硅基微纳二元非均匀光栅的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅作为一个历久而弥新的光学器件,随着现代微纳技术及集成光路的发展,特别是硅基光电子学的发展,它也在不断的发展和完善中,同其他光电器件一起,光栅为人类的社会和经济发展做出了不可磨灭的贡献。与均匀光栅相比,非均匀光栅增加了设计自由度,能灵活控制光栅区域进行傅立叶级数展开时各个分量的分布,且能阻止光栅中泄漏模的快速衰减,实现宽带、高效反射等功能。此外,非均匀光栅还能实现宽谱的角度响应,这能降低微光学系统对准难度。鉴于硅基微纳光学器件是实现光路集成、片上光电转换以及探测的重要基础元件,论文所有研究将聚焦于微纳尺度范围内。本文在“国家重点研究发展计划(973计划)前期预研专项”和“国家自然科学基金”的支持下,重点研究硅基微纳二元非均匀光栅的器件及应用,取得了如下成果:
     (1)从严格耦合波分析(rigorous coupled-wave analysis, RCWA)方法出发,结合本论文实际情况,推导出了基于绝缘体上硅(silicon-on-insulator, SOI)材料系统的多层非均匀光栅结构的严格耦合波分析法,此方法表现出了较好的数值稳定性。
     (2)根据严格耦合波分析方法并结合时域有限差分算法,采用单层非均匀光栅结构,设计了一种结构紧凑、高性能的偏振分束器。源于构成材料的高折射率差以及非均匀光栅层的形状调制,在90nm(1.53~1.62μm)的光谱范围内,该结构表现出较高的衍射效率和消光比,并在中心波长1.57μm处,获得了相对较大的角度带宽。
     (3)由严格耦合波分析方法结合粒子群优化算法(particle swarm optimization, PSO),设计和优化了一种高性能的非均匀光栅反射镜。得益于横电场(transverse electric, TE)偏振光谐振模的共存及相互作用,该器件在630m宽谱范围内(1.47~2.1μm),具有反射率高,在中心波长1.8μm处,角度带宽大的优越性能。作为应用实例,本论文还设计了一种用于氮化镓基短波长发光二极管芯片的非均匀光栅反射镜,以提高芯片的外量子效率。
     (4)应用多层光栅严格耦合波分析方法及粒子群优化算法,还设计、优化并展示了一种基于多层非均匀光栅结构的高性能偏振无关反射镜。源于横电场(TE)和横磁场(transverse magnetic, TM)偏振光泄漏模谐振的同时共存及相互作用,该结构在宽谱范围内,表现出很高的反射效率,较低的插入损耗(insertion loss, IL)和偏振相关损耗(polarization-dependent loss, PDL),并在中心波长1.68μm处,获得了较大的角度带宽。此外,数值分析表明,该器件还表现出较好的工艺容差性。
With the rapid development of integrated optics and silicon photonics, the grating has attracted increasing interest because some novel merits arise when the device dimension goes down to subwavelength. Combined with other optical elements, the grating related devices have made great contributions to human society and economic development. Compared with uniform gratings, the nonuniform gratings have the advantages of increasing design freedom, controlling over the Fourier series component distribution of the structures and removing the leaky modes degeneracy. They can offer the combined merits of high reflectivity over a broadband spectrum and good angular bandwidth, which makes the alignment problems encountered in implementing compact micro-optic systems quite moderate. Since silicon based micro/nano photonic devices have the advantage of a compact structure with the potential for monolithic integration with optical-to-electrical on-chip conversion and detection, all thesis work are confined in the micro/nano domain. Supported by the "National Basic Research Program of China" and "National Natural Science Foundation of China", the design and applications of the nonuniform gratings are systematically studied in this thesis, and a number of achievements are obtained as following:
     (1)In this thesis, a numerically stable and systematic implementation of the rigorous coupled-wave analysis (RCWA) for the general silicon-on-insulator (SOI) multilayered grating structures is presented for both transverse electric (TE) and transverse magnetic (TM) polarizations.
     (2)A broadband compact polarizing beam splitter (PBS) constructed by only a single layer subwavelength nonuniform profile grating is proposed and demonstrated. The properties of the grating PBS are investigated by rigorous coupled-wave analysis. It is shown that, over a broadband spectrum of 1.53~1.62μm, the grating PBS demonstrates high diffraction efficiencies with extinction ratio (ER) greater than 16dB and a comparatively wide angular bandwidth. Effects of deviation from the design parameters on the performance of the grating PBS are also presented.
