岩石动静组合加载实验与力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对深部岩石力学实验与理论研究严重不足这一现状,从深部岩石动静组合受载这一应力状态入手,研制了基于霍布金逊压杆(SHPB)原理的动静组合加载试验系统,可实现中高应变率下岩石的静载0-200MPa、动载0-500MPa的动静组合加载;运用小波变换,实现了实验信号的滤波消噪;基于VC++,开发了相应的数据处理软件。
     分析了存在于脆性材料大杆径SHPB实验系统及本文实验系统中的界面摩擦、波形弥散、惯性效应、截面匹配、试样应力均匀及恒应变率加载问题;用矩形波、三角形波、半正弦波进行对比分析,揭示了减小波形弥散和实现试样应力均匀的理想波形;在进行大量异形冲头方法和整形器方法实验的基础上,得出了试样恒应变率加载的实现条件;为获得特定加载应力波,提出了基于三维有限元和神经网络的冲头反向设计理论与设计流程。
     基于随机有限元方法,探讨了影响SHPB实验结果离散性的各项计算参数;在开展大量动静组合加载实验的基础上,揭示了组合加载对岩石特性的影响;基于实验数据,建立了动静组合加载下岩石的力学本构模型;在分析动静组合加载下岩石破坏模式的基础上,研究了岩石破碎的分形特性,并结合重整化群方法进行了岩石破碎分维的合理预测。
     对照国内外研究成果,本文主要取得如下创新性成果:
     a)研制了中高应变率段岩石动静组合加载实验系统,为深部岩石力学研究提供了实验平台;
     b)分析了减小波形弥散和实现应力均匀的有效途径,揭示了实现试样恒应变率变形的加载条件;
     c)提出了基于三维有限元和神经网络的冲头反向设计理论与设计流程,完善了异形冲头实验的理论与方法体系;
     d)建立了动静组合加载下岩石的力学本构模型,丰富了深部岩石力学理论;
     e)揭示了动静组合加载下岩石的破坏机理和分形破碎规律,实现了破碎分维值的重整化群方法预测。
Due to the shortage of experimental and theoretical research on rock mechanics in deep engineerings, an innovative testing system based on SHPB(Split Hopkinson Pressure Bar) was constructed considering the stress state of rock with static-dynamic coupling loads. It can be used to carry out tests on rock under medium and high strain rate with 0-200MPa static loads and 0-500MPa dynamic loads. The data processing software was developed based on Visual C++language, where the collected signals were denoised with wavelet method.
     The friction effect, wave dispersion, inertia effect, section accordance, stress equilibrium and constant strain rate of specimen in constructed system and other large diameter SHPB system for brittle materials were analyzed, and the performances of rectangular, tiangle, and half-sine wave were presented to show ways to get perfect loading wave. Based on experiments with novel striker method and wave-shaper method, the expression of required incident wave was deducted. In order to produce arbitrary possible incident wave, an back-design theory was brought forward.
     Based on Stochastic Finite Element Method, the parameters of SHPB test leading to the scattering of calculated results were discussed. With lots of test results, the mechanical characters of rock were concluded, and the constitutive model was fabricated. After statistics of broken pieces of specimen, the fractal characteristics of rock fragmentation was investigated and the fractal dimension value was reasonablely predicted with renormalization method.
     Referring to the corresponding researches at home and abroad, there are several points of highlight as follows:
     a) An innovative testing system was constructed for tests of rock with static-dynamic coupling loads under medium and high strain rate, which supply a platform for research of deep-level rock mechanics.
     b) The effective way to reduce wave dispersion and realize stress equilibrium of specimen was discussed and the expression of required incident wave for constant strain rate tests was put forward.
     c) A new way to back-design strker for arbitrary stress wave was established, which leads to the perfection of the theory system of novel striker testing technique.
     d) The constitutive model of rock under static-dynamic coupling loads was presented, which enriches the rock mechanics for deep engineerings.
     e) The failure mechanism and the fractal characteristics of rock fragmentation under coupling loads were concluded and the fractal dimension value was reasonablely predicted with renormalization method.
