]. Catal Today.2005,105(3-4):701-708
    [21]R.Schwiedernoch, S. Tischer, Deutschmann.Experimental and numerical investigation of the ignition of methane combustion in a platinum-coated honeycomb monolith[C]. Submitted to the 29th Symposium(International) on Combustion,2002
    [22]Gosiewski K. Efficient heat recovery in the catalytic reverse-flow combustion of methane[A]. In:Proceedings of Fourth International Conference on Unsteady-state Processes in Catalysis[C]. Canada,2003:73-74
    [23]梁克民,王惠文,赵志芳等.催化燃烧消除有毒和污染气体[J].化工进展.2002,21(7):514-517
    [24]杜鹃,田成文,范庆伟.催化燃烧技术研究及其应用[J].节能.2006,25(2):37-39
    [25]张强,杨祖照,李文彦,聂剑平.甲烷催化燃烧研究进展[J].技术经济综述.2007,8:1-7
    [26]Ciuparu D, Pfefferle L. D.. Methane Combustion Activity of Supported Palladium Catalysts after Partial Reduction [J]. Appl Catal A.2001,218(1-2):197-209
    [27]Philippe Thevenin. Catalytic Combustion of Methanel[D]. Stockholm:KTH-Kungliga Tekniska Hogskolan,2002
    [28]Lyubovsky M., Smith L. L., Castaldi M.. Catalytic Combustion over Platinum Group Catalysts:Fuel-Lean versus Fuel-Rich Operation[J]. Catal Today.2003,83(1-4):71-84
    [29]Burch R., Loader P. K.. Investigation of Pt/Al2O3 and Pd/A12O3 Catalysta for the Combustion of Methane at Low Concentrations[J]. Appl Catal B.1994,5(1-2):149-164
    [30]Grisel R J H, Nieuwenhuys B E. A Comparative Study of the Oxidation of CO and CH4 over Au/MOx/Al2O3 Catalysts[J]. Catal Today.2001,64(1-2):69-81
    [31]Grisel R J H, Kooyman P J, Nieuwenhuys B. E.. Influence of the Preparation of Au/Al2O3 on CH4 Oxidation Activity[J]. J Catal.2000,191 (2):430-437
    [32]Yamam4oto H, Uchida H. Oxidation of Methane overPt and Pd Supported on Alumina in Lean-Burn Natural-Gas Engine Exhaust[J]. Catal Today.1998,45(1-4):147-151
    [33]Miao S. J., Deng Y. Q.. Au-Pt/Co3O4 Catalyst for Methane Combustion[J]. Appl Catal B.2001,31:L1-L4
    [34]严河清,张甜,王鄂凤,白延利.甲烷催化燃烧催化剂的研究进展[J].武汉大学学报.2005,51(2):61-166
    [35]Choudhary V R, Baneuee S, Pataskar S. G.. Combustion of Dilute Propane over Transition Metal-Doped ZrO2(Cubic)Catalysts[J]. Appl Catal A.2003,253(1):65-74
    [36]元新华,谷永庆,王红娟.甲烷催化燃烧催化剂研究进展[J].天然气工业.2007,27(2):125-127
    [37]Philippe Thevenin. Catalytic Combustion of Methanel[D]. Stockholm:KTH-Kungliga Tekniska Hogskolan,2007
    [38]Cimino S, Lisi L, Pirone R. Methane Combustion on Perovskites-Based Structured Catalysts[J]. CatalToday.2000,59(1-2):19-31
    [39]王盈,朱吉钦,李成岳.低浓度甲烷流向变换催化燃烧取热技术[J].北京化工大学学报.2006,33(5):14-17
    [40]牛学坤,李成岳,陈标华,周集义.流向变换催化燃烧反应器的热波特性[J].化工学报.2003,54(8):1087-1092
    [41]牛学坤,陈标华,李成岳,周集义.换向催化燃烧反应器的可操作性[J].化工学报.2003,54:1245-1249
    [42]袁春丽.逆流萃取塔数值模拟[D].上海:华东理工大学,2003
    [43]C.D.霍兰,A.I.利亚比斯著.求解动态分离问题的计算机方法[M].北京:科学出版社,1988:311-318
    [44]李立康,於崇华,朱政华.微分方程数值解法[M].上海:复旦大学出版社.1991,1(1):130-133
    [45]朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2004
    [46]何光渝.Visual Basic常用数值算法集[M].北京:科学出版社,2001
    [47](美)霍华德F.拉塞(H.F.Rase)化学反应器设计[M].北京:化学工业出版社,1982
    [48]比弗罗门特Froment G. F.,美比肖夫Bischoff K. B.反应器分析与设计[M].北京:化学工业出版社,1985
    [49]李绍芬.反应工程[M].北京:化学工业出版社,2006