     (3)A wideband reflector realized by only a single layer subwavelength grating is addressed. Resulting from the co-existence and interaction of TE leaky modes, over a broadband spectrum of 1.47~2.1μm, the reflector demonstrates high reflectivity and wide angular bandwidth at 1.8μm. Enhancement of light extraction in a GaN-based LED employing a nonuniform grating reflector is also proposed. The result of high angle-averaged reflectivity up to 93.5% from 300nm to 450nm predicts the potential enhancement of light-extraction efficiency of GaN LEDs with the grating reflectors.
     (4)A polarization insensitive reflector constructed by a multilayered grating structure with nonuniform profile is proposed. Rigorous coupled-wave analysis (RCWA) for multilayered grating structure is adopted to theoretically investigate the properties of the structure. It is shown that in both TE) and TM polarized waves, over a broadband spectrum, the reflector demonstrates very high reflectivity, low insertion loss and polarization-dependent loss and a good angular insensitivity at 1.68μm. A reasonably good tolerance of fabrication error is also presented by numerical analysis of device performance degeneration resulting from parameter deviations.
引文
[1]王阳元.历史机遇和我国微电子发展之路.中国集成电路,2005,3:30~38
    [2]晏伯武,张兆春.微电子技术发展和展望.舰船电子工程,2007,27:7~10
    [3]严兆辉.微电子的过去、现在和未来.科技进步与对策,2003,13:176~178
    [4]宋长发.微电子技术发展面临的限制及发展前景.沿海企业与科技,2006,12:75~76
    [5]王占国.硅微电子技术‘极限’对策.大自然探索,1998,17:5~10
    [6]黄璇,黄德欢.微电子学技术发展的瓶颈和出路.科学(上海),2002,54:7~10
    [7]王启明,周炳坤.展望21世纪Si基光子学的发展.光电子技术与信息,2000,13(2):1~6
    [8]余金中.硅光子学的研究和发展趋势.激光与光电子学进展,2006,43(12):68~71
    [9]彭英才,Miyazaki S,徐骏等.面向21世纪的Si基光子学.自然杂志,2006,28(2):94~98
    [10]彭英才,杜会静,李社强等.Si光子学研究的最新进展.微纳电子技术,2005,12:537~540
    [11]周治平,郜定山,汪毅等.硅基集成光电子器件的新进展.激光与光电子学进展,2007,44(2):31~38
    [12]Masini G, Colace L, Assanto G. Si-based optoelectronics for communications. Mater. Sci. Eng.,2002, B89:2-9
    [13]Soref R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quant. Electron.,2006,12(6):1678~1687
    [14]Miller S E. A survey of integrated optics. IEEE J. Quant. Electron.,1972, QE-8(2): 199~205
    [15]堂天同,王兆宏.集成光学.北京:科学出版社,2005,2~9
    [16]Liu A, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature,2004,427:615~618
    [17]Liu A, Liao L, Rubin D et al. High-speed optical modulation based on carrier
    depletion in a silicon waveguide. Opt. Express,2007,15(2):660~668
    [18]Rong H, Liu A, Jones R et al. An all-silicon Raman laser. Nature,2005,433 (7023): 292~294
    [19]Rong H, Jones R, Liu A et al. A continuous-wave Raman silicon laser. Nature,2005, 433 (7027):725~728
    [20]周治平,王兴军,冯俊波等.硅基微纳光电子系统中光源的研究现状及发展趋势.激光与光电子学进展,2009,46(10):01~08
    [21]Rong H, Kuo Y H, Xu S et al. Monolithic integrated Raman silicon laser. Opt. Express,2006,14(15):6705~6712
    [22]Corcoran B, Monat C, Grellet C et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photonics,2009,3(4):206~210
    [23]http://www.intel.com/go/sp
    [24]Suhara T and Nishihara H. Integrated optics components and devices using periodic structures. IEEE J. Quantum Electron,1986, QE-22(6):845~867
    [25]Day I, Evans I, Knights A et al. Tapered silicon waveguides for low insertion loss highly-efficient high-speed electronic variable optical attenuators. Optical Fiber Communications Conference,2003(OFC 2003),1:249~251
    [26]Sure A, Dillon T, Murakowski J et al. Fabrication and characterization of three-dimensional silicon tapers. Opt. Express,2003,11:3555~3561
    [27]Pavesi L, Lockwood D J. Silicon Photonics. Berlin:Springer,2004,279~284
    [28]Dai D, He S, Tsang H K. Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide. J. Lightwave Technol.,2006,24:2428~2430
    [29]Almeida V R, Panepucci R R, Lipson M. Nanotaper for compact mode conversion. Opt. Lett.,2003,28:1302~1304
