硅基微纳光波导集成型滤波器与光电探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息和通信技术的发展彻底改变了人们的思维方式和生活方式,促进了经济和社会的飞速发展。而光通信的诸多优势使得人们希望这项技术不仅仅局限于长距离通信方面的应用,而应该延伸至中短距离通信以及互连领域。由此,光通信及光互连中大量使用的集成光电子器件的研究吸引了越来越多的注意力。在降低成本和提高性能的愿望驱使下,集成光电子器件朝着高集成度的方向不断发展。在减小器件尺寸方面,采用高折射率差的光波导成为最直接有效的途径;在功能集成方面,将所有光功能集成在硅基材料中具有无可比拟的成本优势和诱人的发展前景。本论文紧紧围绕提高集成度的上述两个方面展开研究和讨论。
     首先回顾了光波导基本理论,在用解析方法求解平板波导的同时介绍了波导的各种重要概念。为了精确求解复杂的光波导及其集成器件问题,必须采用数值模拟方法。对各种常用数值计算方法进行了介绍,包括有限差分方法、光束传播方法和时域有限差分方法。
     研究了三种新型硅基强限制微纳光波导。通过调试并改进深刻蚀工艺,成功制作出了深刻蚀二氧化硅脊形光波导,实验中验证了这种波导可承受数十微米的弯曲半径,具有提高器件集成度的巨大潜力。根据不同的波导宽度,其传播损耗为0.33~0.81dB/mm,而侧壁散射是传播损耗的主要来源。基于这种波导,制作出了多模干涉耦合器,初步探索其在制作实际器件方面的应用价值。为了降低成本,制作并测试了SU-8聚合物脊形光波导及器件,如Y分支、微环谐振器、阵列波导光栅等。研究了硅纳米线光波导在极小弯曲半径下的弯曲损耗特性。通过比较各种数值计算方法,确定三维时域有限差分方法在此计算中是必要且可行的,并由此计算出弯曲损耗随波导尺寸和结构的变化关系。还进一步给出了微环谐振器的本征Q值与弯曲半径的关系。
     基于硅纳米线光波导,本文研究了阵列波导光栅、微环谐振器等两种典型集成光滤波器。首先对硅纳米线阵列波导光栅进行了优化设计。通过在阵列波导末端引入双锥形辅助波导,并采用新型混合方法对辅助波导进行快速而精确的结构优化,有效改进了器件的通道均匀性。在不增加器件尺寸的情况下,使阵列波导光栅的可用通道数增加了50%。而为了采用硅纳米线光波导实现超高密度波分复用器(通道间隔0.1nm),我们选用微环谐振器阵列这一设计方案。通过合理设计,使单个微环谐振器的光谱响应达到系统要求,制作出的器件的Q值为4×104。考虑到实验工艺误差,我们还制作了微加热器,通过热光调谐的方式分别调节每个单元的谐振波长,从而使相邻微环谐振器的谐振波长间隔符合设计值0.1nm。实验结果表明,热光调谐方式可以方便的实现这一目标,且几乎不会改变原有的光谱响应形状。
     为了降低光集成器件的成本及满足多功能集成的要求,需要把各种光功能器件集成在硅基材料上。由此引入了Ⅲ-Ⅴ族材料和硅基的异质集成技术。我们对异质集成技术的研究现状进行了讨论,并重点介绍本文所采用的以BCB聚合物为粘合剂的晶片粘合工艺。通过这一技术并采用倏逝波耦合方式,我们研制了SOI基InGaAs PIN型探测器。在器件设计阶段,为了消除电极对光的有害吸收以及满足光耦合的相位匹配条件,分别对电极结构和本征吸收层厚度进行了改进或优化。制作出的器件具有优良的性能:暗电流~10pA,响应率1.1A/W,并且响应谱宽可以覆盖整个S、C、L通信波段。
The progress of information and communication technology has significantly changed people's life style, and promoted the rapid development of economy and human society. While optical communication has dominated today's long-haul communication, it is expected to extent its application to access network and interconnects. Accordingly, photonic integrated devices, which have been widely used in optical commnication, are attracting more and more research attention. To achieve lower cost and better performance, higher integration density is desirable for photonic integrated devices. While using waveguides with high refractive index contrast is a main method to reduce the size of photonic integrated circuits (PIC), integrating all kinds of optical functions on silicon substrate is the most promising way in terms of functional integration because of its unsurpassable low cost. This thesis is focused on on the above two aspects of increasing PIC's integration density.
