硅基光子无源集成器件以及混合集成平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过多年发展,硅光子学如今已经成为受到广泛关注的热点研究领域。利用硅的高折射率差和成熟的制造工艺,硅光子学被认为是实现高集成度光子芯片的最佳选择。但是,硅光子学也有其固有的缺点,比如缺乏高效的硅基有源器件,极低的光纤-波导耦合效率以及硅基波导显著的偏振相关性等都制约着硅光子学的进一步发展。本论文针对这些问题,试图通过新的尝试给出一些全新的解决方案。
     首先我们回顾了一些光波导的数值算法,并在此基础上开发了一个基于柱坐标系的有限差分模式分析器,它非常适合于分析弯曲波导的本征模场。对于复杂光子器件结构的分析,我们主要利用时域有限差分以及波束传播法等数值工具。
     接着我们回顾了硅基光子器件各项主要的制造工艺和测试技术。重点介绍了几种基于超净室设备的关键工艺,如等离子增强化学气相沉积,电子束光刻以及等离子体干法刻蚀。为了同时获得较高的耦合效率以及较大的对准容差,本论文主要利用垂直耦合系统作为光子器件的主要测试方法。
     针对不同的硅波导结构,我们提出并且实验验证了两款新型耦合器以提高硅波导的耦合效率。一款基于非均匀光栅的垂直耦合器,在实验中,我们得到了超过60%的光纤-波导耦合效率。此外,我们还开发了一款用以实现硅条形波导和狭缝波导之间高效耦合的新型耦合器,理论设计和实验结果都证明该耦合器可以实现两种波导之间的无损光耦合。
     为了消除硅基无源器件显著的偏振相关性,我们首先利用一种特殊的三明治结构波导,通过优化多层结构,成功消除了一个超小型微环谐振器中心波长的偏振相关性。同时,我们分析了另外一种可以有效消除偏振相关性的偏振分级方案,并提出了两种新型结构以实现该方案中的两种关键元件。通过理论分析以及实验验证,一个基于一维光栅的偏振分束器被证明能够实现两种偏振光的有效分离。该分束器同时还能作为光纤与硅波导之间的高效耦合器。实验中我们获得了超过50%的耦合效率以及低于-20dB的偏振串扰。我们还对一个基于硅条形波导的超小型偏振旋转器进行了理论分析,该器件能够实现100%的偏转转化效率,并拥有较大的制造容差。
     在本论文中,我们还对利用侧向外延生长技术实现Ⅲ-Ⅴ材料与硅材料混集成的可行性进行了初步分析,并优化了诸如氢化物气相外延,化学物理抛光等关键工艺。在该方案中,二氧化硅掩膜被用来阻止InP种子层中的线位错在外延生长中的传播。初步实验结果和理论分析证明该集成平台对于实现InP和硅材料的混合集成具有很大的吸引力。
Silicon photonics is now a widely studied research topic. Due to its high-index-contrast and the compatibility with the mature complementary metal-oxide-semiconductor technology, silicon photonics is a promising platform for low cost high density integration. Besides its advantages, there are still some general problems, including the lack of silicon active devices, the difficulty of light coupling, the polarization dependence, etc. This thesis aims to give some novel solutions and new attempts to address these problems.
     Numerical methods are reviewed first. A semi-vectorial finite-difference mode solver in cylindrical coordinate system is developed and it is very useful for eigenmode analysis of the bent waveguide. We also use the finite-difference time-domain method and beam propagation method to analyze the light propagation in complex structures.
     The fabrication and characterization technologies are reviewed and studied. We mainly focus on the fabrication techniques based on clean room facilities, including plasma assisted film deposition, electron beam lithography and dry etching. We mainly use vertical coupling system for characterization in this thesis, since it can provide much higher coupling efficiency and larger alignment tolerance.
     Two novel couplers related to different silicon waveguides are studied. In order to improve the coupling efficiency of a grating coupler, a nonuniform grating is theoretically designed and over 60% coupling efficiency is experimentally obtained. We also demonstrated another novel coupler facilitating the light coupling between silicon photonic wires and slot waveguides, both theoretical and experimental work have been done. Almost lossless coupling is achieved in experiments.