    [30]Janz S, Lamontagne B, Delage A et al. Single layer a-Si GRIN waveguide coupler with lithographically defined facets.2nd Int. Conf. on Group IV Photonics, Antwerp, Belgium, September 2005,129~131
    [31]Lu Z, Prather D W. TIR-Evanescent coupler for fiber to waveguide integration of planar optoelectronic devices. Opt. Lett.,2004,29:1784~1750
    [32]Taillaert D, Bogaerts W, Bienstman P et al. An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers. IEEE J. Quantum Electron.,2002,38:949~955
    [33]Butler J K, Sun N H, Evans G A et al. Grating-assisted coupling of light between semiconductor and glass waveguides. J. Lightwave Technol.,1998,16:1038~1048
    [34]Orobtchouk R, Schnell N, Benyattou T et al. New arrow optical coupler for optical interconnect. IEEE International Conference on Interconnect Technology,2003, 233~235
    [35]Masanovic G Z, Passaro V M N, and Reed G T. Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides. IEEE Photonics Technol. Lett.,2003,15(10):1395~1397
    [36]Ang T W, Reed G T, Vonsovici A et al. Effects of grating heights on highly efficient unibond SOI waveguide grating couplers. IEEE Photon. Technol. Lett., 2000,12:59~61
    [37]Wang B, Jiang J, and Nordin G Compact slated grating couplers. Opt. Express, 2004,12(15):3313~3326
    [38]Dakss M L, Kuhn L, Heidrich P F et al. Grating coupler for efficient excitation of optical guided waves in thin films. Appl. Phys. Lett.,1970,16:523~525
    [39]Van Laere F, Roelkens G, Ayre M et al. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightw. Technol., 2007,25(1):151~156
    [40]Wang B, Jiang J, and Nordin G. Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides. IEEE Photon. Technol. Lett.,2005,17(9):1884~1886
    [41]Van Laere F, Kotlyar V, Taillaert D et al. Compact slanted grating couplers between optical fiber and InP-InGaAsP waveguides. IEEE Photon. Technol. Lett.,2007, 19(6):396~398
    [42]Schrauwen J, Van Laere F, Van Thourhout D et al. Focused-ion-beam fabrication of slanted grating couplers in silicon-on-insulator waveguides. IEEE Photon. Technol. Lett.,2007,19(11):816~818
    [43]Wang B, Jiang J, Chambers M et al. Stratified waveguide grating coupler for normal fiber incidence. Opt. Lett.,2005,30(8):845~847
    [44]Wang B, Jiang J, and Nordin G Systematic design process for slanted grating couplers. Appl. Opt.,2006,45(24):6223~6226
    [45]Roelkens G, Van Thourhout D, and Baets R. High efficiency silicon-on-insulator grating coupler based on a poly-silicon overlay. Opt. Express,2006, 14(24):11622~11630
    [46]Roelkens G, Vermeulen D, Thourhout D V et al. High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit. Appl. Phys. Lett.,2008,92:131101
    [47]Saha T K and Zhou W. High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide. Journal of Physics D:Applied Physics,2009,42:085115
    [48]周慧君,王取泉.闪耀光栅的二元近似结构.光学与光电技术,2005,3(3):39~40
    [49]Zhou Z and Drabik T J. Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 μm. J. Opt. Soc. Am. A,1995,12:1104~1112
    [50]Lalanne P, Astilean S, Chavel P et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional e'chelette gratings. Opt. Lett.,1998, 23:1081~1083
    [51]Lalanne P, Astilean S, Chavel P et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A,1999,16:1143~1156
    [52]Lee M S, Lalanne P, and Chavel P. Blazed-binary diffractive elements with periods much larger than the wavelength. J. Opt. Soc. Am. A, 2000,17:1250~1255
    [53]Haidner H, Sheridan J T, and Streibl N. Dielectric binary blazed gratings. Appl. Opt.,1993,32,4276~4278
    [54]Feng J and Zhou Z. High efficiency compact grating coupler for integrated optical circuits. Proc. of SPIE,2006,6351:63511H-1~9
    [55]Tang Y, Dai D, and He S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photon. Technol. Lett.,2009,21(4):242~244
    [56]Spuhler G L, Weingarten K J, Grange R et al. Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B,2005,81(1):27~32