     Firstly we briefly review the fundamentals of optical waveguides. The slab waveguide mode is solved analytically, while the basic concepts of waveguides are introduced. Numerical simulation is necessary to solve waveguide problems with more complex situations. Various numerical simulation methods are introduced, including finite difference method (FDM), beam propagation method (BPM), and the finite-difference time-domain (FDTD) method.
     Three kinds of silicon-based waveguides with high index contrast are investigated. By exploring and optimizing the deep etching process, the deeply-etched SiO2 ridge waveguides are fabricated for the first time. According to the measurement results, this kind of waveguide can afford a bending radius as small as several tens of microns. With different core widths, the propagation loss ranges from 0.33 to 0.81dB/mm and the sidewall scattering is the main source of loss. Multimode interference couplers based on the deeply-etched SiO2 ridge waveguide are also fabricated and show fairly good performances. For lower cost, SU-8 polymer ridge waveguide and devices are fabricated, including Y-branches, arrayed waveguide gratings (AWG) and microring resonators (MRR). Ultrasharp SOI (silicon-on-insulator) nanowire bends (with a bending radius of R<2μm) are analyzed numerically. We have found 3D-FDTD method is necessary and feasible for this simulation after comparing different numerical methods. Subsequently, the bending losses of different waveguide sizes and structures are determined. The relationship between the intrinsic Q-factor of an MRR and the bending radius is also obtained.
     We investigate two typical kinds of optical filters, namely, AWG and MRR, based on silicon nanowire waveguides. Firstly, dual-tapered auxiliary waveguides at the exit of the waveguide array are introduced to improve the channel uniformity of a Si-nanowire-based AWG demultiplexer. By using a hybrid simulation method, the dual-tapered auxiliary waveguides of the AWG demultiplexer are optimized reliably and efficiently. As a result, the total number of channels allowed in the designed AWG demultiplexer is 50% more than that of the conventional one. Then we demonstrate the design, fabrication and measurement of the SOI MRR suitable for ultra dense WDM applications with a channel spacing of 0.1 nm. The demultiplexer is realized by cascading MRR with different resonant wavelengths. The fabricated MRR has a Q-factor of 4×104. In order to ensure that the resonant wavelength difference between neighbouring MRR is 0.1nm, we introduce micro-heaters and separately tune the resonant wavelength of each MRR by using a thermal-optic effect.
     Integrating III-V materials on Si is a promising candidate to realize both passive and active optical functionalities on a single silicon chip. Various heterogeneous integration technologies are reviewed with an emphasis on the adhesive die-to-wafer bonding process that we adopt. By using this technology, we investigate an InGaAs PIN photodetector integrated on SOI waveguides. The light is evanescently coupled from the SOI waveguide to the photodetector. The serious light absorption by p-contact layers is greatly reduced by introducing a central opening on these layers. The thickness of the i-InGaAs layer is also optimized towards phase matching between the SOI waveguide mode and the detector mode. The fabricated photodetector performs well in terms of very low dark current (~10pA), high responsivity (1.1A/W), and a wide wavelength range covering the whole S, C and L communication bands.
引文
1. L. Pavesi and G. Guillot. Optical Interconnects:The Silicon Approach. Berlin Heidelberg: Springer-Verlag,2006.
    2. D. A. B. Miller. Physical reasons for optical interconnection. Int. J. Optoelectron.1997,11 (3):155-168.
    3. S.E.Miller. Integrated optics:an introduction. Bell Syst. Tech. J.1969,48:2059-2068,.
    4. 小林功郎,《光集成器件》,科学出版社,2002.
    5. T. Miya. Silica-Based Planar Lightwave Circuits:Passive and Thermally Active Devices. IEEE J. Sel. Top. Quantum Electron.2000,6 (1):38-45.
    6. Y. Hida, N. Takato, and K. Jinguji. Wavelength division multiplexer with wide passband and stopband for 1.3 μm/1.55 μm using silica-based planar lightwave circuit. Electron. Lett. 1995,31 (16):1377-1379.
    7. A. Takagi, K. Jinguji, and M. Kawachi. Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure. IEEE J. Quantum Electron.1992,28 (4):848-855.
    8. T. Saida, A. Himeno, M. Okuno, A. Sugita and K. Okamoto. Silica-based 2×2 multimode interference coupler with arbitrary power splitting ratio. Electron. Lett.1999,35 (23): 2031-2033.
    9. Y. Hibino. Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs. IEEE J. Sel. Top. Quantum Electron.2002,8 (6):1090-1101.
    10. H. Bissessur, P. Pagnod-Rossiaux, R. Mestric, and B. Martin. Extremely small polarization independent phased-array demultiplexers on InP. IEEE Photon. Technol. Lett.1996,8 (4):554-556.