     In order to eliminate the polarization dependence of silicon photonic wire based devices, we proposed two different approaches. The first one is the use of a sandwich waveguide structure. By optimizing the multilayer structure, we successfully eliminate the large birefringence in an ultrasmall ring resonator. Another approach is to use polarization diversity scheme. Two key components of the scheme are studied. We theoretically analyzed and experimentally verified an efficient polarization beam splitter based on a one-dimensional grating coupler. Over 50% coupling efficiency from optical fibers to silicon waveguides for both polarizations and-20dB extinction ratio between them are experimentally obtained. A compact polarization rotator based on silicon photonic wire is theoretically analyzed.100% polarization conversion is achievable and the fabrication tolerance is also analyzed.
     We investigate a novel integration platform based on nano-epitaxial lateral overgrowth technology to realize hybrid integration of III-V materials on silicon. A silica mask is used to block the threading dislocations from the InP seed layer on silicon. Technologies such as hydride vapor phase epitaxy and chemical-mechanical polishing are developed. Preliminary results show that a thin dislocation free InP layer on silicon is obtained experimentally.
引文
[1]E. Paul, Jr.Green. Fiber to the Home:The New Empowerment, Wiley-Interscience, (2005).
    [2]S.J. park, C.H. Lee, K.J. Jeong, H.J. Park, J.G. Ahn and K.T. Song, "Fiber-to-the-home services based on wavelength division multiplxing passive optical network," IEEE J.Lightw.Technol., vol.22, pp.2582-2591 (2004).
    [3]S.E. Miller, "Integrated optics:an introduction," Bell Syst. Tech. J., vol.48, pp.2059-2068 (1969).
    [4]R. Ramponi, M. Marangoni, and R. Osellame, "Dispersion of the ordinary refractive-index change in a proton-exchanged LiNbO3 waveguide," Appl. Phys. Lett., vol.78, pp.2098-2100 (2001).
    [5]F. Bilodeau, B. Malo, J. Albert, D. C. Johnson, K. O. Hill, Y. Hibino, M. Abe, and M. Kawachi, "Photosensitization of optical fiber and silica-on-silicon/silica waveguides," Opt. Lett., vol.18, pp.953-955 (1993).
    [6]M. Takenaka and Y. Nakano, "InP photonic wire waveguide using InAlAs oxide cladding layer," Opt. Express, vol.15, pp.8422-8427 (2007).
    [7]A. Yeniay, R. Gao, K. Takayama, R. Gao, and A.F. Garito, "Ultra-Low-Loss Polymer Waveguides," J. Lightwave Technol., vol.22, pp.154-(2004).
    [8]W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol.424, pp.824-830, (2003).
    [9]L. Liua, Z. Hana, and S. He., "Novel surface plasmon waveguide for high integration," Opt. Express, vol.13, pp.6645-6650 (2005).
    [10]E. Ozbay, "Plasmonics:Merging Photonics and Electronics at Nanoscale Dimensions," Science, vol.311, pp.189-193 (2006).
    [11]M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, "Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium," Optics Express, vol.16, pp.1385-1392(2008).
    [12]H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles", Opt. Lett., vol.25, pp.563-565 (2000).
    [13]P. Hobson, S. Wedge, J. Wasey, I. Sage, and W. Barnes, "Surface plasmon mediated emission from organic light emitting diodes," Adv. Mat., vol.14, pp. 1393-1396(2002).
    [14]K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, "Surface enhanced Raman scattering and biophysics," J. Phys. C, vol.14, pp.597-R624 (2002).
    [15]L. Tsybeskov, D. Lockwood and M. Ichikawa, "Silicon Photonics:CMOS Going Optical," Proceedings of the IEEE, vol.97, pp.1161-1165 (2009).
    [16]W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout and R. Baets, "Basic structures for photonic integrated circuits in Silicon-on-insulator", Optics Express, vol.12, pp. 1583-1591 (2004).
    [17]D. K. Sparcin, S. J. Spector, and L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," J. Lightw. Technol., vol.23, pp. 2455-2461 (2005).
    [18]VR. Almeida, Q. Xu, CA. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt Lett., vol.29, pp.1209-11 (2004).
    [19]C. A. Barrios, K. B. Gylfason, B. Sanchez, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett.32, 3080-3082 (2007).
    [20]J. D. Joannopoulos, R. D. Mead, and J. N. Winn. Photonic crystals:Molding the flow of light. Princeton University Press, Princeton, NJ (1995).
