用于宽带四波混频波长转换的硅纳米线波导的优化设计及其模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光通信技术的发展,基于SOI (silicon-on-insulator)结构的硅纳米线波导因其相对低成本的制作工艺,较高的非线性系数以及对光束的强束缚作用,被广泛应用于非线性光学领域。本论文主要研究了硅纳米线波导中基于四波混频效应的波长转换原理,并对应用于波长转换的硅纳米线波导进行了优化设计。
     本论文首先简单介绍了硅光子学在光通信领域的发展以及硅纳米线波导中基于四波混频效应的波长转换的研究情况。
     通过对光波导的基本理论的回顾,本论文简要阐述了分析光波导中模场分布的解析方法和近似方法,以及有限差分法、光束传播方法等常用且有效的数值计算方法。
     本论文对SOI硅纳米线矩形波导中基于四波混频效应的宽带波长转换进行了理论研究,并分析了波导中损耗以及吸收效应对于相位匹配条件的影响。数值模拟了波导芯层横截面尺寸对于调节波导色散的作用,通过对波导横截面尺寸、波导长度以及泵浦光入射功率的优化设计扩展了波长转换的带宽并在波导的出射端得到了最大波长转换效率。
     在常规矩形波导结构的基础上,本论文提出了一种多层结构的条形波导。这种波导是在硅材料芯层的上、下两个方向依次沉积折射率一低一高的两层介质膜,形成一种多层结构。论文分析了芯层宽度、高度以及两层覆盖层的厚度四个几何结构参数对零色散波长位置以及色散曲线斜率的影响,经数值计算在理论上提出了对该多层结构条形波导横截面尺寸的优化设计方案,实现了宽带的波长转换。
     四波混频波长转换的效率与入射信号光相对泵浦光的偏振态有密切关系。而在实际传输系统中,信号光的偏振态总是会因为时间或者传输距离等原因而发生波动,因此研究偏振不敏感的波长转换方案变得十分必要。本论文从理论上研究了在SOI硅纳米线矩形波导中利用具有一定偏振角度的泵浦光实现基于四波混频效应的偏振无关波长转换的方案,并对入射泵浦光的偏振角度进行了优化。更进一步研究了因波导芯层横截面尺寸调整引起TE和TM模式的色散改变对波长转换带宽的影响。
With the development of optical communication technology, silicon nanowire waveguides base on the SOI (silicon-on-insulator) structure have been widely used in the fields of nonlinear optics due to their relative low-cost fabrication process, large third-order nonlinearity and tight confinement of optical waves. The theory of four-wave mixing-based wavelength conversion in a SOI waveguide is investigated and the waveguides used to realize the wavelength conversion are optimized.
     Firstly, the development of silicon photonics for optical communication is introduced, and the research progress of four-wave mixing-based wavelength conversion in the silicon nanowire waveguides is summarized.
     The basic theory of optical waveguides is then introduced. The analytical and approximate methods to analyze the modal field of optical waveguides are briefly described, and the numerical methods such as the finite difference method and the beam propagation method are discussed.
     The theory of four-wave mixing-based broadband wavelength conversion in a SOI nanowire waveguide is investigated, and the influence of loss and absorption in the waveguide on the phase-matching condition is analyzed. The dispersion tailoring by the adjustment of the cross-section size of the waveguide core is numerically simulated. The conversion band is enhanced and the maximum conversion efficiency is achieved at the end of the waveguide by optimizing the cross-section size, the waveguide length and the input power of the pump light.
     A new structure of multi-layered silicon nanowire waveguide is presented, where two overlayers with lower and higher refractive indices are sequentially added underneath and on top of the silicon core. The impact of the core width and the thicknesses of core and two overlayers on the zero-dispersion wavelength and the dispersion slope are analyzed, respectively. The optimal design of the multi-layered nanowire waveguides for the broadband conversion is proposed based on the numerical simulation.
     The conversion efficiency is tightly determined by the state of polarization (SOP) of the input signal with respect to the pump. Since the SOP of the signal in a real transmission system may fluctuate with time and distance, it is necessary to realize polarization insensitive wavelength conversion schemes. A proposal for polarization-independent wavelength conversion is presented based on the four-wave mixing in a SOI nanowire waveguide by using an angled-polarization pump. The basic theory of the polarization-independent wavelength conversion is analyzed and the polarization angle of pump is optimized. The influence of the dispersion change of TE and TM modes induced by the adjustment of the core cross-section size on the wavelength conversion band is investigated.
引文
1. L. Pavesi, and G. Guillot, "Optical interconnects:the silicon approach," Berlin: Springer-Verlag,2006.
    2. C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. B. Miller, "Receiver-less Optical Clock Injection for Clock Distribution Networks," IEEE Journal of Selected Topics in Quantum Electronics,2003,9(2),400-409
    3. S. E. Miller, "Integrated optics:an introduction," Bell System Technical Journal,1969, 48(7).
    4. 小林功郎,《光集成器件》,北京:科学出版社,2002.