    [57]Liu Z, Lin P-T and Wessels B W. Cascaded Bragg reflectors for a barium titanate thin film electro-optic modulator. J. Opt. A:Pure Appl. Opt.,2008,10:015302
    [58]Huang M C Y, Zhou Y and Chang-Hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon.,2007, 1:119~122
    [59]Chung I S, Mork J, Gilet P et al. Subwavelength grating-mirror VCSEL with a thin oxide gap. IEEE Photon. Technol. Lett.,2008,20(2):105~107
    [60]Quack N, Blunier S, Dual J et al. Tunable resonant cavity enhanced detectors using vertically actuated MEMS mirrors. J. Opt. A:Pure Appl. Opt.,2008,10:044015
    [61]Cheben P, Janz S, Xu D et al. A broad-band waveguide grating couplers with a subwavelength grating mirror. IEEE Photon. Technol. Lett.,2006,18(1):13~15
    [62]Mateus C F R, Huang M C Y, L Chen et al. Broad-band mirror (1.12-1.62μm) using a subwavelength grating. IEEE Photon. Technol. Lett.,2004, 16(7):1676~1678
    [63]Liu Z S and Magnusson R. Concept of multiorder multimode resonant optical filters. IEEE Photon. Technol. Lett.,2002,14(8):1091~1093
    [64]Liu Z S, Tibuleac S, Shin D et al. High-efficiency guided-mode resonance filter. Opt. Lett.,1998,23(19):1556~1558
    [65]Mateus C F R, Huang M C Y, Deng Y et al. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett.,2004, 16(2):518~520
    [66]Chen L, Huang M C Y, Mateus C F R et al. Fabrication and design of an integrable subwavelength ultrabroadband dielectric mirror. Appl. Phys. Lett.,2006,88: 031102
    [67]Ding Y, and Magnusson R. Use of nondegenerate resonant leaky modes to fashion diverse optical spectra. Opt. Express,2004,12(9):1885~1891
    [68]Wu H, Feng J, Zhou Z et al. Ultra Broadband SOI binary blazed grating mirror.5th Int. Conf. on Group IV Photonics, Sorrento, Italy, September 2008,299~301
    [69]Zhou Z, Feng J, and Wu H et al. Compact silicon diffractive components for integrated optics. Proc. of SPIE,2009,7218:721809-1~11
    [70]Sang T, Wang L, Wang Z et al. Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane. J. Opt. Soc. Amer. A,2009,26(3):559~565
    [71]Magnusson R and Wang S S. New principle for optical filters. Appl. Phys. Lett., 1992,61:1022~1024
    [72]Sharon A, Rosenblatt D, and Friesem A A. Resonant grating-waveguide structures for visible and near-infrared radiation. J. Opt. Soc. Am. A,1997,14:2985~2993
    [73]Friesem A A, Dudovich N, Katchalski T et al. Grating waveguide structures and their application. Proc. of SPIE,2002,4737:108~115
    [74]Chang-Hasnain C J, Zhou Y, Huang M C Y et al. High-contrast grating VCSELs. IEEE J. Sel. Topics Quantum Electron.,2009,15(3):869~878
    [75]Zhou Y, Huang M C Y, Chang-Hasnain C J et al. high-index-contrast grating (HCG) and its applications in optoelectronic devices. IEEE J. Sel. Topics Quantum Electron.,2009,15(5):1485~1499
    [76]Karagodsky V, Pesala B, Chang-Hasnain C J et al. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Opt. Express,2010, 18(2):694~699
    [77]Hessel A and Oliner A A. A new theory of Wood's anomalies on optical gratings. Appl. Opt.,1965,10:1275~1297
    [78]Popov E, Mashev L, and Maystre D. Theoretical study of the anomalies of coated dielectric gratings. Opt. Acta,1986,33:607~619
    [79]Mashev L and Popov E. Diffraction efficiency anomalies of multicoated dielectric gratings. Opt. Commun.,1984,51:131~136
    [80]Avrutsky I A and Sychugov V A. Reflection of a light from the surface and propagation characteristics of a doubly-sided corrugated waveguide. Sov. J. Quantum Electron.,1987,17:722~724
    [81]Wang S S and Magnusson R. Theory and applications of guided-mode resonance filters. Appl. Opt.,1993,32(4):2606~2613
    [82]Ding Y and Magnusson R. Band gaps and leaky-wave effects in resonant photonic-crystal waveguides. Opt. Express,2007,15(2):680~694
    [83]Gale M T, Knop K, and Morf R H. Zero-order diffraction microstructure for security application. Proc. Soc. Photo-Opt. Instrum. Eng.,1990,1210:83~89
