高寒山区高光谱岩矿波谱机理及信息提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪80年代以来,高光谱遥感已成为遥感发展的重要方向。高光谱遥感在地质中的应用更是其最重要也是最为成功的领域之一。地理环境恶劣,交通不便的我国西部高寒山区,蕴含了大量矿产资源,利用高光谱遥感进行地质资源调查是一种便利和高效的勘探手段。但是,由于岩矿光谱易受环境影响,在不同地区会产生一定的变异,这给岩矿填图带来了不确定性。建立高寒山区岩矿波谱库、分析岩矿光谱变异性以及寻找到合适的岩矿填图方法便显得十分重要。
     论文以野外波谱测试、分析和岩矿波谱特征变化研究为基础,建立较为适合的岩矿信息提取方法,并利用Hyperion高光谱遥感数据在青海东昆仑重点地区进行了岩矿填图实验。主要研究工作和成果包括:
     (1)对高寒山区的岩矿波谱机理研究。通过野外光谱采集和实地勘察,研究和总结了研究区典型岩矿的波谱特征形成机理及其在高寒山区的自然条件下产生的变异。研究的岩石包括砂岩、花岗岩和闪长岩,矿物主要是蚀变铁矿和粘土矿物。通过实地考察和光谱分析,对岩矿的波谱特征稳定性做了总结,并为下一步的矿物填图做好指导工作。
     (2)针对相似性矿物难以区分的问题,论文提出了三种新的岩矿光谱匹配方法:权重光谱角填图、耦合整体光谱匹配和局部光谱匹配、特征参数匹配,并应用最为广泛的美国内华达州铜矿试验区对三种方法进行了技术验证。同时,采用Hyperion数据在东昆仑地区进行了矿物识别实验,取得了较好的效果。实验证明三种新的方法在对相似性矿物的区分能力上,较传统的光谱角制图、光谱特征拟合等方法有所提高。
     (3)在东昆仑五龙沟、石灰沟进行了岩性填图。岩性填图采用了三种流程。一是基于图像端元提取的岩性识别,它是根据MNF变换,像元纯度指数和n维可视化的手段直接从图像中提取纯端元作为参考波谱进行岩性识别;二是根据野外测试光谱进行岩矿填图,它是直接从野外测试光谱中选择需要识别的参考波谱与校正后的反射率数据进行匹配填图;最后是利用实验室波谱库中的岩矿波谱进行填图。实验结果证明,三种岩性填图流程中,基于图像端元提取的岩性填图易于得到图像的丰度信息,基于野外实测光谱的岩性填图则相对简单,而基于实验室波谱的岩性填图效果较差,主要是因为高寒山区的部分岩石发生了粘土化和其他变化;光谱匹配方法中,在地物信息强烈的情况下,常用的光谱角制图和光谱特征拟合的效果都不错,特别是光谱角制图更具优势,而当地物信息较弱,或者在背景和噪声影响下难以识别时,利用自适应一致估计法,将目标从背景和噪声中分离出来,取得的效果最佳。
Since the 1980s, hyperspectral remote sensing has become the important direction of remote sensing. Its application in geological mapping is the one of the most important and successful field. In western high and cold mountains, there are a number of minerals, but the geographical environment is bad and the transportation is inconvenient, so the use of hyperspectral remote sensing in geological investigation is a kind of convenient and efficient exploration method. However, under the influence of environment factors, the rocks and minerals spectrums will produce certain variations in different areas of the world, which could bring adverse effect to the rocks and minerals mapping. Establish spectral library of rocks and minerals in high and cold mountains, analysis spectral variability and find appropriate mapping methods are very important.