    11. B. Broberg and S. Lindgren. Refractive index of InGaAsP layers and InP in the transparent wavelength region. J. Appl. Phys.1984,55 (9):3376-3381.
    12. R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, and C. A. Burrus. Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range. Appl. Phys. Lett.1992,60 (26):3209-3211.
    13. T. Baba, P. Fujita, A. Sakai, M. Kihara, and R. Watanabe. Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm. IEEE Photon. Technol. Lett.1997,9 (7):878-880.
    14. S. Tomic, E. P. O'Reilly, R. Fehse, S. J. Sweeney, A. R. Adams, A. D. Andreev, S. A. Choulis, T. J. C. Hosea, and H. Riechert. Theoretical and experimental analysis of 1.3-μm InGaAsN/GaAs lasers. IEEE J. Sel. Top. Quantum Electron.2003,9 (5):1228-1238.
    15. T.R. Chen, P.C. Chen, J. Ungar, M.A. Newkirk, S. Oh, and N. Bar-Chaim. Low-threshold and high-temperature operation of InGaAlAs-InP lasers. IEEE Photon. Technol. Lett.1997, 9(1):17-18.
    16. D. Garbuzov, L. Xu, S. R. Forrest, R. Menna, R. Martinelli, and J. C. Connolly.1.5 μm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power. Electron. Lett.1996,32 (18):1717-1719.
    17. M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai. InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD. IEEE J. Quantum Electron. 1993,29(6):2088-2096.
    18. U. Koren, B. I. Miller, T. L. Koch, G. Eisenstein, R. S. Tucker, I. Bar-Joseph, and D. S. Chemla. Low-loss InGaAs/InP multiple quantum well optical electroabsorption waveguide modulator. Appl. Phys. Lett.1987,51 (15):1132-1134.
    19. S. Irmscher, R. Lewen, and U. Eriksson. InP-InGaAsP high-speed traveling-wave electroabsorption modulators with integrated termination resistors. IEEE Photon. Technol. Lett.2002,14(7):923-925.
    20. Yi-Jen Chiu, Tsu-Hsiu Wu, Wen-Chin Cheng, F. J. Lin, and J. E. Bowers. Enhanced performance in traveling-wave electroabsorption modulators based on undercut-etching the active-region. IEEE Photon. Technol. Lett.2005,17 (10):2065-2067.
    21. P. Doussiere, P. Garabedian, C. Graver, D. Bonnevie, T. Fillion, E. Derouin, M. Monnot, J. G. Provost, D. Leclerc, and M. Klenk.1.55 μm polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain. IEEE Photon. Technol. Lett.1994,6 (2):170-172.
    22. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G Guekos. Phase dynamics of semiconductor optical amplifiers at 10-40 GHz. IEEE J. Quantum Electron.2003,39 (11):1394-1408.
    23. J.-J. He, S. Charbonneau, P. J. Poole, G C. Aers, Y. Feng, and E. S. Koteles. Polarization insensitive InGaAs/InGaAsP/InP amplifiers using quantum well intermixing. Appl. Phys. Lett.1996,69 (4):562-564.
    24. P.W. Juodawlkis, J.J. Plant, R.K. Huang, L.J. Missaggia, and J.P. Donnelly. High-power 1.5-μm InGaAsP-InP slab-coupled optical waveguide amplifier. IEEE Photon. Technol. Lett.2005,17(2):279-281.
    25. J. E. Bowers and C. A. Burrus. Ultrawide-band long-wavelength p-i-n photodetectors. J. Lightwave Technol.1987,5 (10):1339-1350.
    26. S. D. Gunapala, B. F. Levine, D. Ritter, R. Hamm, and M. B. Panish. InGaAs/InP long wavelength quantum well infrared photodetectors. Appl. Phys. Lett.1991,58 (18):2024-2026.
    27. J.H. Kim, H.T. Griem, R.A. Friedman, E.Y. Chan, and S. Ray. High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W. IEEE Photon. Technol. Lett.1992,4 (11):1241-1244.
    28. F.J. Effenberger and A.M. Joshi. Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector. J. Lightwave Technol.1996,14 (8):1859-1864.
    29. H.-G. Bach, A. Beling, G.G Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak. InP-based waveguide-integrated photodetector with 100-GHz bandwidth. IEEE J. Sel. Top. Quantum Electron.2004,10 (4):668-672.
    30. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron.2005,11 (1):232-240.
    31. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa. Si Photonic Wire Waveguide Devices. IEEE J. Sel. Top. Quantum Electron.2006,12 (6):1371-1379.