引文
[1].李夕兵、古德生.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C].香山第175次科学会议,北京:中国环境科学出版社,2002,101-108
    [2].谢和平.深部高应力下的资源开采一现状、基础科学问题与展望[C].香山第175次科学会议,北京:中国环境科学出版社,2002,179-191
    [3].古德生.金属矿床深部开采中的科学问题[C].香山第175次科学会议,北京:中国环境科学出版社,2002,192-201
    [4].冯夏庭.深部大型地下工程开采与利用中的几个关键岩石力学问题[C].香山第175次科学会议,北京:中国环境科学出版社,2002,202-211
    [5].何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224
    [6].钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,27(1):1-5
    [7].周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99
    [8]. Grobbelaar C. Some properties of rock from deep-level mine of Central Witwatersrand[R]. Association of Mine Managers of South Africa-Papers and Discussions. 1958-1960:311-330
    [9]. Adams G. R. and Jager A.J. Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines[J].Journal of the South African Institute of Mining and Metallurgy.1980, 80(6):204-209
    [10]. Malan D.F., Basson F.R. Ultra-deep mining: the increased potential for squeezing conditions[J]. Journal of the South African Institute of Mining and Metallurgy, 1998, 98(11/12): 353-363
    [11]. Munson D.E. Constitutive model of creep in rock salt applied to underground room closure[J]. International Journal of Rock Mechanics and Mining Sciences. 1997, 34(2):233-247
    [12]. Litwiniszyn J. The phenomenon of rock bursts and resulting shock waves[J]. Min. Sci. Zech, 1984, 1(2):243-251
    [13]. Fairhurst C. Deformation, yield, rupture and stability of excavations at great depth, Rock at Great Depth[M]. Rotterdam: A. A. Balkema, 1989
    [14]. Gurtunca R.G. MiRing below 3000m and challenges for the South African gold mining industry[C]. Proc. Mech. Of Jointed and Fractured Rock. Rotterdam: A. A. Balkema, 1998, 3-10
    [15].周维垣.高等岩石力学[M].北京:水利水电出版社,1990
    [l6]. Hudson J.A. and Jarrison J.P. Engineering Rock Mechanics[M].Elsevier Science Ltd, Oxford, UK, 1997
    [17].蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    [18].李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994
    [19]. Zhao H. and Gary G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains[J]. International Journal of Solids and Structures, 1996, 33(23):3363-3375
    [20]. Okubo S., Fukui K. and Oawakami J. Large-scale penetration test using a drop hammer[J]. Rock Mech. & Rock Engg., 1997,30(2):113-118
    [21]. Whittles D.N., Kingman S. Lowndes I. and Jackson K. Laboratory and numerical investigation into the characteristics of rock fragmentation[J]. Minerals Engineering, 2006, 19(14):1418-1429
    [22]. Rowe R.K. Application of the initial stress method to soil-strructure interaction[J]. International Journal for Numerical Methods in Engineering, 1978, 12(5): 873-880
    [23]. Danziger F.A. Danziger B.R and Pacheco M.P. The simultaneous use of piles and prestressed anchors in foundation design[J]. Engineering Geology, 2006, 87(3-4): 163-177
    [24]. Rosenboom O. and Rizkalla S. Behavior of prestressed concrete strengthened with various CFRP systems subjected to fatigue loading[J]. Journal of Composites for Construction, 2006,10(2):492-502
    [25]. Ghallab A. and Beeby A.W. Factors affecting the external prestressing stress in externally strengthened prestressed concrete beams[J]. Cement and Concrete Composites, 2005, 27(9-10):945-957
    [26]. Zhao Fu-jun, Li Xi-bing and Feng Tao, Experimental study of a new multifunctional device for rock fragmentation[J]. Journal of Coal Science & Engineering, 2004, lO(1): 29-32
    [27].赵伏军,李夕兵,冯涛.动静载荷耦合作用下岩石破碎理论分析及试验研究[J].岩石力学与工程学报,2005,24(8):1315-1321
    [28]. Li Xibing, Zhao Fujun, and Feng Tao, et al. A Multifunctional Testing Device for Rock Fragmentation by Combining Cut with Impact[J]. Tunnelling and Undergroung Space Technology, 2004,19(4-5): 526
    [29]. Zuo Yu-jun, Li Xi-bing, Zhou Zi-long et al, Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load[J].J. Cent. South Univ. Technol., 2005, 12(6): 742-749
    [30].李夕兵,左宇军,马春德,动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J].岩石力学和工程学报,2005,24(16):2814-2825
    [31]. Bagde M.N. and Petrol. The effect of machine behaviour and mechanical properties of intact sandstone under static and dynamic uniaxial cyclic loading[J]. Rock Mech. & Rock Engg., 2005:38(1):59-67