     This paper has set up the proper information extraction methods and carried on rocks and minerals mapping with the Hyperion hyperspectral data in the east Kunlun based on the field spectral testing, analysis and its variability. The main works and results include:
     (1) This paper has made the research on the rocks and minerals spectral mechanism in high and cold mountainous. Through the field investigation and field spectral colletion, this article has researched and summarized the spectral characteristics, spectral mechanism and the spectral variations of typical rocks and minerals in the high and cold region. The rocks studied in this article include the sandstone, granite and diorite, and the minerals include the alteration iron ores and the clay minerals. Through field investigation and the spectral analysis, this article has made the summary to the stability of rocks and minerals spectral characteristics, and taken it as the preparative work for the mapping.
     (2) In order to distinguish similarity minerals, this paper proposed three new recognition methods: the weight spectral angle mapping method, the mapping method combining overall with partial spectral matching and the feature parameters matching method. This paper utilized the most widely used American Nevada cuprite experimental plot to confirm these methods, then carried on the minerals mapping in east Kunlun area with the Hyperion data and obtained the good results. The?experimental results certify that three kinds of new methods have the stronger discerniblity ability to similarity minerals than traditional SAM (Spectral Angle mapper) and SFF (Spectral Feature Fitting).
     (3) This artcle has carried on the rocks and minerals mapping in Shihuigou and Wulonggou of East Kunlun. The lothological mapping took three kinds of flows. One is the lothological recognition flow based on the image endmember extraction, which takes the MNF transform, the pixel purity index and the n-Dimensional Visualization to extract the endmembers as the reference spectrums from the image; the second kind of flow is to carry on the rocks and minerals mapping according to the spectrums collected in the field which directly distinguishes the object by matching the field spectrum and the image reflectance spectrum; the last kind of flow is to carry on the rocks and minerals mapping according to the library spectrums provided by USGS and JHU, et al. The experiment results show that the lithologic mapping based on image endmember extraction is easy to get rocks abundance information and the lithologic mapping based on the field measured spectrums is relatively simple, but the lithological mapping based on laboratory spectrums is poor, mainly because of the rocks spectrums have changed in high and cold mountains; In the process of spectrum matching, if the target information is strong, the effect of SAM and SFF would be good, especially the SAM was more advantage; while target information is weak, or influenced by the background and noise, the ACE(Adaptive Coherence Estimator) could separate the target from background and noise well.
引文
[1]童庆禧,张兵,郑兰芬.高光谱遥感:原理、技术与应用.北京:高等教育出版社, 2006.
    [2] F. A. Kruse. Use of Airborn Imaging spectrometer Data to Map Minerals Associated with Hydrothermally Altered Rocks in the north Grapevine Mountains, Nevada, and California. Remote Sensing of Environment, 1988, 24(1):31-51.
    [3] B. Enton. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment, 2009, 113(6):1208-1219.
    [4]阚明哲,田庆久,张宗贵.新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取.国土资源遥感, 2005, 16(1):37-40.
    [5]徐元进.面向找矿的高光谱遥感岩矿信息提取方法研究: [博士学位论文].北京:中国地质大学, 2009.
    [6] T. Fuan, D. P. William. A Derivative-Aided Hyperspectral Image Analysis System for Land-Cover Classification. IEEE Trans. Geosci. Remote Sens., 2002, 40(2): 416-425.
    [7] R. K. Hemanth, P. Saurabh, M. B. Lori. Decision-Level Fusion of Spectral Reflectance and Derivative Information for Robust Hyperspectral Land Cover Classification. IEEE Trans. Geosci. Remote Sens., 2010, 48(11):4047-4058.
    [8]万军,蔡运龙.应用线性光谱分离技术研究喀斯特地区土地覆被变化——以贵州省关岭县为例.地理研究, 2003, 22(4) :439-446.
    [9]吴剑,何挺,程朋根.基于Hyperion高光谱数据的土地退化制图研究——以陕西省横山县为例.地理科学进展, 2006, 25(2):132-138.
    [10]王向成,田庆久,管仲.基于Hyperion影像的涩北气田油气信息提取.国土资源遥感, 2007, 18(1):36-40.