    32. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx. Basic structures for photonic integrated circuits in silicon-on-insulator. Opt. Express 2004,12 (8):1583-1591.
    33. W. Bogaerts, L. Liu, S. K. Selvaraja, P. Dumon, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout and R. Baets. Silicon nanophotonic waveguides and their applications. Proc. of SPIE 2008,7134:713410.
    34. Y. Vlasov and S. McNab. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004,12 (8):1622-1631.
    35. D. Dai, Y. Shi, and S. He. Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration. Appl. Opt.2006,45 (20):4941-4946.
    36. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba. Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends. Opt. Express 2006, 14(23):11128-11141.
    37. A. Sakai, T. Fukazawa, and T. Baba. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. J. Lightw. Technol.2004,22 (2):520-525.
    38. J. Takahashi, T. Tsuchizawa, T. Watanabe, S. Itabashi. Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides. J. Vac. Sci. Technol. B 2004,22 (5):2522-2525.
    39. K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai. Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C-60. Jpn. J. Appl. Phys.2009,48 (3):Art. No.030208.
    40. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE J. Sel. Top. Quantum Electron.2010,16 (1):316-324.
    41. D. Van Thourhout. Multiwavelength lasers for WDM-networks:Theory, design and realisation by hybrid integration. PhD thesis, Ghent University, Ghent, Belgium,2000, Chapter 5, pp.5-16.
    42. K. Sasaki, F. Ohno, A. Motegi and T. Baba. Arrayed waveguide grating of 70x 60μm2 size based on Si photonic wire waveguides. Electron. Lett.2005,41 (14):801-802.
    43. M. K. Smit and C. V. Dam. Phasar based WDM devices:principles, design and applications. IEEE J. Sel. Top. Quantum Electron.1996,2 (2):236-250.
    44. A. Kaneko, T. Goh, H. Yamada, T. Tanaka and I. Ogawa. Design and applications of silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron.1999,5 (5):1227-1236.
    45. J.-J. He, B. Lamontagne, A. Delage, L. Erickson, M. Davies, and E. S. Koteles. Monolithic integrated wavelength demultiplexer based on a waveguide Rowland circle grating in InGaAsP/lnP. J. Lightw. Technol.1998,16 (4):631-638.
    46. J.-J. He. Phase-Dithered Waveguide Grating With Flat Passband and Sharp Transitions. IEEE J. Sel. Top. Quantum Electron.2002,8 (6):1186-1193.
    47. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine. Microring Resonator Channel Dropping Filters. J. Lightw. Technol.1997,15 (6):998-1005.
    48. A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett.2000,36 (4):321-322.
    49. R. Soref and J. Lorenzo. All-silicon active and passive guided-wave components for λ= 1.3 and 1.6μm. IEEE J. Quantum Electron.1986,22 (6):873-879.
    50. R. Soref, and B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron.1987, 23 (1):123-129.
    51. B. Schuppert, J. Schmidtchen, and K. Petermann. Optical channel waveguides in silicon diffused from GeSi alloy. Electron. Lett.1989,25 (22):1500-1502.
    52. R. A. Soref, J. Schmidtchen, and K. Petermann. Large single-mode rib waveguides in GeSi and Si-on-SiO2. IEEE J. Quantum Electron.1991,27 (8):1971-1974.
    53. P.D. Trinh, S. Yegnanarayanan, and B. Jalali. Integrated optical directional couplers in silicon-on-insulator. Electron. Lett.1995,31 (24):2097-2098.
    54. T. Zinke, U. Fischer, B. Schueppert, and K. Petermann. Theoretical and experimental investigation of optical couplers in SOI. Proc. SPIE 1997,3007:30-39.
    55. P.D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity. IEEE Photon. Technol. Lett.1997,9 (7):940-942.
    56. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali. Observation of Raman emission in silicon waveguides at 1.54 μm. Opt. Express 2002,10 (22):1305-1313.
    57. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 2003,11 (15):1731-1739.
    58. T. K. Liang, and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides", Appl. Phys. Lett.85,3343-3345 (2004).
    59. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia. An all-silicon Raman laser. Nature 2005,433:292-294.
    60. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia. A continuous-wave Raman silicon laser. Nature 2005,433:725-728.
    61. H. Rong, Y. Kuo, S. Xu, A. Liu, R. Jones, and M. Paniccia. Monolithic integrated Raman silicon laser. Opt. Express.2006,14 (15):6705-6712.