    [32]. Hopkinson B. Method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J].Philos Trans Roy Soc. 1914, 213(31): 437-456
    [33]. Kolsky H. Stress waves in solids[M]. Dover, New York; 1963
    [34]. Lindholm U.S. Some experiments with the split Hopkinson pressure bar[J]. Journal of Mechanics and Physics of Solids. 1964, 12(5):317-325
    [35]. Harding J. Wood E.D. and Campbell J.D. Tensile testing of material at impact rates of strain[J]. Journal of Mechanical Engineering Science. 1960, 2(2): 88-96
    [36]. Lea F.C. and Budgen H.P. Combined torsional and repeated bending stresses[J]. Engineering. 1926, 122(20):242-245
    [37]. Dully J. Campbell J.D. and Hawley R.H. On the use of a torsional split Hopkinson bar to study rate effects in 1100-0 aluminum[J].J. Appl. Mech. (Trans. ASME). 1971, 38(1): 83-91
    [38]. Albert D.E. and Gray G.T. Mechanical and microstructural response of Ti-24A1-11Nb as a function of temperature and strain rate[J].Acta Materialia. 1997, 45(1):343-356
    [39]. Wang Lili, Labibes K. and Azari Z. et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J], international Journal of Impact Engineering. 1994, 15(5):669-686
    [40].李夕兵,古德生.冲击载荷下岩石动态应力应变全图测试中的合理加载波形[J],爆炸与冲击.1993,13(2):125-131
    [41]. Ravichandran G. and Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. J. America Ceram. Soc. 1994,77(1):263-267
    [42]. Tedesco J.W. and Ross C.A. Strain-rate dependent constitutive equations for concrete[J]. Jornal of Pressure Vessel Technology,Transactions of the ASME. 1998, 120(4):398-405
    [43]. Love A.E. A treatise on the mathematical theory of elasticity[M]. Dover Publications, New York, 1944
    [44]. Pochhammer L. On the propagation velocities of small oscillations in an unlimited isotropic circular cylinder[J]. Journal fur die Reline und Angewandte Mathematik. 1876, 91:324-326
    [45]. Bancroft D. The velocity of longitudinal waves in cylindrical bars[J]. Physical Review, 1941, 59(1):588-593
    [46]. Zemanek J. and Rudnick I. Attenuation and dispersion of elastic waves in a cylindrical bar[J]. Journal of Acoustical Society of America, 1961, 33(10):1283-1288
    [47]. Zemanek J. An experimental and theoretical investigation of elastic wave propagation in a cylinder[J]. Journal of the Acoustical Society of America. 1972, 51(1):265-283
    [48]. Follansbee P.S. and Frantz C. Wave propagation in the split Hopkonson Pressure bar[J]. Journal of Engineering Materials and Technology. 1983, 105(1):61-66
    [49]. Gorham D.A. A numerical method for the correction of dispersion in pressure bar signals[J]. Journal of Physics E. 1983,16(6):477-479
    [50]. Gong J.C. Malvern L.E. and Jenkins D.A. Dispersion investigation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology. (Trans. ASME). 1990, i12(3):309-314
    [51]. Lifshitz J.M. and Leber H. Data processing in the split Hopkinson pressure bar tests[J]. J. Impact. Eng. 1994, 15(6):723-733
    [52]. Cheng Z.Q. Crandall J.R. and Pilkey W.D. Wave dispersion and attenuation in viscoelastic split Hopkinson pressure bar[J]. Shock and Vibration. 1998, 5(5-6):307-315
    [53]. Zhao H. and Gary G. A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: Application to experimental techniques[J]. Journal of the Mechanics and Physics of Solids. 1995,43(8):1335-1348
    [54]. Bacon C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics. 1998, 38(4):242-249
    [55].李夕兵,刘德顺,古德生.消除岩石动态实验曲线振荡的有效途径[J]。中南工业大学学报,1995,26(4):457-460
    [56]. Li X.B. Lok T.S. and Zhao J. et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J], Int. J. Rock Mech.&Min. Sci.,2000, 37(7), 1055-1060
    [57].刘孝敏,胡时胜.大直径SHPB弥散效应的二维数值分析[J].实验力学,2000,15(4):371-377
    [58]. Hauser F.E. Techniques for measuring stress-strain relations at high strain rates[J]. Experimental Mechanics. 1966, 6(8): 395-402
    [59]. Jahsman W.E. Reexamination of the Kolsky technique for measuring dynamic material behaviour[J]. Journal of Applied Mechanics(Transactions of the ASME). 1971, 38(1):77-82
    [60]. Bertholf L.D. and Kames C.H. Two dimensional analysis of the split Hopkinson pressure bar system[J]. Journal of the Mechanics and Physics of Solids. 1975, 23(1):1-19
