高性能再生混凝土微观结构及性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从可持续发展的观点出发,将废弃混凝土循环再生骨料与粉煤灰、磨细矿渣粉等一起配制高性能再生骨料混凝土可以很好地解决资源和环境的协调发展问题。因此,本文以试验研究为主,对高性能再生骨料混凝土的基本性能和微观结构进行了研究,主要内容如下:
     首先,对高性能再生骨料混凝土的基本力学性能进行了试验研究,试验结果显示高性能再生骨料混凝土的立方体抗压强度、轴心抗压强度和劈裂抗拉强度均稍低于同强度等级的高性能天然骨料混凝土,而其弹性模量明显低于高性能天然骨料混凝土,随着强度的提高,高性能再生骨料混凝土的弹性模量提高,且高性能再生骨料混凝土的破坏都是界面破坏。
     第二,提出了在新旧水泥石之间和旧水泥石与原天然骨料之间存在一个双层界面的观点,并运用扫描电镜、偏光镜和显微硬度计对高性能再生骨料混凝土的水化产物形貌、界面过渡区缺陷和界面显微硬度进行了测试。试验表明在再生骨料与新水泥石之间的界面过渡区内存在一些孔洞、微裂纹以及疏松的Ca(OH)2晶体且界面硬度低,从再生骨料表面到水泥石本体,界面弱区的特点逐渐变弱;随着强度的提高和水化龄期的增长,界面过渡区的显微硬度增大。试验还表明粉煤灰、矿渣等微细矿粉可以改善再生骨料混凝土界面过渡区的性能,提高再生骨料混凝土的密实性。
     第三,通过试验获取了高性能再生骨料混凝土的应力-应变全曲线,试验发现高性能再生骨料混凝土的峰值应力稍低于同强度等级的高性能天然骨料混凝土,而峰值应变则明显高于高性能天然骨料混凝土;高性能再生骨料混凝土峰值应力和峰值应变都随强度的提高而提高;建立了高性能再生骨料混凝土的应力-应变本构模型,且根据该模型拟合的理论曲线与试验曲线吻合较好;定义和计算了高性能再生骨料混凝土的“压缩应变能”和“脆性指数”,计算结果表明随着强度的提高,高性能再生骨料混凝土的压缩应变能增大,脆性指数增大。
     最后,对高性能再生骨料混凝土的抗氯离子渗透性展开了试验研究。试验表明随着强度的提高和龄期的增长,高性能再生骨料混凝土的抗氯离子渗透性显著增强,矿粉、粉煤灰等微细矿物质大大改善了再生骨料混凝土抗氯离子侵蚀性。试验还表明高性能再生骨料混凝土的抗氯离子渗透性较高性能天然骨料混凝土差,但其仍具有很好的抗氯离子渗透性,能满足工程耐久性要求。
     本文的研究为再生混凝土的破坏机理和再生混凝土结构的非线性分析提供了研究基础,为制定再生混凝土应用的技术规范提供了重要的参考。
In consistent with sustaining development, the recycled high performance concrete that is made from recycled concrete aggregates, fly ash, granulated blast-furnace slag and so on, could be a perfect solution to resource and environment preservation. Therefore, on the basis of experimental research, the basic behaviors and microstructure of recycled high performance concrete are studied in this thesis. The main contents of this thesis are introduced as follows:
     Firstly, the basic mechanical behaviors of high performance concrete are tested and the results indicate: the cubic compressive strength, axial compressive strength and tensile splitting strength of recycled high performance concrete are just a little lower than those of common high performance concrete. At the same time, the elastic modulus of recycled high performance concrete is evidently lower than that of common high performance concrete.