    62. H. Rong, S. Xu, Y. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nature Photonics 2007,1 (4):232-237.
    63. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia M. A cascaded silicon Raman laser. Nature Photonics 2008,2 (3):170-174.
    64. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin,O. Cohen, R. Nicolaescu, and M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 2004,427:615-618.
    65. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge. High speed silicon Mach-Zehnder modulator. Opt. Express 2005,13 (8):3129-3135.
    66. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 2007,15 (2):660-668.
    67. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature 2005,435:325-327.
    68. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson.12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 2007,15 (2):430-436.
    69. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. Opt. Express 2007,15 (6):3140-3148.
    70. L. Colace, M. Balbi, G. Masini, G. Assanto, H.-C. Luan, and L. C. Kimerling. Ge on Si p-i-n photodiodes operating at 10Gbit/s. Appl. Phys. Lett.2006,88:Art. No.101111.
    71. D. Ahn, C. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kartner. High performance, waveguide integrated Ge photodetectors. Opt. Express 2007, 15 (7):3916-3921.
    72. M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett.2005,17 (7):1510-1512.
    73. L. Vivien, J. Osmond, J.-M. Fedeli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval.42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 2009,17 (8):6252-6257.
    74. L. Chen and M. Lipson. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 2009,17 (10):7901-7906.
    75. J. D. B. Bradley, P. E. Jessop, and A. P. Knights. Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm. Appl. Phys. Lett.2005,86:Art. No.241103.
    76. A. P. Knights, J. D. B. Bradley, S. H. Gou, and P. E. Jessop. Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. J. Vac. Sci. Technol. A 2006,24 (3):783-786.
    77. Y. Liu, C. W. Chow, W. Y. Cheung, and H. K. Tsang. In-line channel power monitor based on helium ion implantation in silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 2006,18 (17):1882-1884.
    78. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett.2007,19 (3):152-154.
    79. M. Munowitz and D.J. Vezzetti. Numerical procedures for constructing equivalent slab waveguides-An alternative approach to effective-index theory. J. Lightwave Technol.1991, 9(9):1068-1073.
    80. K. Van De Velde, H. Thienpont, and R. Van Geen. Extending the effective index method for arbitrarily shaped inhomogeneous optical waveguides. J. Lightwave Technol.1988,6 (6):1153-1159.
    81. K.S. Chiang. Analysis of rectangular dielectric waveguides:effective-index method with built-in perturbation correction. Electron. Lett.1992,28 (4):388-390.
    82.时尧成,戴道锌,何赛灵一种适用于任意折射率分布的等效折射率方法光学学报2005,25(1):51-54。
    83. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Quantum Electron.2000,6 (1):150-162.
    84.魏毅强,张建国,张洪斌《数值计算方法》,科学出版社,2004:266。
    85. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri. Full-vector mode calculations by finite difference method. IEE Proc. Optoelectron.1994,141 (5):281-286.
    86. J. Khorsandi and Shahnawaz. Finite difference calculations of InP/InGaAsP optical waveguides with arbitrary index profile. International J. Infrared and Millimeter Waves 2005,26 (9):1317-1328.
    87. N.-N. Feng, G.-R. Zhou, C. Xu, W.-P. Huang. Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers. J. Lightwave Technol.2002,20 (11):1976-1980.
    88. R. Mittra, O.M. Ramahi, A. Khebir, R. Gordon, and A. Kouki. A review of absorbing boundary conditions for two and three-dimensional electromagnetic scattering problems. IEEE Transactions on Magnetics 1989,25 (4):3034-3039.
    89. O.M. Ramahi. Absorbing boundary conditions for the three-dimensional vector wave equation. IEEE Trans. Antennas Propagat.1999,47 (11):1735-1736.
    90. O.M. Ramahi. Stability of absorbing boundary conditions. IEEE Trans. Antennas Propagat. 1999,47 (4):593-599.
    91. G. R. Hadley. Transparent boundary-condition for beam propagation. Opt. Lett.1991,16 (9):624-626.
    92. G. R. Hadley. Transparent boundary-condition for the the beam propagation method. IEEE J. Quantum Electron.1992,28 (1):363-370.
    93.王谦,黄耐容,何赛灵透明边界条件算法的比较研究及改进光子学报2002,31(5):575-579.
    94. J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Computational Physics 1994,114 (2):185-200.
    95. W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama. The perfectly matched layer boundary condition for modal analysis of optical waveguides:leaky mode calculations. IEEE Photon. Technol.Lett.1996,8 (5):652-654.
    96. R. Mittra, and U. Pekel. A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves. IEEE Microwave and Guided Wave Lett. 1995,5 (3):84-86.