    [11]沈渊婷,倪国强,徐大琦.利用Hyperion短波红外高光谱数据勘探天然气的研究.红外与毫米波学报, 2008, 27(3):210-214.
    [12] D. Bisun, R. M. Tim, G. V. N. Tom, et al. Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Indexes. IEEE Trans. Geosci. Remote Sens., 2003, 41(6):1246-1259.
    [13] P. A. Gregory, E. M. Roberta. Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 2008, 112(10):3958-3970.
    [14] P. Ruiliang, G. Peng. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment, 2004, 91(2):212-224.
    [15]温兴平,胡光道,杨晓峰.基于光谱特征拟合的高光谱遥感影像植被覆盖度提取.地理与地理信息科学, 2008, 24(1):27-30.
    [16] E. A. Margaret, L. U. Susan. The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sensing of Environment, 2008, 112(12):4301-4317.
    [17] Y.-B. Cheng, L. U. Susan, R. David, et al. Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sensing of Environment, 2008, 112(2):363-374.
    [18]唐伯惠,姜小光,唐伶俐等.星载高光谱Hyperion数据在海滩涂调查应用中的分析.地球信息科学, 2004, 6(2):81-87.
    [19]阎福礼,王世新,周艺等.利用Hyperion星载高光谱传感器监测太湖水质的研究.红外与毫米波学报, 2006, 25(6):460-464.
    [20] S. Daria, W. Kerstin, C. P. Donald, et al. Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment. Remote Sensing of Environment, 2008, 112(11):4020-4033.
    [21]童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社, 1990.
    [22]陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社, 1998.
    [23] G. R. Hunt. Spectroscopic Properties of Rocks and Minerals. In Practical Handbook of Physical Properties of Rocks and Minera1s, edited by R. C. Carmichael, B. R. Florid: C. R. C. Press Inc, 1989.
    [24] R. N. Clark. Spectroscopy of Rocks and Minerals, and Principals of Spectroscopy [A]. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing. 3 ed., Vol. 3, edited by Andrew N. Rencz: John Wiley & sons. Inc, 1999, 3-58.
    [25] L. M. Bruce, C. H. Koger, L. Jiang. Dimensionality reduction of hyperspectral data using discrete wavelet transforms feature extraction. IEEE Trans. Geosci. Remote Sens., 2002, 40(10):2331-2338.
    [26] Y. Haibo, T. Lei. A Genetic-Algorithm-Based Selective Principal Component Analysis (GA-SPCA) Method for High-Dimensional Data Feature Extraction. IEEE Trans. Geosci. Remote Sens., 2003, 41(6):1469-1478.
    [27] W. Su, C.-I. Chang. Variable-Number Variable-Band Selection for Feature Characterization in Hyperspectral Signatures. IEEE Geoscience and Remote Sensing, 2007, 45(9):2979-2992.
    [28] C. Guangyi, S.-E. Qian. Evaluation and comparison of dimensionality reduction methods and band selection. Canadian Journal of Remote Sensing, 2008, 34(1-2):26-32.
    [29]陈国明.数据降维中若干问题的研究及应用: [博士学位论文].广州:中山大学, 2009.
    [30] M. D. Craig. Minimum Volume Transforms for Remotely Sensed Data. IEEE Trans. Geosci. Remote Sens., 1994, 32(3):542-552.
    [31] R. A. Neville, K. Staenz, T. Szeredi, et al. Automatic endmember extraction from hyperspectral data for mineral exploration. Proceedings of 4th International Airborne Remote Sensing Conference, 1999, 891-897
    [32] M. E. Winter. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proceedings of Image Spe ctrometry, 2003, 3753:266-277.
    [33] M. Berman, H. Kiiveri, R. Lagerstrom, et al. ICE: A statistical approach to identifying endmembersin hyperspectral images. IEEE Trans. Geosci. Remote Sens., 2004, 42(10):2085-2095.
    [34] M. Lidan, Q. Hairong. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens., 2007, 45(3):765-777.