    [84]Magnusson R and Shokooh-Saremi M. Widely tunable guided-mode resonance nanoelectromechanical RGB pixels. Opt. Express,2007,15(17):10903~10910
    [85]Wawro D, Ding Y, Gimlin S et al. Guided-mode resonance sensors for rapid medical diagnostic testing applications. Proc. of SPIE,2009,7173:717303-1~9
    [86]Chang K C, Shah V, Tamir T. Scattering and guiding of waves by dielectric gratings with arbitrary profiles. J. Opt. Soc. Am.,1980,70(7):804~813
    [87]Chateau N and Hugonin J. Algorithm for the rigorous coupled-wave analysis of grating diffraction. J. Opt. Soc. Am. A,1994,11(4):1321~1331
    [88]Moharam M G, Grann E B, and Pommet D A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A,1995,12(5):1068~1076
    [89]Moharam M G and Gaylord T K. Rigorous coupled-wave analysis of grating diffraction E-mode polarization and losses. J. Opt. Soc. Am.,1983,73(4):451~455
    [90]Lee W and Degertekin F L.Rigorous coupled-wave analysis for multilayered grating structures. Proc. of SPIE,2003,4987:264~273
    [91]Lee W and Degertekin F L. Rigorous coupled-wave analysis of multilayered grating structures. J. Lightw. Technol.,2004,22:2359~2363
    [92]Li L. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A,1995,13:1024~1035
    [93]Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag.1966, AP-14:302~307
    [94]Huang C Q, Liu J, Hu W. FDTD analysis of optical field distribution in waveguide grating coupler. Proc. of SPIE,2007,6783:67834N-1-6
    [95]Liang T K and Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photon. Technol. Lett.,2005,17: 393~395
    [96]Song Q W, Lee M C, and Talbot P J. Polarization sensitivity of birefringent photorefractive holograms and its applications to binary switching. Appl. Opt., 1992,31:6240~6246
    [97]Ojima M, Saito A, Kaku T et al. Compact magnetooptical disk for coded data storage Appl. Opt.,1986,25:483-489
    [98]Gao W, Zhou X, Zhang J et al. A proof-of-principle experiment of eliminating photon-loss errors in cluster states. New J. Phys.,2008,10:055003-1~10
    [99]Li L and Dobrowolski J A. High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle. Appl. Opt.,2000,39:2754-2771
    [100]Pezzaniti J L and Chipman R A. Angular dependence of polarizing beam splitter cubes. Appl. Opt.,1994,33:1916~1929
    [101]She J, Forsberg E, Ao X Y et al. High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal. J. Opt. A:Pure Appl. Opt.,2006,8: 345~349
    [102]Zheng J, Zhou C, Feng J et al. A metal-mirror-based reflecting polarizing beam splitter. J. Opt. A:Pure Appl. Opt.,2009,11:015710-1-6
    [103]Zheng J, Zhou C, Feng J et al. Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings. Opt. Lett.,2008,33:1554~1556
    [104]Zhou L and Liu W. Broadband polarizing beam splitter with an embedded metal-wire nanograting. Opt. Lett.,2005,30:1434~1436
    [105]Feng J and Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Opt. Lett.,2007,32:1662~1664
    [106]冯俊波.硅基微纳光栅耦合器件及其制备技术研究:[博士学位论文].武汉:华中科技大学图书馆,2009
    [107]Zhang Y, Jiang Y, He S et al. A broad-angle polarization beam splitter based on a simple dielectric periodic structure. Opt. Express,2007,12:14363-14368
    [108]Wu H, Mo W, Hou J et al. Polarizing beam splitter based on a subwavelength asymmetric profile grating. Journal of Optics,2010,12(1):015703-1~5
    [109]Lalanne P, Hazart J, Chavel P et al. A transmission polarizing beam splitter grating. J. Opt. A:Pure Appl. Opt.,1999,1:215~219
    [110]Wang B, Zhou C, Wang S et al. Polarizing beam splitter of a deep-etched fused-silica grating. Opt. Lett.,2007,32:1299~1301
    [111]Shokooh-Saremi M and Magnusson R. Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers. Opt. Express,2008,16:18249~18263
    [112]Magnusson R and Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Opt. Express,2008,16:3456~3462
    [113]Zhou Z, Gao D, Wang Y et al. Si-based optoelectronic devices for optical communications (Invited). Proc. of SPIE,2006,6352:635221-1~11