    97. J. Yamauchi, and S. Kikuchi. Beam propagation analysis of bent step-index slab waveguides. Electron. Lett.1990,26 (12):822-833.
    98. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert. Numerical techniques for modeling guided-wave photonic devices. IEEE J. Sel. Top. Quantum Electron.1996,6 (1):150-162.
    99. Y. Chung, and N. Dagli. An assessment of finite difference beam propagation method. IEEE J. Quantum Electron.1990,26 (8):1335-1339.
    100. G. Hadley. Wide-angle beam propagation using Pade approximant operators. Opt. Lett.1992, 17(20):1426-1428.
    101. H. Rao, R. Scarmozzino, and R. M. Osgood. Jr. A bidirectional beam propagation method for multiple dielectric interfaces. IEEE Photon. Technol. Lett.1999,11 (7):830-832.
    102. A. Taflove and S. C. Hagness. Computational Electrodynamics:The Finite-Difference Time-Domain Method. Boston:Artech House,2000.
    103. K. S. Yee. Numerical solution of initial boundary problems involving Maxwell's equation in isotropic media. IEEE Trans. Antennas Propagat.1966,14 (3):302-307.
    104. A. Taflove and M.E. Brodwin. Numerical solutions of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans. on Microwave Theory Tech.1975,23 (8):623-630.
    105. Y. Hibino, H. Okazaki, Y. Hida, and Y. Ohmori. Propagation loss characteristics of long silica-based optical wave-guides on 5-inch Si-wafers. Electron. Lett.1993,29 (21): 1847-1848.
    106. D. Dai and Y. Shi. Deeply etched SiO2 ridge waveguide for sharp bends. J. Lightwave Technol.2006,24 (12):5019-5024.
    107. L. Peralta, A. Bernussi, H. Temkin, M. Borhani, and D. Doucette. Silicon-dioxide waveguides with low birefringence. IEEE J. Quantum Electron.2003,39 (7):874-879.
    108. Sun-Tae Jung, Hyung-Seung Song, Dong-Su Kim, and Hyoun-Soo Kim. Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits. Thin Solid Films 1999, 341:188-191.
    109. S. Jungling and J. C. Chen. A study and optimization of eigenmode calculations using the imaginary-distance beam-propagation method. IEEE J. Quantum Electron.1994,30 (9):2098-2105.
    110. Y. Martin, and H. K. Wlckramasinghe. Method for imaging sidewalls by atomic force microscopy. Appl. Phys. Lett.1994,64 (19):2498-2500.
    111. J. H. Jang, W. Zhao, J. W. Bae, D. Selvanathan, S. L. Rommel, I. Adesidaa, A. Lepore, M. Kwakernaak, and J. H. Abeles. Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope. Appl. Phys. Lett.2003,83 (20):4116-4118.
    112. S. Suzuki, M. Yanagisawa, Y. Hibino, and K. Oda. High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference. J. Lightwave Technol.1994,12 (5):790-796.
    113. E. Neumann. Curved dielectric optical waveguides with reduced transition losses. IEE Proceedings, Part H 1982,129:278-280.
    114. D. Dai, and S. He. Analysis of characteristics of bent rib waveguides. J. Opt. Soc. Am. A 2004,21 (1):113-121.
    115. L. Soldano and E. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol.1995,13 (4):615-627.
    116. M. Schaepkens, G. Oehrlein, and J. Cook. Effect of radio frequency bias power on SiO2 feature etching in inductively coupled fluorocarbon plasmas. J. Vac. Sci. Technol. B 2000, 18(2):848-855.
    117. S. Lai, D. Johnson, and R. Westerman. Aspect ratio dependent etching lag reduction in deep silicon etch processes. J. Vac. Sci. Technol. A 2006,24 (4):1283-1288.
    118. H. Ou. Trenches for building blocks of advanced planar components. IEEE Photon. Technol. Lett.2004,16 (5):1334-1336.
    119. J. H. Schon, Ch. Kloc, A. Dodabalapur, and B. Batlogg. An Organic Solid State Injection Laser. Science 2000,289:599-601.
    120. M. D. McGehee, and A. J. Heeger. Semiconducting (Conjugated) polymers as materials for solid-state lasers. Advanced Materials 2000,12 (22):1655-1668.
    121. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, V. Wittwer. A flexible conjugated polymer laser. Advanced Materials 1998,10 (12):920-923.
    122. Hyun-Chae Song, Min-Cheol Oh, Seh-Won Ahn, William H. Steier, Harold R. Fetterman, and Cheng Zhang. Flexible low-voltage electro-optic polymer modulators. Appl. Phys. Lett. 2003,82 (25):4432-4434.