     When the concrete’s strength enhanced, the elastic modulus of recycled high performance concrete increases, and moreover, the failure of the recycled high performance concrete is often broken by the interface between the recycled aggregates and the new mortar matrix. Secondly, the viewpoint of a two-layer interface of recycled concrete aggregates is put forward in this thesis, one interface is between the original aggregate and the old adhesive mortar, the other interface is between the old adhesive mortar and the new mortar matrix. And the morphology of concrete’s hydrates, the defects and the microhardness values in the Interfacial Transition Zone(ITZ) of recycled high performance concrete are tested by using scanning electro microscopy, polarizing microscope and microhardness testing machine. The test results indicate: some voids, microcracks and loose hydrates of Ca(OH)2 crystal are existed in the recycled aggregate-matrix ITZ, and the microhardness values in the ITZ are lower than those of the mortar matrix body, but those disadvantageous features in ITZ gradually weaken and the ITZ become much stronger from the recycled aggregate to the mortar matrix body; as well the microhardness values in the ITZ increase with the concrete’s strength enhanced and the growth of hydration ages of the recycled high performance concrete. However, the mineral fumes, such as fly ash, granulated blast-furnace slag and so on, can improve the performances of the ITZ of recycled high performance concrete and make the recycled aggregates concrete become much denser.
     Thirdly, the complete stress-strain curves of recycled high performance concrete are obtained from the test. It is found that the peak stress of recycled high performance concrete is just a little lower than that of common high performance concrete,while, on the contrary, its peak strain is obviously higher than that of common high performance concrete. Furthermore, both the peak stress and peak strain of recycled high performance concrete increase companying with the concrete’s strength enhanced. Then a stress-strain relation model of recycled high performance concrete is constructed, and the theoretical curve is faithfully accord with the test curve; moreover, the“compressive strain energy”and the“brittle index”of recycled high performance concrete are defined and calculated, and the results indicate that both the compressive strain energy and brittle indexes of recycled high performance concrete increase with the concrete’s strength enhanced.
     Finally, Chloride ion penetration of recycled high performance concrete has been tested in the study. The test results indicate that the resistance of chloride ion penetration of recycled high performance concrete has evidently intensified as the concrete’s strength enhanced and the growth of hydration ages. As well the mineral fumes, such as granulated blast-furnace slag, fly ash and so on, can greatly improve the resistance of chloride ion penetration of recycled aggregates concrete, and the resistance of chloride ion penetration of recycled high performance concrete is lower than that of common high performance concrete. However, the resistance of chloride ion penetration of the recycled high performance concrete remains good, and it is satisfied with the durability of the engineering.