    [61]. Meng H. and Li Q.M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments[J]. International Journal of Impact Engineering. 2003, 28(5):537-555
    [62]. Bell J.F. An experimental diffraction grating study of the quasi-static hypothesis of the SHPB experiment[J]. Journal of the Mechanics and Physics of Solids. 1966, 14(6):309-327
    [63]. Sharpe W.N. and Hoge K.G. Specimen strain measurement in the split Hopkinson pressure bar experiment[J]. Experimental Mechanics.1972, 12(12):570-574
    [64]. Frantz C.E. Follansbe P.S. and Wright W.J. New experimental techniques with the split Hopkinson pressure bar[C]. Proceeding of the 8th International Conference on High Energy Rate Fabrication,Pressure Vessel and Piping Division, ASME. 1984:229-236
    [65]. Nemat-Nasser S. Isaacs J.B. and Starrett J.E. Hopkinson techniques for dynamic recovery experiments[C]. Proceeding of the Royal Society of London, Series A. 1991, 534(1894):371-391
    [66]. Wu X.J. and Gorham D.A. Stress equilibrium in the split Hopkinson pressure bar test[J]. J. Physic. in France. 1997, 7(3):91-96
    [67]. Frew D.J. Forrestal M.J. and Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics. 2002, 42(1):93-106
    [68].卢芳云,Chen w.and Frew D.J.软材料的SHPB实验设计[J],爆炸与冲击,2002,22(1):15-20
    [69].徐明利,张若棋,张光莹.SHPB实验中试件内早期应力平衡分析[J].爆炸与冲击,2003,23(3):235-241
    [70]. Li X.B. Lok T.S. and Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering. 2005, 38(1):21-39
    [71].周子龙,李夕兵,赵国彦等。岩石类SHPB实验理想加载波形的三维数值分析[J].矿冶工程,2005,25(3):18-21
    [72].尚嘉兰,沈乐天,赵宇辉等.Bukit Timah花岗岩的动态本构关系[J].岩石力学与工程学报,1998,17(6):634-641
    [73].楼沩涛.花岗岩体中应力波传播计算的动态本构关系[J].爆炸与冲击,1989,9(3):220-227
    [74].周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术出版社,1996
    [75]. Ju J. W. On energy based coupled elastoplastic damage theories: constitutive modeling and computational aspects[J]. International. Journalof Solids Structures, 1989, 25(7), 803-833
    [76]. Wang Zhiliang, Li Yongchi and Wang J.G. A damage softening stastical constitutive model considering rock residual strength[J]. Computers and Geosciences. 2007, 33(1):1-9
    [77]. Dragon A et al. Localized failure analysis using damage models[M], In: Chambon R, Desrues J, Vardoulakis I, editors, Localisation and bifurcation theory for soils and rocks, Balkema, 1994, 127-167
    [78]. Shao J. F. Hoxha D. and Bart M. et al. Modeling of induced anisotropic damage in granites[J]. Int. J. Rock Mech. & Min. Sci.,1999, 36(8), 1001-1012
    [79]. Nemat-Nasser, S and Hori M., Micromechanics: Overall Properties of Hetergeneous Materials[M]. Elsevier, The Netherlands, 1993
    [80]. Mark Kachanov, Effective elastic properties of cracked solids: critical review of some basic concepts[J]. Appl. Mech. Rev, 1992,45(8), 304-335
    [81].陆晓霞,张培源.在围压冲击条件下岩石损伤粘塑性本构关系[J].重庆大学学报(自然科学版),2002,25(1):6-8
    [82].郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].河海大学学报,1997,25(2):114-116
    [83].单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,22(11):1771-1776
    [84].俞茂宏,昝月稳,范文等.20世纪岩石强度理论的发展—纪念Mohr-Coulomb强度理论100周年[J].岩石力学与工程学报,2000,19(5):545-550
    [85].谢和平.分形几何及其在岩石力学中的应用[J].岩土工程学报,1992,14(1):14-24
    [86].唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993
    [87]. Tuler, F.R. and Butcher, B.M. Criterion for time dependence of dynamic fracture[J]. International Journal of Fracture Mechanics.1968, 4(4):431-437
    [88]. Davison L. and SteVens, A.L. Continuum measures of spall damage[J]. Journal of Applied Physics. 1972, 43(3):988-994
    [89].朱兆祥,立永池,王肖钧.爆炸作用下钢板层裂的数值计算[J].应用数学和力学,1981,2(4),353-368
    [90]. Tyutin M.R. Botvina L.R. and Zharkova N.A. et al. Evolution of damage accumulation in low-carbon steel in tension condition[J].Streng, Fracture and Complexity. 2005, 3(2):73-80
    [91]. Eliezer S. and Gilath I. Laser-induced spall in metals-experiment and simulation[J] J. Appl. Phys., 1990, 67(2), 715-724
    [92]. Shockey D.A Curran D. and Seaman L. et al. Fragmentation of rock under dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1974, 11(8):303-317