    5. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Applied Physics Letters,1990,57(10),1046-1048.
    6. A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon," Nature,1991,353(6342),335-338.
    7. R. Soref, and J. Lorenzo. "All-silicon active and passive guided-wave components for λ= 1.3 and 1.6μm," IEEE Journal of Quantum Electronics,1986,22,873-879.
    8. R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE Journal of Quantum Electronics,1987,23,123-129.
    9. B. Schuppert, J. Schmidtchen, and K. Petermann. "Optical channel waveguides in silicon diffused from GeSi alloy," Electronics Letters,1989,25(2),1500-1502.
    10. R. A. Soref, J. Schmidtchen, and K. Petermann. "Large single-mode rib waveguides in GeSi and Si-on-SiO2," IEEE Journal of Quantum Electronics,1991,27,1971-1974.
    11. J. P. Colinge, "Silicon-on-insulator technology:Materials to VLSI," MA:Kluwer Academic Publishers,1991.
    12. M. Bruell, "Silicon on insulator material technology," Electronics Letters,1995,31(14), 1201-1202.
    13. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE Journal of Selected Topics in Quantum Electronics,1998,4(6),938-947.
    14.余金中,严清峰,夏金松,王小龙,王启明,”“SOI光电子集成,”功能材料与器件学报,2003,9(1),1-7.
    15. G. Masini, L. Colace, and G. Assanto, "Si based optoelectronics for communications," Materials Science and Engineering B,2002,89(1-3),2-9.
    16. J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, and G. Burbach, "Low loss singlemode optical waveguides with large cross-section in silicon-on-insulator," Electronics Letters,1991,27(16),1486-1488.
    17. P. D. Trinh, S. Yegnanarayanan, and B. Jalali, "Integrated optical directional couplers in silicon-on-insulator," Electronics Letters,1995,31(24),2097-2098.
    18. T. K. Liang, and H. K. Tsang, "Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides," IEEE Photonics Technology Letters,2005,17(2), 393-395.
    19. M. W. Geis, S. J. Spector, R. C.Williamson, and T. M. Lyszczarz, "Submicrosecond submilliwatt silicon-on-insulator thermooptic switch," IEEE Photonics Technology Letters, 2004,16(11),2514-2516.
    20. Q. Fang, F. Li, and Y. L. Liu, "Compact SOI arrayed waveguide grating demultiplexer with broad spectral response," Optics Communications,2006,258(2),155-158.
    21. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, "A sub-micron depletion-type photonic modulator in silicon on insulator," Optics Express,2005,13(22),8845-8854.
    22. S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, "CMOS-compatible planar silicon waveguide-grating-coupler photodetectors fabricated on silicon-on-insulator (SOI) substrates," IEEE Journal of Quantum Electronics,2002,38(5),477-480.
    23. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Optics Express,2004, 12(16),3713-3718.
    24. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature,2005,433(7023),292-294.
    25. C. A. Barrios, V. R. de Almeida, and M. Lipson, "Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator," Journal of Lightwave Technology,2003,21(4),1089-1098.
    26. O. Boyraz, P. Koonath, V. Raghunathan, and B.Jalali, "All optical switching and continuum generation in silicon waveguides," Optics Express,2004,12(17),4094-4102.
    27. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Optics Express, 2005,13(9),7298-7303.
    28. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, "Four-wave mixing in silicon wire waveguides," Optics Express,2005,13(12),4629-4637.
    29. K. Yamada, H. Fukuda, T. Tsuchizawa, T. W. A.-T. Watanabe, T. S. A.-T. Shoji, and S. I. A.-S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technology Letters,2006,18(9),1046-1048.
    30. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Optics Express,2006,14(3), 1182-1188.
    31. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Anti-Stokes Raman conversion in silicon waveguides," Optics Express,2003,11(22),2862-2872.
    32. R. Espinola, J. Dadap, J. R. Osgood, S. McNab, and Y. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Optics Express,2005,13(11), 4341-4349.
    33. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," Journal of Lightwave Technology, 2005,23(6),2094-2102.
    34. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE Journal of Selected Topics in Quantum Electronics,1997,3(5), 1146-1155.
    35. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, "Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers," Optics Letters,1996,21(23),1906-1908.
    36. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, "Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light in highly nonlinear, dispersion shifted fibers," Optics Express,2006,14(7),2873-2879.
    37. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, "Wavelength conversions~1.5μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides," Applied Physics Letters,1993,63(9),1170-1172.
    38. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5-um-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Optics Letters,1998,23(13),1004-1006.
    39. S. Gao, C. Yang, and G. Jin, "Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photonics Technology Letters,2004,16(2),557-559.