     The researches in the thesis would establish basis for studying the failure mechanism of recycled aggregates concrete and the non-linear analysis of recycled aggregates concrete structure, and the test results would also provide important references for constituting technical specification of the recycled aggregates concrete.
引文
(1) 吴中伟. 高性能混凝土-绿色混凝土. 混凝土与水泥制品, 2000, (1): 3-6
    (2) Simos B., Vyncke J. Les déchets de constructions et de démolition. Magazine De Centre Scientifique Et Technique De La Construction, 1993, (1): 32-41
    (3) Gomez Soberon Jose M.V. Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 2002, 32(8): 1301-1311
    (4) 島裕和, 鴻巣一巳, 橋本光一等. 加熱すりもみ法によるコンクリート塊からの高品質骨材回収技術の開発. In:コンクリート工学年次論文集. 2000, 22(2): 1093-1098
    (5) Rousseau E., Dessel J.V. Le recycled des materiaux de démolition dans Lunion Europeenne. Magazine De Centre Scientifique Et Technique De La Construction, 1995, (3): 13-21
    (6) Poon C.S., Shui Z.H., Lam L., et al. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 2004, 34(1): 31-36
    (7) 王和源, 谢胜寅, 罗国宪. 台湾再生骨料处理及应用于混凝土之研究. 见: 新世纪海峡两岸高性能研究与应用学术会议论文集. 上海: 同济大学出版社, 2002. 86-91
    (8) Poon C.S., Kou S.C., Lam L. Use of recycled aggregates in molded concrete bricks and blocks. Construction and Building Materials, 2002, 16(5): 281-289
    (9) 李惠强, 杜婷, 吴贤国. 混凝土资源再生骨料技术经济可行性与发展研究. 土木工程学报(工程管理分册), 2002, 1(1): 36-40
    (10) Pollet V., Loutz S., Fontaine R. Blocs de maconnerie a base de granulats recycles. Magazine De Centre Scientifique Et Technique De La Construction, 1997(2): 12-19
    (11) Oikonomou N.D. Recycled concrete aggregates. Cement & Concrete Composites, 2005, 27(2): 315-318
    (12) Ravindrarajah R.S., Loo Y.H., Tam C.T. Recycled concrete as fine and coarse aggregates in concrete. Magazine of Concrete Research, 1987, 39(141): 214-220
    (13) Shelburne Wayne M., Degroot Don J. Use of waste and recycled materials inhighway construction. Civil Engineering Practice, 1998, 13(1): 5-16
    (14) 吴中伟. 高性能混凝土(HPC)发展趋势与问题. 建筑技术, 1998, 29(1): 8-13
    (15) Salem Rohi M., Burdette Edwin G. Role of chemical and mineral admixtures on physical properties and frost-resistance of recycled aggregate concrete. ACI Materials Journal, 1998, 95(5): 558-563
    (16) 万惠文. 含 RA、FA 的绿色混凝土结构与性能研究. [博士论文]. 武汉: 武汉理工大学, 2004
    (17) 陈家珑, 方源兴. 我国混凝土骨料的现状与问题. 建筑技术, 2005, 36(1): 23-25
    (18) 松本典人, 末罔英二, 山路澈等. コンクリート塊を用いた再生コンクリートの強度特性に関する研究. In:コンクリート工学年次論文集. 2000, 22(2): 1129-1134
    (19) Kuo Shiou-San, Mahgoub Hesham S., Nazef Abdenour. Investigation of recycled concrete made with limestone aggregate for a base course in flexible pavement. Transportation Research Record, 2002, (1787): 99-108
    (20) Guntran Zanker. Recycled materials in concrete construction fields of application, development tendencies and quality assurance. Concrete Precasting Plant and Technology, 1999, 65(4): 38-43
    (21) Sagoe-Crentsil K.K., Brown T., Taylor A.H. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research, 2001, 31(5): 707-712.
    (22) Motteu H., Rousseau E. Le remploi des déchets dans L’industrie de la construction. Magazine De Centre Scientifique Et Technique De La Construction, 1992, (1): 21-30
    (23) Poon C.S., Shui Z.H., Lam L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 2004, (18): 461-468
    (24) 肖益民, 唐凛, 鲍传富. 合宁高速公路水泥混凝土路面再生利用的研究. 见: 第四届国际道路与机场路面技术大会论文集. 昆明. 2002. 324-328
    (25) 汪维, 韩继红, 刘景立. 集生态建筑技术大成——上海市生态建筑示范楼创新技术体系. 建设科技, 2004, (21): 16-18
    (26) 日立屋敷久志, 岡本雅道, 西村裕介等. 解体コンクリートからの高品質再生骨材の回収試験.In:コンクリート工学年次論文集. 2000, 22(2): 1099-1104
    (27) 史巍, 侯景鹏. 再生混凝土技术及其配合比设计方法. 建筑技术开发, 2001, 28(8): 18-20.