    [114]Ichikawa H and Baba T. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal. Appl. Phys. Lett.,2004,84(4): 457~459
    [115]吴廷伟.高外量子效率氮化镓基发光二极管芯片结构设计:[硕士学位论文].武汉:华中科技大学图书馆,2009
    [116]Bruckner F, Clausnitzer T, Burmeister O et al. Monolithic dielectric surfaces as new low-loss light-matter interfaces. Opt. Lett.,2008,33(3):264~266
    [117]Zhao L, Zuo Y H, Zhou C L et al. A highly efficient light-trapping structure for thin-film silicon solar cells. Solar Energy,2010,84:110~115
    [118]Shokooh-Saremi M and Magnusson R. Particle swarm optimization and its application to the design of diffraction grating filters. Opt. Lett.,2007,32(8): 894~896
    [119]董元,王勇,易克初.粒子群优化算法发展综述.商洛学院学报,2006,20(4):28~33
    [120]Wei C, Liu S, Deng D et al. Electric field enhancement in guided-mode resonance filters. Opt. Lett,2006,31(9):1223~1225
    [121]Ding Y and Magnusson R. Doubly resonant single-layer bandpass optical filters. Opt. Lett.,2004,29(10):1135~1137
    [122]Peng S T, Tamir T and Bertoni H L. Theory of periodic dielectric waveguides. IEEE Trans. Microwave Theory and Tech.,1975, MTT-23:123~133
    [123]Yeh P, Yariv A and Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am.,1977,67:423~438
    [124]Vincent P and Neviere M. Corrugated dielectric waveguides:A numerical study of the second-order stop bands. Appl. Phys.,1979,20:345~351
    [125]Kim D H, Cho C O, Roh Y G et al. Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Appl. Phys. Lett.,2005,87:203508
    [126]Hong H G, Kim S S, Kim D Y et al. Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Appl. Phys. Lett.,2006,88:103505
    [127]Kim J K, Xi J Q, Luo H et al. Enhancement of light extraction in GaN light-emitting diodes by omni-directional reflectors with ITO nanorod low-refractive-index layer. Proc. of SPIE,2005,5941:59410K-1-6
    [128]Wierer J J, Steigerwald D A, Krames M R et al. High power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett.,2001,78(22):3379~3381
    [129]Chao C H, Chuang S L and Wu T L. Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals. Appl. Phys. Lett.,2006,89:091116
    [130]Kim J K, Xi J Q, Luo H et al. Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having NiZn/Ag microcontacts. Appl. Phys. Lett,2006,89:141123
    [131]Kim J K, Gessmann T, Luo H et al. GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector. Appl. Phys. Lett,2004,84(22): 4508~4510
    [132]Horng R H. Wang W K, Huang S Y et al. Effect of resonant cavity in wafer-bonded green InGaN LED with dielectric and silver mirrors. IEEE Photon. Technol. Lett.,2006,18(3):457~459
    [133]Wu W, Wu H, Wu T et al. Enhanced light-extraction in GaN light-emitting diode with binary blazed grating reflector. Proc. of SPIE,2008,7279:72790O-1~6
    [134]Han D S, Kim J Y, Na S I et al. Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate. IEEE Photon. Technol. Lett.,2006,18 (13):1406~1408
    [135]Schnitzer I, Yablonovitch E, Caneau C et al.30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl. Phys. Lett.,1993, 63(16):2174~2716
    [136]Popov E, Hoose J, Frankel B et al. Low polarization dependent diffraction grating for wavelength demultiplexing. Opt. Express,2004,12(2):269~275
    [137]Marciante J R, Hirsh J I, Raguin D H el al. Polarization-insensitive high-dispersion total internal reflection diffraction gratings. J. Opt. Soc. Am. A,2005,22(2): 299~305
    [138]Zhu N, Song J, He S L et al. Design of a polarization-insensitive echelle grating demultiplexer based on silicon nanophotonic wires. IEEE Photon. Technol. Lett., 2008,20 (10):860~862
    [139]Wu H, Mo W, Hou J et al. A high performance polarization independent reflector based on a multilayered configuration grating structure. Journal of Optics,2010, 12(4):045703-1~6
    [140]Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature,2003,424:824~830