    [93]. Batdorf S.B. and Chang D.J. On the relation between the fracture statistics of volume distributed and surface distributed cracks[J].International Journal of Fractrue. 1979, 15(2):191-199
    [94]. McClintock F.A. and Zaverl F.J. Analysis of the mechanics and statistics of brittle crack initiation[J]. International Journal of Fracture. 1979. 15(2):107-118
    [95]. McClintock F.A. and Ritchie R.O. Modelling low cycle torsional fatigue crack growth under variable loadings[J]. American Society of Mechanical Engineers, Applied Mechanics Division. 1981, 47:1-9
    [96]. Seaman L. Curren D.R. and Murri W. J. A continuum model for dynamic tensile microfracture and fragmentation[J]. Journal of Applied Mechanics(Transactions of the ASME), 1985, 52(3),593-600
    [97]. Taylor L.N. Chen E.P. and Kusamaul J.S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3):301-320
    [98]. Grady D.E. and Kipp M.E. Mechanisms of dynamic fragmentation:factors governing fragment size[J]. Mechanics of Materials. 1984,4(3-4):311-320
    [99]. Rajendran A.M. and Kroupa J.L. Impact damage model for ceramic materials[J]. J. Appl. Phys., 1989, 66(8):3560-3565
    [100].Johnson G.R. and Holmquist T.J. A Computational constitutive model for brittle materials subjected large strains, high strain rate and high pressures[C]. Proceedings of the ECPLOMET Conference. San Diego, CA, 1990
    [101]. Johnson G.R., and Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rate, temperatures and pressures[J] Engen. Fract. Mech. 1985,21(1):31-48
    [102]. Rajendran A.M. Dietenberger M.A. and Grove D.J. A void growth-based failure model to describe spallation[J]. J. Appl. Phys., 1989,65(4):1521-1527
    [103].张晓春,杨挺青,缪协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97-104
    [104].黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳的SEM即时研究[J].东北大学学报,1999,20(4):426-429
    [105].李世愚,尹祥础,李红等.闭合裂纹面相互作用过程中的多点破裂现象及其分析[J].地球物理学报,1989,32(s1):174-180
    [106].孔圆波,华安增.受压岩石裂隙相互作用导致破裂的机理[J].地球物理学报,1995,38(6):767-773
    [107]. Wong R.H. Chau K.T. and Wang P. Microcracking and grain size effect in Yuen Long marbles[J]. International Journal of Rock Mechanics and Mining Science. 1996, 33(5):479-485
    [108]. Saharan M.R. Mitri H.S. and Jethwa J.L. Rock fracturing by explosive energy: Review of state of art[J]. Fragblast, 2006,10(1-2):61-81
    [109]. Rossamanith H.P. and Uenishi K. The mechanics of spa11 fracture in rock and concrete[J]. Fragblast, 2006, 10(3-4):111-162
    [110]. Nolen-Hoeksema R.C. Gordon R.B. Optical detection of crack patterns in the opening mode fracture of marble[J]. Int. J. Rock Mech. Min. Sci. Geo. Abs. 1987, 24(2):135-144
    [111]. Wong R.H. and Chau K.T. Crack calesence in a rock-like material containing two cracks[J]. International Journal of Rock Mechanics and Mining Science. 1998, 35(3):147-161
    [112]. Zhang Z. X., Kou S. Q. and Yu J. et al. Effects of loading rate on rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5):597-611
    [113]. Bobet A. and Einstein H.H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J].International Journal of Rock Mechanics and Mining Science. 1998,35(7):863-888
    [114].凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304-312
    [115].曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633
    [116].白以龙,柯孚久,夏蒙棼.固体中微裂纹系统统计演化的基本描述[J].力学学报,1991,23(3):290-297
    [117]. Schicker J. and Pfuff M. Statistical modelling of fracture in quasi-brittle materials[J]. Advanced Engineering Materials. 2006,8(5):406-410
    [118]. Astrom J.A. Statistical models of brittle fragmentation[J]. Advances in Physics. 2006, 55(3-4):247-278
    [119]. Hansen J.P. and Skjeltorp A.T. Fractal pore space and rock permeability implications[J]. Physical Review B. 1988,38(4):2635-2638
    [120]. Kulatilake P.H. Balasingam P. and Park Jinrong et al. Natural rock joint roughness quantification trough fractal techniques[J].Geotechnical and Geological Engineering, 2006, 24(5):1181-1202
    [121]. Bagde M.N. Raina A.K. and Chakraborty A.K. et al. Rock mass characterization by fractal dimension[J]. Engineering Geology.2002, 63(1-2):141-155
    [122].谢和平.脆性材料裂纹扩展的分形运动学[J].力学学报.1994,26(6):757-762