    123. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang and Y. Shi. Demonstration of 110 GHz electro-optic polymer modulators. Appl. Phys. Lett.1997,70 (25):3335-3337.
    124. B. Lee, C. Lin, X. Wang, R. T. Chen, J. Luo, and A. K. Y. Jen. Bias-free electro-optic polymer-based two-section Y-branch waveguide modulator with 22 dB linearity enhancement. Opt. Lett.2009,34 (21):3277-3279.
    125. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger. SU-8:A low-cost negative resist for MEMS. J. Micromech. Microeng.1997,7 (3):121-124.
    126. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H.-P. Chang. Micromachining applications of a high resolution ultrathick photoresist. J. Vac. Sci. Technol. B 1995,13 (6):3012-3016.
    127. K. K. Tung, W. H. Wong, and E. Y. B. Pun. Polymeric optical waveguides using direct ultraviolet photolithography process. Appl. Phys. A:Mater. Sci. Process.2005,80 (3):621-626.
    128. J. S. Kim, J. W. Kang, and J. J. Kim. Simple and lowcost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy. Jpn. J. Appl. Phys.2003,42 (3):1277-1279.
    129. T. C. Sum, A. A. Bettiol, J. A. van Kan, F.Watt, E. Y. B. Pun, and K. K. Tung. Proton beam writing of low-loss polymer optical waveguides. Appl. Phys. Lett.2003,83 (9):1707-1709.
    130. R. Hu, D. Dai, and S. He. A small polymer ridge waveguide with a high index contrast. J. Lightw. Technol.2008,26 (7):1964-1968.
    131. D. Dai, Y. Shi, and S. He. Comparative study of the integration density for passive linear planar lightwave circuits based on three different kinds of nanophotonic waveguides. Appl. Opt.2007,46 (7):1126-1131.
    132. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon. Technol. Lett.2004,16 (5):1328-1330.
    133. F. Ohno, T. Fukazawa, and T. Baba. Mach-Zehnder interferometers composed of μ-bends and μ-branches in a Si photonic wire waveguide. Jpn. J. Appl. Phys.2005,44:5322-5323.
    134. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Tailaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiauz, and R. Baets. Compact wavelength-selective functions in silicon-on-insulator photonicwires. IEEE J. Sel. Topics Quantum Electron.2006,12 (6):1394-1401.
    135. D. Dai and Z. Sheng. Numerical analysis of silicon-on-insulator ridge nanowires by using a full-vectorial finite-difference method mode solver. J. Opt. Soc. Amer. B 2007,24 (11):2853-2859.
    136. T. Yamamoto and M. Koshiba. Numerical analysis of curvature loss in optical waveguides by the finite-element method. J. Lightw. Technol.1993,11 (10):1579-1583.
    137. A. Sakai, T. Fukazawa, and T. Baba. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. J. Lightw. Technol.2004,22 (2):520-525.
    138. W. Bogaets, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout. Nanophotonic waveguides in Silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol.2005,23 (1):401-412.
    139. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton. Polymer Micro-Ring Filters and Modulators. J. Lightw. Technol.2002,20 (11):1968-1975.
    140. J. Niehusmann, A. Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett.2004,29 (24):2861-2863.
    141. M. K. Smit. New focusing and dispersive planar component based on an optical phased-array. Electron. Lett.1988,24 (7):385-386.
    142. D. Dai, L. Liu, L. Wosinski and S. He. Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides. Electron. Lett.2006,42 (7):400-402.
    143. J. C. Chen and C. Dragone. Waveguide grating routers with greater channel uniformity. Electron. Lett.1997,33 (23):1951-1952.
    144. Yoo Hong Min, Myung-Hyun Lee, Jung Jin Ju, Seung Koo Park, and Jung Yun Do. Polymeric 16×16 Arrayed-Waveguide Grating Router Using Fluorinated Polyethers Operating Around 1550nm. IEEE J. Sel. Top. Quantum Electron.2001,7 (5):806-811.
    145. S. Suzuki, Y. Inoue and Y. Ohmori. Polarization-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 structure. Electron. Lett.1994,30 (8):642-643.
    146. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi. Polarization-Insensitive Arrayed-Waveguide Wavelength Multiplexer with Birefringence Compensating Film. IEEE Photon. Technol. Lett.1993,5 (6):707-709.
    147. C. Dragone, C. R. Doerr, P. Bernasconi, M. Cappuzzo, E. Chen, A. Wong-Foy and L.Gomez. Low-loss N×N wavelength router. Electron. Lett.2005,41 (13):763-764.