    [21]S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, vol.407, pp.608-610 (2000).
    [22]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B, vol.58, pp.10096-10099 (1998).
    [23]A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett., vol.93,073902 (2004).
    [24]B. Streetman, S. Banerjee, Solid State electronic Devices, New Jersey: Prentice Hall, pp.524, (2000).
    [25]A. Liu et al., "High-speed silicon modulator for future VLSI interconnect," Indium Phosphide and Rel. Mat. Conf. (2007)
    [26]D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kartner, "High performance, waveguide integrated Ge photodetectors," Opt. Express, vol.15, pp.3916-3921 (2007).
    [27]H. Rong, R. Jones, A. Liu,O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser", Nature, vol.433, pp.725-728 (2005).
    [28]A. W. Fang, E. Lively, Y-H. Kuo, D. Liang, J. E. Bowers, "A distributed feedback silicon evanescent laser," Optics Express, vol.16, pp.4413-4419 (2008).
    [29]L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. Vries, P. Regreny, D. Thourhout, R. Baets and G. Morthier, "An ultra-small, low-power, all-optical flip-flop memory on a silicon chip", Nature Photonics, vol. 4, pp.182-187(2010).
    [30]S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express, vol.11, pp.2927-2939,2003.
    [31]V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett., vol.28, pp.1302-1304,2003.
    [32]T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 μm square silicon wire waveguides to single-mode fibers," Electron. Lett., vol.38, pp.1669-1670 (2002).
    [33]D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett., vol.29, pp. 2749-2751,2004.
    [34]D. Xu, S. Janz, and P. Cheben, "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering," IEEE Photon. Technol. Lett. vol.18, pp.343-345 (2006).
    [35]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, "Silicon photonic circuit with polarization diversity," Opt. Express, vol. 16, pp.4872-4880 (2008).
    [36]K.S.Chiang, "Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides," IEEE Transactions on microwave theory and techniques, vol.44, pp.692-700,1996.
    [37]M. Ramahi, A. Khebir, "Numerically-derived absorbing boundary conditions for the solution of open region scattering problems," IEEE Trans. Antennas Propagat., vol.39, pp.350-353 (1991).
    [38]G. R. Hadley, "Transparent boundary condition for beam propagation method," Opt. Lett., vol.16, pp.624-626 (1991).
    [39]W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (pml) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett., vol.8, pp.649-651 (1996).
    [40]J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J.Comput. Phys., vol.114, pp.185-200 (1994).
    [41]Y. P. Chiou, and H. C. Chang, "Complementary operators method as the absorbing boundary condition for the beam propagation method," IEEE Photon.Technol.Lett., vol.10, pp.976-978 (1998).
    [42]R. Mittra, and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of elelctromagnetic waves," IEEE Microwave and guidedwave lett., vol.5, pp.84-86 (1995).
    [43]W. Yang and A. Gopinath, "A boundary integral method for propagation problems in integrated optical structures," J. Lightwave Technol., vol.7, pp. 777-779 (1995).
    [44]M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings Pt. J., vol.135, pp. 56-63 (1988).
    [45]M. M. Ney, "Method of moments as applied to electromagnetic problems," IEEE Trans. Microwave Theory Tech., vol.33, pp.972-980 (1985).
    [46]B. M. A. Rahman and J. B. Davies, "Finite-element solution of integrated optical waveguides," IEEE J. Lightwave Technol., vol.2, pp.682-687 (1984).
    [47]S. Jungling, and J. C. Chen, "A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method," IEEE J. Quantum Electron., vol.30. pp.2098-2105 (1994).
    [48]N.-N. Feng, G.-R. Zhou, and W. P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," J. Lightwave Technol., vol.20, pp.1976-1980 (2002).
    [49]R. Scarmozzino and R. M. Osgood, "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications," J. Opt. Soc. Am. A., vol.8, pp.724-731 (1991).
    [50]Y. C. Chuang, and N. Dagli, "An assessment of finite difference beam propagation method," IEEE J.Qutantum Electron., vol.26, pp.1335-1339 (1990).
    [51]B. A. M. Rahman and J. B. Davies, "Finite element analysis of optical and microwave problems," IEEE Trans.Micro wave Theory Tech., vol.32, pp.20-28 (1983).