    [35] A. Zare, P. Gader. Hyperspectral band selection and endmember detection using sparsity promoting priors. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):256-260.
    [36] D. R. Thompson, L. Mandrake, M. S. Gilmore. Superpixel Endmember Detection. IEEE Trans. Geosci. Remote Sens., 2010, 48(11):4023-4033.
    [37]耿修瑞,赵永超,周冠华.一种利用单形体体积自动提取高光谱图像端元的算法.自然科学进展, 2006, 16(9):1196-1200.
    [38] C.-I. Chang, S.-S. Chiang. Anomaly Detection and Classification for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens., 2002, 40(6):1314-1325.
    [39] K. Heesung, M. N. Nasser. Kernel RX-Algorithm: A Nonlinear Anomaly Detector for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens., 2005, 43(2):388-397.
    [40] B. Amit, B. Philippe, D. Chris. A Support Vector Method for Anomaly Detection in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens., 2006, 44(8)2282-2291.
    [41] H. Goldberg, H. Kwon, N. M. Nasrabadi. Kernel Eigenspace Separation Transform for Subspace Anomaly Detection in Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):581-585.
    [42] N. M. Nasrabadi. Multisensor joint fusion and detection of mines using SAR and Hyperspectral. Preceeding of Sensors 2008 Conference, 2008, 1056-1059.
    [43]耿修瑞.高光谱遥感图像目标探测与分类技术研究: [博士学位论文].北京:中国科学院遥感应用研究所, 2005.
    [44] W. H. Farrand, J. C. Harsanyi. Discrimination of Poorly Exposed Lithologics in Imaging Spectrometer Data. J. Geophys. Res., 1995, 100(E1):1565-1578.
    [45] J. C. Harsanyi, C.-I. Chang. Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32(4):779-785.
    [46] B. Stéphanie, B. Olivier, J.-Y. Tourneret. The Adaptive Coherence Estimator is the Generalized Likelihood Ratio Test for a Class of Heterogeneous Environments. IEEE Signal Processing Letters, 2008, 15:281-284.
    [47] C.-V. Gustavo, G.-C. Luis, C.-M. Javier. Robust Support Vector Method for Hyperspectral Data Classification and Knowledge Discovery. IEEE Trans. Geosci. Remote Sens., 2004, 42(7):1530-1542.
    [48]甘甫平,王润生.岩矿信息提取基础与技术方法研究.北京:地质出版社, 2004.
    [49]张宗贵,王润生,郭大海等.成像光谱岩矿识别方法技术研究和影响因素分析.北京:地质出版社, 2006.
    [50] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks: I. Smcate Minerals . Modern Geology, 1970, 1:283-300.
    [51] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅱ. Carbonates . Modern Geology, 1971, (2):23-30.
    [52] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅲ. Oxides and Hydroxides . Modern Geology, 1971, (2):195-205.
    [53] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅳ. Sulphides and Sulphates . Modern Geology, 1971, (3):1-14.
    [54] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅴ. Halides,Arsenates,Vanadates And Borates . Modern Geology, 1972, (3):121-132.
    [55] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅵ. Additional Silicate Minerals. Modern Geology, 1973, (4):85-106.
    [56] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅶ. Acidic Igneous Rocks. Modern Geology, 1973, (4):217-224.
    [57] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅷ. Intermediate Igneous Rocks. Modern Geology, 1973, (4):237-244.
    [58] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅸ. Basic & Ultrabasic Igneous Rocks. Modern Geology, 1973, (5):15-22.
    [59] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅺ. Sedimemary Rocks. Modern Geology, 1976, (5):211-217.
    [60] G. R. Hunt, J. W. Salisbury. Visible and Near-infrared Spectra of Minerals and Rocks:Ⅺ. Metamorphic Rocks. Modern Geology, 1976, (5):219-228.
    [61] R. N. Clark, T. L Roush. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications: Journal of Geophysical Research, 1984, 89(B7):6329-6340.