    148. D. Dai, L. Liu, and S. He. Three-dimensional hybrid modeling based on a beam propagation method and a diffraction formula for an AWG demultiplexer. Opt. Communications 2007, 270 (2):195-202.
    149. D. Wang, G. Jin, Y. Yan, and M. Wu. Aberration theory of arrayed waveguide grating. J. Lightw. Technol.2001,19 (2):279-284.
    150. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets and E. Pluk. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt. Express 2007,15 (4):1567-1578.
    151. H. Suzuki, M. Fujiwara, N. Takachio, K. Iwatsuki, T. Kitoh, T. Shibata.12.5 GHz spaced 1.28 Tb/s (512-channel×2.5 Gb/s) super-dense WDM transmission over 320 km SMF using multiwavelength generation technique. IEEE Photon. Technol. Lett.2002,14 (3):405-407.
    152. D. J. Kim, J. M. Lee, J. H. Song, J. Pyo, and G. Kim. Crosstalk reduction in a shallow-etched silicon nanowire AWG. IEEE Photon. Technol. Lett.2008,20 (19):1615-1617.
    153. S. Xiao, M. H. Khan, H. Shen, and M. Qi. Multiple-channel silicon micro-resonator based filters for WDM applications. Opt. Express 2007,15 (12):7489-7498.
    154. R. Amatya, C. W. Holzwarth, H. I. Smith, R. J. Ram. Precision tunable silicon compatible microring filters. IEEE Photon. Technol. Lett.2008,20 (20):1739-1741.
    155. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, R. Baets. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J. Lightw. Technol.2009,27 (18):4076-4083.
    156. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys.2006,45:6071-6077.
    157. B. E. Little, J.-P. Laine, and S. T. Chu. Surface-roughness-induced contradirectional coupling in ring and disk resonators. Opt. Lett.1997,22 (1):4-6.
    158. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen and F. X. Kartner. Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures. IEEE 2007 Photonics in Switching Conf., San Francisco, California:67-68.
    159. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker. Self-organised quantum dots as dislocation filters:the case of GaAs-based lasers on silicon. Electron. Lett.2006,42 (2):121-123.
    160. D. Fehly, A. Schlachetzki, A. S. Bakin, A. Guttzeit, and H. H. Wehmann. Monolithic InGaAsP optoelectronic devices with silicon electronics. IEEE J. Quantum Electron.2001, 37 (10):1246-1252.
    161. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers. Electrically pumped hybrid AlGalnAs-silicon evanescent laser. Opt. Express 2006,14 (20):9203-9210.
    162. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit. Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt. Express 2005,13 (25):10102-10108.
    163. I. Christiaens, G. Roelkens, K. De Mesel, D. Van Thourhout, and R. Baets. Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding. J. Lightw. Technol.2005,23 (2):517-523.
    164. A. Jourdain, P. De Moor, K. Baert, I. De Wolf, and H. A. C. Tilmans. Mechanical and electrical characterization of BCB as a bond and seal material for cavities housing (RF-) MEMS devices. J. Micromech. Microeng.2005,15:89-96.
    165. O. I. Dosunmu, D. D. Cannon, M. K. Emsley, B. Ghyselen, J. Liu, L. C. Kimerling, and M. S. Unlu. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE J. Sel. Top. Quantum Electron.2004,10 (4):94-701.
    166. M. R. Amersfoort, M. K. Smit, Y. S. Oei, I. Moerman, and P. Demeester. Simple method for predicting absorption resonances of evanescently-coupled waveguide photodetectors. Proc. 6th Eur. Conf. Integr. Opt., Neuchitel, Switzerland, Apr.18-22,1993:2-40-2-41.
    167. P. R. A. Binetti, X. J. M. Leijtens, M. Nikoufard, T. de Vries, Y. S. Oei, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, R. Orobtchouk, C. Seassal, J. Van Campenhout, D. Van Thourhout, P. J. van Veldhoven, R. Notzel, and M. Smit. InP-based Membrane Photodetectors for Optical Interconnects to Si.4th IEEE International Conference on Group IV Photonics, Tokyo, Japan, Sept.19-21,2007:34-36.
    168. H. Park, A. Fang, R. Jones, O. Cohen, O. Raday, M. Sysak, M. Paniccia, and J. Bowers. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 2007,15 (10):6044-6052.
    169. J. Brouckaert, G. Roelkens, D. Van Thourhout, and R. Baets. Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides. IEEE Photon. Technol. Lett.2007,19 (19),1484-1486.