    (28) 李惠强, 杜婷, 吴贤国. 建筑垃圾资源化循环再生骨料混凝土研究. 华中科技大学学报, 2001, 29(6): 83-84
    (29) 肖建庄, 孙振平, 李佳彬等. 废弃混凝土破碎及再生工艺研究. 建筑技术, 2005, 36(2): 141-144
    (30) 杜婷, 李惠强, 吴贤国. 再生混凝土研究现状和存在问题. 建筑技术, 2003, 34(2): 133-134
    (31) Topcu I.B. Physical and mechanical properties of concretes produced with waste concrete. Cement and Concrete Research, 1997, 27(12): 1817-1823
    (32) Topcu I.B., Guncan N.F. Using waste concrete as aggregate. Cement and Concrete Research, 1995, 25(7): 1385-1390
    (33) Margaret M. Mahony. An analysis of the shear strength of recycled aggregates. Materials and Structures, 1997, 30(9): 599-606
    (34) Nagataki S., Gokce A., Saeki T., et al. Assessment of recycling process induced damage sensitivity of recycling concrete aggregates. Cement and Concrete Research, 2004, 34(6): 965-971
    (35) Barra de Oliveira M., Vazquez E. The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Waste Management, 1996, 16(3): 113-117
    (36) Morel A., Gallias J.L. Practical guideline for the use of recycled aggregates in concrete in France and Spain. In: Proceedings of the Third International Symposium on Demolition and Reuse of Concrete and Masonry. London. 1993. 71-82
    (37) 今本啓一, 伊藤信孝, 西尾篤志等. 再生骨材の迅速吸水率試験と実機プラントにおける品質管理. In:コンクリート工学年次論文集. 2000, 22(2): 1201-1206
    (38) 邱怀中, 何雄伟, 万惠文等. 改善再生混凝土工作性能的研究. 武汉理工大学学报, 2003, 25 (12): 34-37
    (39) Du Ting, Li Huiqiang., Wu Xianguo, et al. Basic properties of recycled aggregatesconcrete with various intensified methods. In: Proceeding of 9th International Conference on Inspection, Appraisal, Repairs & Maintenance of Structures. Fuzhou, China. 2005. 225-231
    (40) 杜婷. 建筑垃圾再生骨料混凝土性能及强化试验研究. [硕士论文]. 武汉: 华中科技大学, 2001
    (41) 张学兵, 邓寿昌. 再生混凝土单位体积用水量的实验研究. 混凝土, 2004, (10): 38-40
    (42) 张亚梅, 秦鸿根, 孙伟等. 再生混凝土配合比设计初探. 混凝土与水泥制品, 2002, (1): 7-9
    (43) Rajkumar B., Vijay Kalimuthu B., Rajkumar R., et al. Proportioning of recycled aggregate concrete. Indian Concrete Journal, 2005, 79(10): 46-50
    (44) Hansen T.C., Hedegard S.E. Properties of recycled aggregate concretes as affected by admixtures in original concretes. Journal of The American Concrete Institute, 1984, 81(1): 21-26
    (45) Tavakoli M., Soroushian P. Strength of recycled aggregate concrete made using field-demolished concrete as aggregate. ACI Materials Journal, 1996, 93(2): 182-190
    (46) Limbachiya M.C., Leelawat T., Dhir R.K. Use of recycled concrete aggregate in high-strength concrete. Materials and Structures, 2000, 33(10): 574-580
    (47) Andrze Ajdukiewicz, Alina Kliszcewicz. Influence of recycled aggregate on mechanical properties of HS/HPC. Cement and Concrete Composites, 2002, 24(2): 269-279.
    (48) 姜丽伟, 杨晓轮. 高强度再生骨料和再生高性能混凝土试验研究. 森林工程, 2005, 21(3): 55-57
    (49) Bairagi N.K., Ravande Kishore, Pareek V.K. Behavior of concrete with different proportions of natural and recycled aggregates. Resources. Conservation and Recycling, 1993, 9(1): 109-126