    [52]G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators," Opt. Lett., vol.17, pp.1426-1428 (1992).
    [53]H. L. Rao, R. Scarmozzino, and R. M. Osgood, "A bi-directional beam propagation method for multiple dielectric interfaces," IEEE Photon. Technol. Lett., vol.11, pp.830-832 (1999).
    [54]W. P. Huang, C. L. Xu, and S. K. Chaudhuri, "A finite-difference vector beam propgation method for three-dimensional waveguide structures," IEEE Photon. Technol. Lett., vol.41, pp.148-151 (1992).
    [55]H. Deng, G. H. Jin, J. Harari, J. P. Vilcot and D. Decoster, "Investigation of 3-D semivectorial finite-difference beam propagation method for bent waveguides, "J. Lightwave Technol., vol.16, pp.915-922 (1998).
    [56]A. Taflove, "Computational Electrodynamics:The Finite-difference Time-domain Method", Artech House, Norwood, MA (1995).
    [57]A. Taflove, "Review of the formulation and application of the finite-difference time-domain method for numerical modeling of electromagnetic wave infractions with arbitrary structures", Wave Motion, vol.10, pp.547-582 (1988).
    [58]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol.14, pp.302-307(1966).
    [59]W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luysseart, J. van Campenhout, P. Bienstman, and D. van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol., vol.23, pp.401-412, (2005).
    [60]L. Wosinski, L. Liu, M. Dainese, and D. Dai, "Amorphous silicon in nanophotonic technology", Proceedings of the 13th European Conference on Integrated Optics, ECIO 2007, Copenhagen, Denmark, (2007).
    [61]L. Liu, "Design, fabrication, and characterization of nano-photonic components based on silicon and plasmonic material", doctoral thesis, ISSN 1653-7610, KTH (2006).
    [62]R. J. Schul and S. J. Pearton, editors. Handbook of advanced Plasma Processing Techniques. Springer, Berlin (2000).
    [63]L. Wosinski, J. K. Sahu, H. Fernando, and T. Augustsson, "Improvement of PECVD technology for low loss silica-on-silicon integrated optics", Proceedings of the European Conference on Integrated Optics, ECIO 1999, Torino, Italy, April 13-16(1999).
    [64]M. Dainese, "Plasma Assisted Technology for Si-based Photonic Integrated Circuits," Doctoral dissertation, Royal Institute of Technology (KTH) (2005).
    [65]P. Nellen, P. Strasser, V. Callegari, R. Wuest, D. Erni, and F. Robin, "Focused ion beam modifications of indium phosphide photonic crystals," Microelectr.Eng., vol.84, pp.1244-47 (2007).
    [66]G. Subramania, and S. Lin, "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett., vol. 85, pp.5037-5039 (2004).
    [67]P. Rai-Choudhury, "Handbook of Microlithography, Micromachining, and Micrafabrication", volume 1 Microlithography, SPIE (1997).
    [68]M. Peckerar, D. Sander, and A. Srivastava, "Electron beam and optical proximity effect reduction for nanolithography:New results", J. Vac. Sci. Technol. B, vol.5, pp.2288-2294 (2007).
    [69]S. H. Kim, H. Hiroshima, and M. Komuro, "Photo-Nanoimprint lithography for nanopatterning technology," J. Korean Phys. Soc., vol.45, pp.1233-1235 (2004).
    [70]P. Rai-Choudhury, editor. Handbook of Microlithography, Micromachining, and Microfabrication, volume 1 Microlithography, chapter 2. SPIE (1997).
    [71]W. Henschel, Y. M. Georgiev, and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B, vol.21, pp.1071-1023 (2003).
    [72]M. Haffner and et al, "Influence of temperature on HSQ electron-beam lithography", J. Vac. Sci. Technol. B, vol.25, pp.2045-2048 (2007).
    [73]H. Jansen, M. Boer, R. Wiegerink, N. Tas, E. Smulders, C. Neagu and M. Elwenspoek, "RIE lag in high aspect ratio trench etching of silicon", Microelectronic Engineering, vol.35, pp.45-50 (1997).
    [74]D. Taillaert, "Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides", doctoral thesis, Ghent University (2004).
    [75]D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides", Opt. Lett., vol.29, pp. 2749-2751 (2004).