    40. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Optics Express,2005,13(2),519-525.
    41. D. J. Lockwood, and L. Pavesi, "Silicon fundamentals for photonics applications, " Topics in Applied Physics,2004,94,1-50.
    42. M. J. Adams, "An introduction to optical waveguides," New York:Wiley,1981,20-42.
    43. K. Okamoto, "Fundamentals of optical waveguides," New York:Academic Press,2005, 16-18.
    44.佘守宪,导播光学物理基础,北京:北方交通大学出版社,2002,124.
    45. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell System Technical Journal,1969,48(7),2071-2102.
    46. R. M. Knox, and P. P. Toulios, "Integrated circuits for the millimeter through optical frequency range," Proceedings of MRI Symposium on Submillimeter Waves,1970,497.
    47. K. S. Chiang, "Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques,1996,44(5),692-700.
    48. A. M. Zaghloul, A. A. A. El-Fadi, "A simple analytical approach to optical rib waveguides," 16th National Radio Science Conference,1999, B9,1-8.
    49. K. S. Chiang, "Analysis of rectangular dielectric waveguides:effective-index method with built-in perturbation correction," Electronics Letters,1992,28(4),388-390.
    50. J. Van Der Tol, and N. H. G. Baken, "Correction to effective index method for rectangular dielectricwaveguides," Electronics Letters,1988,24,207-208.
    51. M. Munowitz, D. J. Vezzetti, A. T. Co, and I. L. Naperville, "Numerical procedures for constructing equivalent slab waveguides-analternative approach to effective-index theory," Journal of Lightwave Technology,1991,9(9),1068-1073.
    52. K. Van de Velde, H. Thienpont, and R. Van Geen, "Extending the effective index method for arbitrarily shaped inhomogeneous optical waveguides," Journal of Lightwave Technology,1988,6(6),1153-1159.
    53. 时尧成,戴道锌,何赛灵,”一种适用于任意折射率分布的等效折射率方法,”光学学报,2005,25(1),51-54.
    54. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, "Full-vectorial mode calculations by finite difference method," IEE Proceedings Optoelectronics,1994,141, 281-286
    55. N. N. Feng, G. R. Zhou, C. Xu, and W. P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," Journal of Lightwave Technology,2002,20(11),1976-1980.
    56. J. Khorsandi, "Finite difference calculations of InP/InGaAsP optical waveguides with arbitrary index profile," International Journal of Infrared and Millimeter Waves,2005,26 (9),1317-1328.
    57. R. Mittra, O. M. Ramahi, A. Khebir, R. Gordon, and A. Kouki, "A review of absorbing boundary conditions for two and three-dimensional electromagnetic scattering problems," IEEE Transactions on Magnetics,1989,25(4),3034-3039.
    58. O. M. Ramahi, "Absorbing boundary conditions for the three-dimensional vector wave equation," IEEE Transactions on Antennas and Propagation,1999,47(11),1735-1736.
    59. O. M. Ramahi, "Stability of absorbing boundary conditions," IEEE Transactions on Antennas and Propagation,1999,47(4),593-599.
    60. G. R. Hadley, "Transparent boundary-condition for beam propagation," Optics Letters, 1991,16(9),624-626.
    61. G. R. Hadley, "Transparent boundary-condition for the the beam propagation method," IEEE Journal of Quantum Electronics,1992,28(1),363-370.
    62. 王谦,黄耐容,何赛灵,”透明边界条件算法的比较研究及改进,”光子学报,2002,31(5),575-579.
    63. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics,1994,114(2),185-200.
    64. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer boundary condition for modal analysis of optical waveguides:leaky mode calculations," IEEE Photonics Technology Letters,1996,8(5),652-654.
    65. R. Mittra, and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave and Guided Wave Letters,1995,5(3),84-86.
    66. R. Scarmozzino, and R. M. Osgood, Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications," Journal of the Optical Society of America A,1991,8(5), 724-731.
    67. J. Yamauchi, S. Kikuchi, T. Hirooka, and H Nakano, "Beam-propagation analysis of bent step-index slab waveguides," Electronics Letters,1990,26(12),822-833.
    68. R. Scarmozzino, A. Gopinath, R. Pregla, and S, Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE Journal of Selected Topics in Quantum Electronics,1996,6(1),150-162.
    69. Y. Chung, and N. Dagli, "An assessment of finite difference beam propagation method," IEEE Journal of Quantum Electronics,1990,26(8),1335-1339.
    70. S. Selleri, L. Vincetti, and M. Zoboli, "Full-vector finite-element beam propagation method for anisotropicoptical device analysis," IEEE Journal of Quantum Electronics, 2000,36(12),1392-1401.