    [62] R. N. Clark, T. V. V. King, M. Klejwa, et al. High Spectral Resolution Reflectance Spectroscopy of Minerals. Journal Geophysical Research, 1990, 95 (B-8): 12653-12680.
    [63] R. N. Clark, A. J. Gallagher, G. A. Swayze. Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, 176-186, 1990.
    [64] R. N. Clark, G. A. Swayze. Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algonthm. Fifth Annual JPL Airborne Earth Science Workshop, JPL Publication95-l, 1995, 39-40.
    [65] R. N. Clark, A. Gregg, K. Swayze, et al. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. J. Geophys. Res., 2003, 108(E12):5131-5144.
    [66] S. G. Lênio, R. F. Ant?nio, G. C. Eduard., et al. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. ISPRS Journal of Photogrammetry & Remote Sensing, 2008, 63(2):259-271.
    [67] L. F. Ray, J. Theo Kloprogge. Infrared emission spectroscopic study of brucite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55(11): 2195-2205.
    [68] S. E. Jorge Villar, H. G. M. Edwards. Near-infrared Raman spectra of terrestrial minerals: relevance for the remote ananlysis of Martian spectral signatures. Vibrational Spectroscopy, 2005, 39(1):88-94.
    [69] V. Francisco, A. Ana, S. Saioa, et al. Mapping Fe-bearing hydrated sulphate minerals with short wave infrared (SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). Journal of Geochemical Exploration, 2005, 87(2):45-72.
    [70] S. Naotatsu. Mineralogical and geochemical characteristics of hydrothermal alteration of basalt in the Kuroko mine area, Japan: implications for the evolution of a Back Arc Basin hydrothermal system. Applied Geochemistry, 1995, 10(6):621-642.
    [71]燕守勋,张兵,赵永超.矿物与岩石的可见-近红外光谱特性综述.遥感技术与应用, 2003, 18(4):191-201.
    [72]莱昂(R. J. P. Lyon).风化及其它类荒漠漆表面层对高光谱分辨率遥感的影响(一).环境遥感, 1996, 11(2):138-150.
    [73]莱昂(R. J. P. Lyon).风化及其它类荒漠漆表面层对高光谱分辨率遥感的影响(二).环境遥感, 1996, 11(2):186-194.
    [74] V. Chevrier, R. Roy, S. Le Mouélic, et al. Spectral characterization of weathering products of elemental iron in a Martian atmosphere: Implications for Mars hyperspectral studies. Planetary and Space Science, 2006, 54(11):1034-1045.
    [75] G. Ferrier, K. A. Hudson-Edwards, R. J. Pope. Characterisation of the environmental impact of the Rodalquilar mine, Spain by ground-based reflectance spectroscopy. Journal of Geochemical Exploration, 2009, 100(1):11-19.
    [76] W. R. Barnaby. Spectral Variations in Rocks and Soils Containing Ferric Iron Hydroxide and (or) Sulfate Minerals as seen by AVIRIS and Laboratory Spectroscopy. USGS Open-File Report Version 1.0, 2004.
    [77]王润生,杨苏明,阎柏琨.成像光谱矿物识别方法与识别模型评述.国土资源遥感, 2007, 18(1):1-9.
    [78] F. A. Kruse, A. B. Lefkoff, J. W. Boardman, et al. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing Environment, 1993, 44(2-3):145-163.
    [79] O. A. de Carvalho Jr, P. R. Menese. Spectral Correlation Mapper (SCM): An Improvement on the Spectral Angle Mapper (SAM). JPL publication, 2000, 95(1):65-74.
    [80] F. van der Meer, W. Bakker. Cross Correlogram Spectral Matching: Application to Surface Mineralogical Mapping by Using AVIRIS Data from Cuprite, Nevada. Remote Sensing of Environment, 1997, 61(3):371-382.
    [81] T. A. Wilson, S. K. Regers, Matthew Kabrisky. Perceptual-base image fusion for hyperspectral data. IEEE Trans. Geosci. Remote Sens., 1997, 35(4):1007-1017.