    [76]P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron., vol.33, pp.327-341 (2001).
    [77]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonantors," Nature 440,508-511 (2006)
    [78]A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai and D. Prather, "Fabrication and characterization of three dimensional silicon tapers," Opt. Express, vol.11, pp.3555-3561(2003).
    [79]T. Shoji, T. Tsuchizawa, T. Wanatabe, K. Yamada and H. orita, "Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibers," Electron. Lett., vol.38, pp.1669-1670 (2002).
    [80]L. Zimmerman, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, "How to bring nanophotonics to application-silicon photonics packaging," IEEE LEOS Newsletter 22,4 (2008).
    [81]G. Roelkens, D. Thourhout, and R.l Baets, "High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay," Opt. Express, vol.14,11622-11630 (2006).
    [82]G. Roelkens, D. Van Thourhout, and R. Baets, "Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure," Opt. Express, vol. 15,10091-10096(2007).
    [83]D. Taillaert, Harold Chong, P.I. Borel, L.H. Frandsen, R.M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett., vol.15,1249-1251 (2003).
    [84]Y. Tang; D. Dai; S. He, "Proposal for a Grating Waveguide Serving as Both a Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits," Photonics Technology Letters, IEEE, vol.21, pp.242-244 (2009).
    [85]F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, "Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides," J. of Lightwave Technol., vol.25,151-156 (2007).
    [86]G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J.-M. Fedeli, "High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit," Appl. Phys. Lett, vol.92, 131101-3(2008).
    [87]R. Halir, P. Cheben, S. Janz, D. Xu, I. Molina-Fernandez, and J. Wanguemert-Perez, "Waveguide grating coupler with subwavelength microstructures," Opt. Lett., vol.34,1408-1410(2009).
    [88]Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material", Opt. Lett., vol.29,1626-1628 (2004).
    [89]T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers", J. Opt. Soc. Am. B, vol.23,684-691 (2006).
    [90]C. A. Barrios, M. J. Banuls, V. Gonzalez-Pedro, K. B. Gylfason, B. Sanchez, A. Griol, A. Maquieira, H. Sohlstrom, M. Holgado and R. Casquel, "Label-free optical biosensing with slot-waveguides", Opt. Lett., vol.33,708-710 (2008).
    [91]N.-N. Feng, R. Sun, L. C. Kimerling, and J. Michel, "Lossless strip-to-slot waveguide transformer", Opt. Lett., vol.32,1250 (2007).
    [92]D. Keil, and E. Anderson, "Characterization of reactive ion etch lag scaling," J. Vac. Sci. Technol. B, vol.19,2082-2088 (2001).
    [93]T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon micro fabrication technology" IEEE J. Sel. Topics Quantum Electron., vol.11, pp.232-240 (2005).
    [94]W. R. Headley, G. T. Reed, and S. Howe, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett., vol.85, pp.5523-5525 (2004).
    [95]L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, "Polarization-independent single-mode rib waveguides on SOI for telecommunications wavelengths," Opt. Commun., vol.210, pp.43-49,2002.
    [96]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S.-i. Itabashi, "Silicon photonic circuit with polarization diversity," Opt. Express, vol. 16, pp.4872-4880 (2008).
    [97]F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express, vol.15, pp.11934-11941 (2007).
    [98]ST. Chu, BE. Little, WG Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photon. Technol. Lett., vol.11, pp.691-693 (1999).
    [99]L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express, vol. 14, pp.6851-6857(2006).
    [100]V. R. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature, vol.431, pp.1081-1084,2004.
    [101]N.-N. Feng, J. Michel, and L. C. Kimerling, "Optical Field Concentration in Low-Index Waveguides", IEEE J. Sel. Topics Quantum Electron, vol.42, no.9, SEP.,2006.
    [102]T. Fujisawa, and M. Koshiba, "Theoretical Investigation of Ultrasmall Polarization-Insensitive 1×2 Multimode Interference Waveguides Based on Sandwiched Structures", IEEE Photon. Technol. Lett., vol.18, no.11, Jun 1,2006
    [103]T. Fujisawa and M. Koshiba, "A polarization independent optical directional coupler based on slot waveguides", Opt. Lett., vol.31, issue 1, pp. 56-58, Jan.2006.