    (50) Ryu J.S. An experimental study on the effect of recycled aggregate on concrete properties. Magazine of Concrete Research, 2002, 54(1): 7-12
    (51) 王武祥, 刘立, 尚礼忠等. 再生混凝土集料的研究. 混凝土与水泥制品, 2001,
    (4): 9-12
    (52) 肖建庄, 李佳彬. 再生混凝土强度指标之间换算关系的研究. 建筑材料学报, 2005, 8(2): 197-201
    (53) Tavakoli Mostafa, Soroushian Parviz. Drying shrinkage behavior of recycled aggregate concrete. Concrete International, 1996, 18(11): 58-61
    (54) Gomez-Soberon, Jose M.V. Relationship between gas adsorption and the shrinkage and creep of recycled aggregate concrete. Cement, Concrete and Aggregates, 2003, 25(2): 42-48
    (55) 山﨑順二, 立松和彦. 骨材品質が異なる再生骨材コンクリートの乾燥収縮ひび割れ性状. In:コンクリート工学年次論文集. 2000, 22(2): 1159-1164
    (56) Hansen Torben C., Boegh Erik. Elasticity and drying shrinkage of recycled aggregate concrete. Journal of The American Concrete Institute, 1985, 82(5): 648-652
    (57) Limbachiya Mukesh C. Coarse recycled aggregates for use in new concrete. In: Proceedings of the Institute of Civil Engineers: Engineering Sustainability. 2004, 157(2): 99-106
    (58) 藤本直史, 佐藤靖彦, 今野克幸等. 繰り返し利用された再生骨材コンクリートの耐凍害性. In:コンクリート工学年次論文集. 2000, 22(2): 1165-1170
    (59) Jacobsen S., Sellevold E.J. Frost testing high strength concrete: scaling and cracking. In: 4th International Symposium of High Strength Concrete. Paris. 1996. 158-162
    (60) Zaharieva Roumiana, Buyle-Bodin Francois, Wirquin Eric. Frost resistance of recycled aggregate concrete. Cement and Concrete Research, 2004, 34(10): 1927-1932
    (61) 肖开涛, 林宗寿, 万惠文等. 再生混凝土氯离子渗透性研究. 山东建材, 2004, 25(1): 31-33
    (62) Olorunsogoa F.T., Padayachee N. Performance of recycled aggregate concrete monitored by durability indexes. Cement and Concrete Research, 2002, 32(5): 179-185
    (63) Nobuaki Otsuki, Shin-ichi Miyazato. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation. Material in Civil Engineering, 2003, 15(5): 443-451
    (64) Tam Vivian W.Y. Carbonation around near aggregate regions of old hardened concrete cement paste. Cement and Concrete Research, 2005, 35(6): 1180-1186
    (65) 水中和, 万惠文. 老混凝土中骨料-水泥石界面过渡区(ITZ)(Ⅰ)-元素与化合物在 ITZ 富集现象. 武汉理工大学学报, 2002, 24(4): 21-23
    (66) 水中和, 万惠文. 老混凝土中骨料-水泥石界面过渡区(ITZ)(Ⅱ)-化学元素在ITZ 富集现象. 武汉理工大学学报, 2002, 24(5): 22-25
    (67) Hognestad E., Hanson N.W.; McHenry D. Concrete stress distribution in ultimate strength design. Journal of The American Concrete Institute, 1955, 27(4): 455-479
    (68) 过镇海, 张秀琴. 混凝土应力-应变全曲线的试验研究. 建筑结构学报, 1982, 3(1): 1-12
    (69) Hsu T.C., Slate P.O., Sturman G.M., et al. Micro cracking of plain concrete and the shape of theσ-εcurve. Journal of American Concrete Institute, 1963, 60(2): 209-224
    (70) Xiao JianZhuang, Li Jiabin. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 2005, 35(6): 1187-1194
    (71) 王重生, 叶跃忠. 建筑材料. 重庆: 重庆大学出版社, 1998.70-82
    (72) 冯乃谦, 刑锋. 高性能混凝土技术. 北京: 原子能出版社, 2000.250-256
    (73) 高红旗. 小直径芯样检验混凝土抗压强度的试验研究. 建筑科学, 1994 (4): 37-39
    (74) 田砾, 孙雪飞, 范宏等. 小直径芯样检测混凝土强度尺寸效应探讨. 施工技术, 2005, 34(8): 64-66