    [82] A. Mazer, M. Martin, M. Lee, et al. Image Processing Software for Imagin Spectrometry Analysis. Remote Sensing of Environment, 1988, 24(1):201-210.
    [83]李旭文.光谱遥感数据波形分析法与应用.环境遥感, 1992, 7(3):216-225.
    [84]李加宏,秦勇.应用分形几何学与小波理论对成像光谱数据进行地物识别的模型研究.遥遥感技术与应用, 1996, 11(1):1-6.
    [85] H. Qiu, N. S. Lam, D. A. Quattorchi, et al. Fractral Characterization of Hyperspectral Imagery. PE & RS, 1999, 65 (1):63-71.
    [86] L. K. Fenstermaker, J. R. Miller. Identification of Fluvially Redistributed Mill Tailings Using High Spectral Resolution Aircraft data. Photogrammetric Engineering & Remote Sensing, 1994, 60(8):989-995.
    [87]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社, 2000.
    [88]王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究.环境遥感, 1996, 11(1):20-30.
    [89] Q. A. C. Junior, A. P. F. Carvalho, et al. Analysis Absorption Band Positioning: A New Method for Hyperspectral Image Treatment. Proceedings of 2001 AVIRIS Workshops, JPL Publication, 2001.
    [90]甘甫平,王润生,马蔼乃等.光谱遥感岩矿识别基础与技术研究进展.遥感技术与应用, 2002, 17(3):140-147.
    [91] C. Ichoku, A. Karnieli. A Review of Mixture Modeling Techniques for Sub-Pixel Land Cover Estimation. Remote Sensing Review, 1996, 13(3-4):161-186.
    [92] J. W. Boardman. Inversion of imaging spectrometry data using singular value decomposition. Proceedings of IGARSS’89, 12th Canadian Symposium on Remote Sensing, 1989, 4: 2069-2072.
    [93] J. W. Boardman. Sedimentary facies analysis using imaging spectrometry. Proceedings of Conference on Geologic Remote Sensing, 1991, 2:1189-1199..
    [94] J. W. Boardman, F. A. Kruse, and R. O. Green. Mapping target signatures via partial unmixing of AVIRIS data. Fifth JPL Airborne Earth Science Workshop, JPL Publication95-1, 1995, 1:23-25.
    [95] J. W. Boardman. Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-pixel Target Unmixing and Rejection of False Positives: Mixure Tuned Matched Filtering. Seventh Annual JPL Airborne Geoscience Workshop, 1998.
    [96] W. Jing, C.-I. Chang. Application of Independent Component Analysis in Endmember Extraction and Abundance Quantification for Hyperispectral Imagery. IEEE Transaction on Geoscience and Remote Sensing, 2006, 44(9):2601-2616.
    [97] Freek van der Meer. Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(1):55-68.
    [98] F. A Kruse, W. Boardman, J. F. Huntington.Comparison of Airborn Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transaction on Geoscience and Remote Sensing, 2003, 41(6):1388-1400.
    [99] L. C. Rowan, J. K. Crowley, R. G. Schmidt, et al. Mapping hydrothermally altered rocks by analyzing hyperspectral image(AVIRIS) data of forested areas in the Southeastern United States. Journal of Geophysical Exploration, 2000, 68(3):145-166.
    [100]甘甫平,王润生,杨苏明.西藏Hyperion数据蚀变矿物识别初步研究.国土资源遥, 2002, 13(4):44-50.
    [101]刘圣伟,甘甫平,闫柏琨等.成像光谱技术在典型蚀变矿物识别和填图中的应用.中国地质, 2006, 33(1):178-186.
    [102]刘超群.碳酸盐岩地区遥感岩性信息提取方法研究: [硕士学位论文].北京:中国地质科学院, 2007.
    [103]甘甫平,王润生,江思宏等.基于完全谱形特征的成像光谱遥感岩矿识别技术及其应用.地质科学, 2000, 35(3):376-384.