    71. G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators," Optics Letters,1992,17(20),1426-1428.
    72. H. Rao, R. Scarmozzino, and R. M. Osgood, Jr., "A bidirectional beam propagation method for multiple dielectricinterfaces," IEEE Photonics Technology Letters,1999,11(7), 830-832.
    73. H. Deng, G. H. Jin, J. Harari, J. P. Vilcot, and D Decoster, "Investigation of 3D semivectorial finite-difference beam propagation method for bent waveguides," Journal of Lightwave Technology,1998,16,915-922.
    74. M. D. Feit, J. A. Fleck, Jr., "Analysis of rib waveguides and couplers by the propagating beam method," Journal of the Optical Society of America A,1990,7,73-79.
    75. W. P. Huang, C. L. Xu, and S. K. Chaudhuri, "A finite-difference vector beam propagation method forthree-dimensional waveguide structures," IEEE Photonics Technology Letters, 1992,4(2),148-151.
    76. M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B,2008,8,87-102.
    77. Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Optics Express,2006, 14(24),11721-11726.
    78. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Optics Express,2007,15(20),12949-12958.
    79. A. Rostami, and A. Salmanogli, "Investigation of light amplification in Si-nanocrystal-Er doped optical fiber," Progress In Electromagnetics Research. B,2008,9,27-51.
    80. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature,2006,441(7096), 960-963.
    81. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics,2008, 2(1),35-38.
    82. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Optics Express,2004,12(5),829-834.
    83. I. W. Hsieh, X. G. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. Mcnab, and Y. A. Vlasov, "Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires," Optics Express,2007,15(3),1135-1146.
    84. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength," Applied Physics Letters,2002,80(3),416-418.
    85. A. S. Liu, H. S. Rong, and M. Paniccia, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Optics Express,2004,12(18),4261-4268.
    86.O. Boyraz, and B. Jalali, "Demonstration of a silicon Raman laser," Optics Express,2004, 12(21),5269-5273.
    87. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature,2005,433,725-728.
    88. T. K. Liang, and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Applied Physics Letters,2004,85(16),3343-3345.
    89. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature,2004,431(7012),1081-1084.
    90. X. Sang, and O. Boyraz, "Gain and noise characteristics of high-bit-rate silicon parametric amplifiers," Optics Express,2008,16(17),13122-13132.
    91. W. Mathlouthi, H. Rong, and M. Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Optics Express,2008, 16(21),16735-16744.
    92. L. Jia,, M. Geng, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, "Wavelength conversion based on degenerate-four-wave-mixing with continuous-wave pumping in silicon nanowire waveguide," Optics Communications,2009,282(8),1659-1663.
    93. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Optics Express,2008,16(7), 4881-4887.
    94. L. Liu, J. Van Campenhout, G. Roelkens, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. M. Fedeli, and R. Baets, "Ultralow-power all-optical wavelength conversion in a silicon-on-insulator waveguide based on a heterogeneously integrated Ⅲ-Ⅴ microdisk laser," Applied Physics Letters.,2008,93(6),061107-1-061107-3.
    95. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics Express,2006,14(10),4357-4362.
    96. M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, "Multi-order dispersion engineering for optimal four-wave mixing," Optics Express,2008,16(10),7551-7563.
    97. X. Zhang, S. Gao, and S. He, "Optimal design of silicon-on-insulator nano-wire waveguides for broadband wavelength conversion," Proceedings of Asia Optical Fiber Communications and Optoelectronic Conference,2008, SaN5.
    98. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Optics Express,2006,14(11), 4786-4799.
    99. X. Liu, W. M. Green, X. Chen, I-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, Jr., "Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires," Optics Letters,2008,33(24),2889-2891.
    100. D. F. Edwards, "Handbook of Optical Constants of Solids,", San Diego:Academic Press, 1998,547-569.
    101. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Applied Physics Letters,2004,85(12),2196-2198.
    102. T. K. Liang, and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Applied Physics Letters,2004,84(15), 2745-2747.
    103. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Optics Express,2004,12(12), 2774-2780.
    104. G. P. Agrawal, "Nonlinear Fiber Optics," New York:Academic Press,1989,406-407.
    105. X. Zhang, S. Gao, and S. He, "Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion," Progress In Electromagnetics Research, 2009,89,183-198.
    106. T. Hasegawa, K. Inoue, and K. Oda, "Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique," IEEE Photonics Technology Letters,1993,5(8),947-949.
    107. K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies," Journal of Lightwave Technology,1994,12(11),1916-1920.
    108. Y. Tian, P. Dong, and C. Yang, "Polarization independent wavelength conversion in fibers using incoherent pumps," Optics Express,2008,16(8),5493-5498.
    109. F. Yaman, Q. Lin, and G. P. Agrawal, "A novel design for polarization-independent single-pump fiber-optic parametric amplifiers," IEEE Photonics Technology Letters,2006, 18(22),2335-2337.