    [123]. Sakellariou M. Nakos B. and Mitsakaki C. On the fractal character of rock surfaces[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1991, 28(6):527-533
    [124]. Nagahama H. Fractal fragment size distribution for brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1993, 30(4):469-471
    [125]. Perfect g. Fractal models for the fragmentation of rocks and soils: A review[J]. Engineering Geology. 1997, 48(3-4):185-198
    [126].徐小荷,宋守志,李功伯.分形几何和粉碎特征[J].中国矿业.1994,3(1):32-35
    [127].谢和平,高峰,周宏伟等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报.2003,23(4):1-9
    [128]. Anderson T.L. Application of fractal geometry to damage development and brittle fracture in materials[J]. Scripta Metallurgica. 1989, 23(I):97-102
    [129]. Zhao Yonghong. Crack pattern evolution and a fractal damage constitutive model for rock[J]. International Journal of Rock Mechanics and Mining Sciences. 1998, 35(3):349-366
    [130]. Xu Yongfu. Explanation of scaling phenomenon based on fractal fragmentation[J]. Mechanics Research Communications. 2005, 32(2):209-220
    [131]. Carpinteri A. and Chiaia B. Power scaling laws and dimensional transitions in solid mechanics[J]. Chaos, Solitons & Fractals.1996, 7(9):1343-1364
    [132]. Bazant Z.P. Is the cause of size effect on structural strength fractal or energetic-statistical?[J]. Engineering Fracture Mechanics. 2005, 72(1):1-31
    [133]. Carpinteri A. Lacidogna G. and Pugno N. Scaling of energy dissipation in crushing and fragmentation: a fractal and statistical analysis based on particle size distribution[J].International Journal of Fracture. 2004, 129:131-139
    [134]. Sadrai S. Influence of impact velocity on fragmentation and the energy efficiency of comminution[J]. International Journal of Impact Engineering. 2006, 33(1):723-734
    [135]. Zhou Fenghua, Molinari J.F. and Ramesh K.T. Analysis of the brittle fragmentation of an expanding ring[J]. Computational Materials Science. 2006, 37(1-2):74-85
    [136].高文学.岩石动态响应特性及损伤模型研究[D].北京理工大学博士论文,1999
    [137].李海波,赵坚,李俊如等.花岗岩动三轴抗压强度的裂纹模型研究:理论基础[J].岩土力学,2002,23(1):75-80
    [138].张学峰,夏源明.中应变率材料试验机的研制[J].实验力学,2001(1):1318
    [139].王武林.RDT-1000型岩石高压动力三轴仪的研制[J].岩土力学,1989,10(2):69-82
    [140].王礼立,应力波基础[M].北京:国防工业出版社,1985
    [141].陈德兴,胡时胜,张守保等.大尺寸Hopkinson压杆及其应用[J].实验力学.2005,20(3):398-343
    [142].邹广平,李秀坤,张学义.用于大尺寸试件的SHPB装置[J].应用科技.2002,29(11):8-11
    [143]. Lok T.S. Li X.B. and Liu D. et al. Testing and Response of Large Diameter Brittle Materials Subjected to high Strain rate[J].Journal of Materials in Civil Engineering(ASCE). 2001,14(3):262-269
    [144].赵庆海.测试技术与工程应用[M].北京:化学工业出版社,2005
    [145].秦树人.机械测试系统原理与应用[M].北京:科学出版社,2005
    [146].苏先基,励争.固体力学动态测试技术[M].北京:高等教育出版社,1997
    [147].计欣华,邓宗白,鲁阳等.工程实验力学[M].北京:机械工业出版社,2005
    [148].北戴河电子仪器厂.CS-1D超动态电阻应变仪使用说明书[D].北戴河电子仪器厂,2000
    [149].张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998
    [150].王宏禹.非平稳随机信号分析与处理[M].北京:国防工业出版社,1999
    [151].刘令普,周洪玉,何湃等.谈傅里叶分析和小波分析[J].哈尔滨理工大学学报,1998,3(6):79-83
    [152].林大超,施惠基,白春华等.爆炸地震效应的时频分析[J].爆炸与冲击,2003,23(1):31-35
    [153].何军,于亚伦,梁文基.爆破振动信号的小波分析[J].岩土工程学报,1998,20(1):47-50
    [154].凌同华,李夕兵.爆破振动信号不同频带的能量分布规律[J].中南大学学报,2004,34(2):310-315
    [155].杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000: 178-189
    [156].胡昌华,张军波,夏军等.基于MATLAB的系统分析与设计—小波分析[M].西安:西安电子科技大学出版社,2000
    [157].郝红伟.MATLAB 6实例教程[M].北京:中国电力出版社,2001
    [158].苏金明,阮沈勇.MATLAB实用指南(上下册)[M].北京:电子工业出版社,2002
    [159].林青松,胡方霞,刘杰等.Visual C++案例开发[M].北京:中国水利水电出版社,2005
    [160].李柱国.机械润滑与诊断[M].北京:化工出版社,2005
    [161]. Helouvry B.A, Dupont P and Wit C. Survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138
    [162]. Booser E. R. CRC Handbook of Lubrication(Theory and Practice of Tribology)[M]. New York, CRC Press. 1983
    [163]. Ogawa K. Impact friction test method by applying stress wave[J]. Experimental mechanics. 1997, 37(4): 398-402
    [164]. Rajagopalan S. Novel experimental techniques for investigating time resolved high speed friction[J]. Wear. 1999, V225-229(II):1222-1237
    [165]. Davies E.D.H. and Hunter S.C. The dynamic compression testing of solids by the method of the split Hopkinson bar[J]. Journal of the Mechanics and Physics of Solids. 1963, 11(3):155-179