    [104]刘庆生,燕守勋,马超飞等.内蒙哈达门沟金矿区山前钾化带遥感信息提取.遥感技术与应用, 1999, 14(3):7-1.
    [105]周强,甘甫平,王润生等.高光谱遥感影像矿物自动识别与应用.国土资源遥感, 2005, 16(4):28-31.
    [106]万余庆,闫永忠.高光谱技术在汝箕沟煤田烧变岩和Fe3+丰度信息提取中的方法研究.国土资源遥感, 2003, 14(2):50-54.
    [107]王钦军.高/多光谱遥感目标识别算法及其在岩性目标提取中的应用: [博士学位论文].北京:中国科学院, 2006.
    [108]唐攀科.成像光谱相似矿物识别及其矿物填图的不确定性研究: [博士学位论文].北京:中国地质大学, 2006.
    [109] H. Christopher, Mark van der Meijde, Harald van der Werff, et al. Assessing the Influence of Reference Spectra on Synthetic SAM Classification Results. IEEE Trans. Geosci. Remote Sens., 2008, 46(12):4162-4172.
    [110] Freek van der Meer. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 2006, 8(1):3-17.
    [111] H. TANG, D. Pei-jun, F. Tao, et al. The analysis of error sources for SAM and its improvement algorithms. Spectroscopy and Spectral Analysis, 2005, 25(8):1180-1183.
    [112] R. P. Ashley, M. J. Abrams. Alteration mapping using multispectral images-Cuprite Mining District, Esmeralda County, Nevada. USGS open file report, 1980, 80-367.
    [113] C. Xianfeng, T. A. Warner, D. J. Campagna. Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sensing of Environment, 2007, 110(3):344-356.
    [114] R. N. Clark, J. Boardman. Mineral Mapping and Applications of Imaging Spectroscopy. Proceeding of Geosciences and Remote Sensing Symposium, 2006, 1986-1989.
    [115] J. W. Boardman, F. A. Kruse. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. Proceedings of Tenth Thematic Conference on Geologic Remote Sensing, 1994, 407-418.
    [116] S. M. De Jong. Imaging spectrometry for monitoring tree damage caused by volcanic activity in the Long Valley Caldera, California. ITC Journal, 1998, 1:1-10.
    [117] J. K. Crowley, D. W. Brickey, L. C. Rowan. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 1989, 29(2):121-134.
    [118]燕守勋,张兵,赵永超等.感岩矿识别填图的技术流程与主要技术方法综述.感技术与应用, 2004, 19(1):52-63.
    [119]范明,孟小峰.数据挖掘概念与技术.北京:机械工业出版社, 2001.
    [120]蔡雄飞,魏启荣.东昆仑中段地层学研究的新进展.资源调查与环境, 2009, 30(4):243-244.
    [121]张廷斌,钟康惠.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测.地质与勘探, 2009, 45(4):444-449.
    [122]李智明,薛春纪,王晓虎等.东昆仑区域成矿特征及有关找矿突破问题分析.地质评论, 2007, 53(5):708-718.
    [123]张德全.东昆仑地区综合找矿预测与突破.中国地质科学院矿产资源研究所(科研报告), 2002.
    [124] SVC HR-1024 MANUAL REVISION 1.6
    [125]谭炳香,李增元,陈尔学等. EO-1 Hyperion高光谱数据的预处理.遥感信息, 2005, (6):36-41.
    [126] P. Barry. EO-1/Hyperion Science Data User’s Guide. Redondo Beach, CA: TRW Space, Defense & Inform. Syst., 2001.
    [127] A. A. Green, M. Berman. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens., 1988, 26(1):65-74.
    [128] ENVI遥感影像处理实用手册
    [129] J. W. Boardman. Automated spectral unmixing of AVIRIS data using convex geometry concepts. Fourth JPL Airborne Geoscience Workshop, JPL Publication93-26, 1993, 1:11-14.