    (75) Bungey J.H. Determining concrete strength by using small diameter concrete. Magazine of Concrete Research, 1979, 31(107): 91-98
    (76) 施锡铨, 范正倚. 数据分析方法. 上海财经大学出版社, 1997.57
    (77) 冯乃谦. 普通混凝土、高强混凝土与高性能混凝土. 建筑技术, 2004, 35(1): 20-23
    (78) 滕智明. 钢筋混凝土基本构件. 北京: 清华大学出版社, 1987.14-15
    (79) 王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线. 混凝土, 2005, (3): 39-41
    (80) 邢振贤, 周曰农. 再生混凝土性能研究与开发思路. 建筑技术开发, 1998, 25(5): 28-31
    (81) 陈云钢, 孙振平, 肖建庄. 再生混凝土界面结构特点及其改善措施. 混凝土, 2004,(2): 10-13
    (82) 陈嘉鸥, 叶斌, 郭素杰. 偏光显微镜观测和 X 射线衍射分析在建筑物耐久性评价中的应用. 地球化学, 1995, 25(6): 624-626
    (83) 廖乾初. 扫描电镜原理及应用技术. 北京: 冶金出版社, 1990. 40-43
    (84) 沈威, 黄文熙, 闵盘荣. 水泥工艺学. 武汉: 武汉工业大学出版社, 1993. 188-196
    (85) Gao J.M., Qian C.X., Liu H.F. ITZ microstructure of concrete containing GGBS. Cement and Concrete Research, 2005, 35 (7).:1299-1304
    (86) 刘海峰, 高建明, 王边等. 掺矿渣微粉混凝土的微细观性能试验研究. 混凝土与水泥制品, 2003, (6): 16-18
    (87) Hansen Torben C., Narud Henrik. Recycled concrete and fly ash make calcium silicate bricks. Cement and Concrete Research, 1983, 13(4): 507-510
    (88) Katz Amnon. Treatments for the improvement of recycled aggregate. Journal of Materials in Civil Engineering, 2004, 16(6): 597-603
    (89) Glinicki Michal A., Zielinski Marek. Depth-sensing indentation method for evaluation of efficiency of secondary cementitious materials. Cement and Concrete Research, 2004, 34(4): 721-724
    (90) Gian Domenico Soraru, Pierpaolo Tassone. Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process. Construction and Building Materials, 2004, 18(8): 561-566
    (91) 蒲心诚, 王勇威. 超高强高性能混凝土的孔结构与界面结构研究. 混凝土与水泥制品, 2004, (3): 9-13.
    (92) Du Ting, Li Huiqiang, Wu Xianguo, et al. The Compression-deformation behaviour of the concretes with various modified recycled aggregates. Journal of Wuhan University of Technology(Material Science), 2005, 20(2): 127-129
    (93) 唐春安, 朱万成. 混凝土损伤与断裂-数值试验. 北京: 科学出版社, 2003. 45-52
    (94) 过镇海. 混凝土的强度和本构关系-原理与应用. 北京: 中国建筑工业出版社, 2004. 7-18
    (95) 过镇海. 混凝土的强度和变形(试验基础和本构关系). 北京: 清华大学出版社, 1997. 12-35
    (96) 刘次华, 万建平. 概率论与数理统计. 北京: 高等教育出版社, 2001. 57-61
    (97) 李田, 刘西拉. 混凝土结构耐久性分析与设计. 北京: 科学出版社, 1999. 63-65
    (98) 施养杭, 罗刚. 含多种因素的氯离子侵入混凝土的有限差分计算模型. 工业建筑, 2004, 34(5): 7-10
    (99) 谢友均, 刘宝举, 刘伟. 矿物掺合料对高性能混凝土抗氯离子渗透性能的影响. 铁道科学与工程学报, 2004, 1(2): 46-51
    (100)王栋民, 左彦峰, 欧阳世翕. 氯离子在掺不同矿物质掺合料高性能混凝土中的 扩散性能. 硅酸盐学报, 2004, 32(7): 858-861
    (101)吴中伟, 廉慧珍. 高性能混凝土. 北京: 中国铁道出版社, 1999. 221-231
    (102)王立成. 氯盐环境条件下混凝土氯离子侵蚀模型及其研究进展. 水运工程, 2004, (4): 5-9
    (103)叶建雄, 李晓筝, 廖佳庆等. 矿物掺合料对混凝土氯离子渗透扩散性研究. 重 庆建筑大学学报, 2005, 27 (3): 89-92
    (104)Shayan Ahmad, Xu Aimin. Performance and properties of structural concrete made with recycled concrete aggregate. ACI Materials Journal, 2003, 100(5): 371-380
    (105) Xiao Jianzhuang, Sun Yuedong, Falkner H. Seismic performance of frame structures with recycled aggregate concrete. Engineering Structures, 2006, 28(1): 1-8