    [166]. Malinowski Z. and Klepaczko J. Estimation of the coefficient of friction on the interfaces of the plastically deformed cylindrical specimen[J]. Mechanika Teoretyczna Stosowana. 1972, 10(4):561-576
    [167]. Bertholf L.D. Feasibility of two-dimensional numerical analysis of the split Hopkinson pressure bar system[J]. Journal.of Applied Mechanics(Transaction ASME). 1974, 14(1):137-144
    [168]. Ogawa K. Impact friction test method by applying stress wave[J]. Experimental Mechanics. 1997, 37(4):398-402
    [169]. Rajagopalan S. Irfan M.A. and Prakash V. Novel experimental techniques for investigating time resolved high speed friction[J].Wear, 1999, 225-229(II):1222-1237
    [170]. Samanta S. K. Dynamic deformation of" aluminium and copper at elevated temperatures [J]. Journal of the Mechanics and Physics of Solids. 1971, 19(3): 117-135
    [171].Malinowski J. Z. and Klepaczko J. R. A unified analytical and numerical approach to specimen behaviour in the split Hopkinsonpressure bar[J]. International Journal of Mechanics Science. 1986, 28(6): 381-391
    [172]. Dioh N. N. Leevers P. S. and Williams J. G. Thickness effects in split Hopkinson pressure bar tests[J]. Polymer, 1993, 34(20):4230-4234
    [173]. Zhao H. A study of specimen thickness effects in the impact tests on polymers by numeric simulations[J]. Polymer, 1998, 39(5): 1103-1106
    [174].Attewell P. B. Response of rocks to high velocity impact [J]. Institution of Mining and Metallurgy-Transactions. 1961, 71(12): 705-724
    [175]. Blanton T. L. Effect of strain rates from 10~(-2) to 10 sec~(-1) in triaxial compression tests on three rocks [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1981, 18(1):47-62
    [176]. Swan G. Cook J. and Bruce S. et al. Strain rate effects in Kimmeridge Bay shale[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1989, 26(2):135-149
    [177].Lajtai E. Z. Duncan E. J. and Carter B. J. Effect of strain rate on rock strength[J]. Rock Mechanics and Rock Engineering. 1991, 24(2): 99-109
    [178].Cho Sang Ho Ogata Yuji and Kaneko K. Strain rate dependency of the dynamic tensile strength of rock[J]. International Journal Rock Mechanics and Mining Sciences. 2003, 40(5):763-777
    [179].Liao H. J. Pu W. C. and Yin J. H. et al. Numerical modeling of the strain rate effect on the stress-strain relation for soft rock using a 3-D elastic visco-plastic model [J]. International Journal of Rock Mechanics and Mining Sciences. 2004, 41(si):1-6
    [180]. Mahmutoglu Y. The effects of strain rate and saturation on a micro-cracked marble[J]. Engineering Geology. 2006, 82(3):137-144
    [181]. Bischoff P.H. and Perry S.H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures. 1991,24(144):425-450
    [182].刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学出版社,1999
    [183]. Ellwood S., Griffiths L.J. and Parry D.J. Materials testing at high constant strain rates[J]. Journal of Physics E: Scientific Instruments. 1982, 15(3):280-282
    [184].陶俊林,田常津,陈裕泽等.SHPB系统试件恒应变率加载实验方法研究[J].爆炸与冲击.2004,24(5):413-418
    [185]. Francis P.H. and Lindholm U.S. Effect of temperature gradients on the propagation of elastoplastic waves[J]. Journal of Applied Mechanics(Transactions of ASME). 1968, 35(3):441-448
    [186]. Lundberg B. Carlsson J. and Sundin K.G. Analysis of elastic waves in non-uniform rods from two-point strain measurement[J]. Journal of Sound and Vibration. 1990, 137(3):483-493
    [187]. Bacon C. and Brun A. Methodology for a Hopkinson test with a non-uniform viscoelastic bar[J]. International Journal of Impact Engineering. 2000, 24(3):219-230
    [188].王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社,2002
    [189].高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [190].周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004
    [191]. Hallquist John O., LS-DYNA theoretical manual[D]. Livemore Software Technology Co., 1998, 1.1-1, 10
    [192].胡勇,赵琴,高隽,径向基函数神经网络在形状识别中的应用[J].合肥工业大学学报,2003,26(1):27-30
    [193].张小军,冯宏伟.基于径向基函数神经网络的车型识别技术[J].西北大学学报.2006,4(2):1-7
    [194].吴舒辞,谢小平,陈慧慧等.径向基函数神经网络芯片ZISC788及其应用[J].国外电子元器件,2004,2(3):47-49
    [195].周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005