    [104]G.T.Paloczi, J. Scheuer and A. Yariv, "Compact microring-Based Wavelength-Selective In line Optical Reflector", IEEE Photon. Technol. Lett., vol.17, pp.390-392(2005).
    [105]M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, H. A. Haus, "Towards integrated polarization diversity:design, fabrication, and characterization of integrated polarization splitters and rotators," OFC2005 Technical Digest PDP11 (2005).
    [106]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, "Silicon photonic circuit with polarization diversity," Opt. Express vol. 16,pp.4872-4880(2008)
    [107]D. Taillaert, "Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides," Ph.D. Thesis, University Gent (2004).
    [108]P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron., vol.33, pp.327-341,2001.
    [109]K. Lee, D. Lim, and L. Kimerling, "Fabrication of ultralow-loss Si_SiO2 waveguides by roughness reduction," Opt. Lett., vol 26, pp.1888-1890,2001.
    [110]Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B.I. Miller, and M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett., vol.59, pp.1278-1280 (1991).
    [111]S. S. A. Obayya, B. M. Azizur, K. T. V. Grattan, and H. A. El-Mikati, "Beam propagation modeling of polarization rotation in deeply etched semiconductor bent waveguides," IEEE Photon. Technol. Lett., vol.13, pp. 681-683 (2001).
    [112]B. M. Holmes and D. C. Hutchings, "Realization of Novel Low-Loss Monolithically Integrated Passive Waveguide Mode Converters," IEEE Photon. Technol. Lett., vol.12, pp.43-45 (2006).
    [113]H. Deng, D.O. Yevick, C. Brooks, and P. E. Jessop, "Design Rules for Slanted-Angle Polarization Rotators," IEEE J. Lightwave Technol., vol.23, pp. 432-445 (2005).
    [114]C. Brooks, P. E. Jessop, H. Deng, D.O. Yevick, and G. Tarr, "Passive silicon-on-insulator polarization-rotating waveguides," Opt. Eng., vol.45,044603 (2006).
    [115]Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators", Opt. Express, vol.15, pp.430-436 (2007).
    [116]Y.-H. Kuo, H.-W. Chen, and J. E. Bowers, "Hybrid Silicon Modulators", Proc. SPIE 7220,722081-7 (2009).
    [117]H. Park, A. W. Fang, R. Jones,O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, "A hybrid AlGaInAs-silicon evanescent waveguide photodetector", Opt. Express, vol.15, pp.6044-6052 (2007).
    [118]T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, "31GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate", Opt. Express, vol.15, pp.13965-13971 (2007).
    [119]H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang and M. Paniccia, "A continuous-wave Raman silicon laser", Nature, vol.433, pp.725-728 (2005).
    [120]J. Campenhout, L. Liu, P. Romeo, D. Thourhout, C. Seassal, P. Regreny, L. Cioccio, J. Fedeli, and R. Baets, "A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks," IEEE Photon. Technol. Lett., wol.20, pp.1345-1347 (2008).
    [121]A. W. Fang, "Silicon Evanescent Lasers," Ph.D. Thesis, University of California Santa Barbara (2008).
    [122]Y. Sun, "Epitaxial Lateral Overgrowth of Indium Phosphide and Its Application in Heteroepitaxy, " Ph.D Thesis, KTH (2003).
    [123]E. Estragnat, G. Tang, H. Ling, S. Jahanmir, P. Pei, and J.M. Martin, "Experimental Investigation on Mechanisms of Silicon Chemical Mechanical Polishing," Journal of Electron Materials, vol.33, pp.334-339 (2004).
    [124]A. Jindal, S. Hegde, and S. V. Babu, "Chemical Mechanical Polishing of Dielectric Films Using Mixed Abrasive Slurries," Journal of The Electrochemical Society, vol.150, pp. G314-G318 (2003).
    [125]J. M. Titchmarsh, W. Harding, G.R. Booker,& D. R. Wight, "Carrier recombination at dislocations in epitaxial gallium phosphide layers" J. Mater. Sci., vol.12, pp.341 (1977).
    [126]T.C. Wen, W.I. Lee, J.K. Sheu and G.C. Chi, "Observation of dislocation etch pits in epitaxial lateral overgrowth GaN by wet etching" Solid-State Electron., vol.46 pp.555 (2002).