    [196].严春风,徐健.岩体强度准则概率模型及其应用[M].重庆:重庆大学出版社,1999
    [197]. Iman R.L. Conover W.J. Small Sample Sensitivity Analysis Techniques for Computer Model, with an Application to Risk Assessment[J]. Communications in Statistics, 1980, A9(17):1749-1842
    [198].赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000
    [199]. Muralha J. The influence of mechanical and geometrical variability in rock mass deformability[J]. Int. J. Rock Mech. Min. Sci., 1997,34(3/4): 699-707
    [200].左宇军,李夕兵,马春德,动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报.2005,24(5):741-747
    [201].许强,黄润秋,王来贵.外界扰动诱发地质灾害的机理分析[J].岩石力学与工程学报.2002,21(2):280-284
    [202].潘岳.岩石破坏过程的折迭突变模型[J].岩土工程学报.1999,21(3):299-303
    [203].陈东辉,林忠明,谢和平等.三维应力状态下岩石损伤破坏的卸荷效应[J].煤炭学报,2004,29(1):31-35
    [204].李灏.损伤力学基础[M].济南:山东科学技术出版社,1992
    [205].陈士海,崔新壮.含损伤岩石的动态损伤本构关系[J].岩石力学与工程学报,2002,21(s):1955-1957
    [206].杨桂通,树学锋.塑性力学[M].北京:中国建材工业出版社,2000
    [207].徐大申.复变函数与积分变换[M].北京:中国电力出版社,2005
    [208]. Zhao J. Applicability of Mohr-Coulomb and Hock-Brown strength criteria to the dynamic strength of brittle rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(7): 1115-1121
    [209]. Zuo Yujun, Li Xibing and Zhou Zilong et al. Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load[J]. Journal of Central South University of Technology(English Edition).2005, 12(6):742-748
    [210]. Dey T.N. and Wang C.Y. Some mechanisms of microcrack growth and interaction in compressive rock failure[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1981, 18(3):199-209
    [211]. Nemat-Nasser S. and Horii H. Compression induced nonplanar crack extension with application to splitting, exfoliation and rock burst[J]. J. Geophys. Res. 1982, 87(8):6805-6821
    [212]. Wang E.Z. and Shrive N.G. Brittle fracture in compression,mechanisms, models and criteria[J]. Engne Fracture Mech. 1995,52(6):1107-1126
    [213]. Wong R.H. Lin P. and Tang C.A. Experimental and numerical study on splitting failure of brittle solds containing single pore under uniaxial compression[J]. Mechanics of Materials. 2006,38(1-2):142-159
    [214]. Li Yinping, Chen Longzhu and Wang Yuanhan. Experimental research on pre-cracked marble under compression[J]. International Journal of Solids and Structures. 2005, 42(9-10):2505-2516
    [215]. Nikitin L.V. and Odintsev V.N. A dilatancy model of tensile macrocracks in compressed rock[J]. Fatigue Fract Engng Mater Struct, 1999, 22(11):1003-1009
    [216]. Xie H. and Sanderson D.J. Fractal effect of crack propagation on dynamic stress intensity factors and crack velocities[7],International Journal of Fracture, 1995, 74(1): 29-42
    [217]. Turcotte D.L. Fractal and Fragmentation[7]. Journal of Geophysics.1988, 91(132):1291-1296
    [218].章冠人.动力破碎分形和加载的关系[J].高压物理学报,1997,11(2):81-84
    [219]. Grady D.E. and Kipp M.E., Geometric statistics and dynamic fragmentation[J]. Journal of Applied Physics. 1985, 58(3):1210-1222
    [220].杨军,金乾坤,黄风雷.岩石爆破理论模型和数值计算[M],北京:科学出版社,1999
    [221]. Gaudin A.M. Schuhmann J.R. and Dasher J. Development o fextraction process for uranium from South African gold uranium ores[J]. Mining Engineering. 1956, 8(8):802-806
    [222]. Rosin P. and Rammler E. Laws governing the fineness of powder coal[J]. Journal of the Institute of Fuel. 1933, 7(31):29-36
    [223].Turcotte D. L. Fractals and fragmentation[J]. Journal of Geophysical Research. 1986, 91(B2):1921-1926
    [224]. Kamphorst L. Renormalization group approach to dynamic fragmentation[J]. Physics letters A. 1990:147(8-9):507-510
    [225].Borri-Brunetto M. Carpinteri A. and Chiaia B. Scaling phenomena due to fractal contact in concrete and rock fractures[J]. International Journal of Fracture. 1999, 95(1-4):221-238
    [226]. Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials[J]. International Journal of Solid and Structures. 1994, 31(3):291-302
    [227]. Carpinteri A. Cornetti P. and Puzzi S. Scaling laws and mutiscale approach in the mechanics of heterogeneous and disordered materials[J]. Applied Mechanics Review. 2006, 59(5) :283-305
    [228].Turcotte D. L. Fractals and Chaos in Geology and Geophysics[M] Cambridge, Cambridge University Press, 1992