硅基波导光栅耦合器与高速电吸收光调制器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
归功于硅材料在微电子学上的统治性地位及其在光子学应用上的诸多优势,硅基平台正日渐成为集成光路的主流平台。随着近来硅基有源功能器件的突破,剩下的问题不再是讨论硅基集成光路的可行性,而是如何提高其相比其它方案的竞争力。
     首先,随着硅波导尺寸的向下缩放,硅基集成器件与外围光纤的耦合上升为一个严峻的问题,解决该问题的一个方案是采用波导光栅耦合器作为硅集成光路的输入输出接口。本文从提高耦合效率和增加功能两方面来改进波导光栅耦合器的性能。对于前者,本论文利用干法刻蚀工艺中的迟滞效应实现了一个高效的非均匀波导光栅耦合器,它的耦合效率达到了64%,约是普通波导光栅耦合器的两倍。对于后者,本文提出并实验研究了基于一维波导光栅耦合器的新型偏振分束器。新一代的引入了底部布拉格反射层的偏振分束器具有-20 dB的消光比,同时两种偏振光的峰值耦合效率都达到了50%。
     其次,硅基兼容技术的引进为在硅基底上实现有源器件提供了可能,但是相关器件的性能与其它方案相比尚有一定差距。混合硅基平台,通过将Ⅲ/Ⅴ族外延片嫁接到绝缘硅基片上,可以实现高性能的硅基有源功能器件。本文引入了一个通用的小信号电吸收光调制器模型,并由此开发了基于混合硅基平台的高速行波电吸收光调制器。实测的混合硅基行波电吸收光调制器的带宽达到了43 GHz,50Gb/s传输速率下,2V的驱动电压摆幅实现了8.8 dB的动态消光比。这是目前世界上速度最快的硅基光调制器。本论文也提出了混合硅基微环电吸收光调制器的构想。它具有增强的消光比、减弱的环境敏感度和改进的光带宽表现。
Nowadays, silicon platform is emerging to be the best candidate of photonic integrated circuits (PICs) due to not only the dominant status of silicon in microelectronics but also the great benefits brought to the photonics. Regarding the recent breakthroughs concerning active devices on silicon substrate, the question left is no longer the feasibility of silicon PIC but the competitiveness of its solution compared with its counterpart.
     Firstly, along with the down scaling of the silicon waveguide's cross section, the cou-pling between the silicon PIC and the external fiber becomes a troublesome issue due to the mismatch of the mode and the polarization. One of the promising solution is to use the grating coupler as the input/output interface for the silicon PIC. We have attempted to improve the performance of the grating coupler from two aspects:improve its coupling efficiency and make it being versatile. For the former, a nonuniform grating coupler based on the lag effect in the dry etching process has been developed with a coupling efficiency of 64%, nearly a double of a standard one. For the latter, a polarization beam splitter (PBS) based on a one-dimensional grating coupler has been proposed and experimentally demon-strated. An extinction ratio of around-20 dB, as well as a maximum coupling efficiency of over 50% for both polarizations, is achieved by such a PBS with a bottom Bragg reflector underneath.
     Secondly, silicon-compatible techniques make it possible to achieve active function on silicon platform, but more devotion is required in order to catch up with its counterpart. Hybrid silicon platform, where theⅢ/Ⅴmaterial is transplanted to the silicon on insulator wafer, is attractive to realize high performance silicon active devices. We have developed several high speed electroabsorption modulators (EAMs) on the hybrid silicon platform, using a general approach based on the transmission line analysis. A record bandwidth of 43 GHz, as well as a dynamic extinction ratio of 8.8 dB at 50 Gb/s with a 2 V driving voltage swing applied, has been achieved for a hybrid silicon traveling-wave EAM, proving that it is the fastest silicon modulator so far. We have also proposed an efficient hybrid EAM based on a microring. It is able to have an enhanced extinction ratio, a relaxed sensitivity and an improved optical bandwidth.
引文
[1]PAVESIL, GUILLOT G. Optical Interconnects:The Silicon Approach[M]. 1st ed. Springer,2006.
    [2]MILLER D A B. Rationale and challenges for optical interconnects to electronic chips[J]. Proceedings of the IEEE,2000,88(6):728-749.
    [3]Light Peak Technology, http://techresearch.intel.com/articles/ None/1813. htm.
    [4]MILLER S. Integrated Optics:An Introduction, Bell Syst[J]. Bell Syst. Tech. J, 1969,48:2059-2069.
    [5]SOMEKH S, YARIV A. Phase-matchable nonlinear optical interactions in periodic thinfilms[J]. Applied Physics Letters,1972,21(4):140-141.
    [6]CLARK J, LANZANIG. Organic photonics for communications[J]. Nat. Photonics, 2010,4(7):438-446.
    [7]Intel milestone confirms light beams can replace electronic signals for future com-puters, http://www.intel.com/pressroom/archive/releases/ 20100727comp_sm.htm#story.
    [8]LIANG D, ROELKENS G, BAETS R, et al. Hybrid integrated platforms for silicon photonics[J]. Materials,2010,3.
    [9]ROELKENS G, LIU L, LIANG D, et al. III-V/silicon photonics for on-chip and intra-chip optical interconnects [J]. Laser & Photon. Rev.,2010,1-29.
    [10]LIU J, SUN X, CAMACHO-AGUILERA R, et al. Ge-on-Si laser operating at room temperature[J]. Opt. Lett.,2010,35(5):679-681.
    [11]REED G, MASHANOVICH G, GARDES F, et al. Silicon optical modulators[J]. Nat. Photonics,2010,4(8):518-526.
    [12]LIANG B J, D. Recent progress in lasers on silicon[J]. Nat. Photonics,2010, 4(8):511-517.
    [13]PARK H, FANG A, COHEN O, et al. A hybrid AlGaInAs-silicon evanescent am-plifier[J]. IEEE Photon. Technol. Lett.,2007,19(4):230-232.
    [14]KANG Y, LIU H, MORSE M, et al. Monolithic germanium/silicon avalanche photo-diodes with 340 GHz gain-bandwidth product[J]. Nat. Photonics,2008,3(1):59-63.
    [15]ASSEFA S, XIA F, VLASOV Y. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects [J]. Nature,2010,464(7285):80-84.
    [16]LIU A, LIAO L, RUBIN D, et al. Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide [J]. Semicond. Sci. Technol.,2008,23:064001.
    [17]XU Q, SCHMIDT B, PRADHAN S, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature,2005,435(7040):325-327.
    [18]BARRIOS C A, ALMEIDA V, PANEPUCCI R, et al. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices[J]. J. Lightwave Tech-nol.,2003,21(10):2332-2339.
    [19]GU L, JIANG W, CHEN X, et al. High speed silicon photonic crystal waveguide modulator for low voltage operation[J]. Appl. Phys. Lett.,2007,90:071105.
    [20]LIU J, BEALS M, POMERENE A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators [J]. Nat. Photonics,2008,2(7):433-437.
    [21]KUO Y, CHEN H, BOWERS J. High speed hybrid silicon evanescent electroab-sorption modulator[J]. Opt. Express,2008,16:9936-9941.
    [22]CHEN H, KUO Y, BOWERS J.25 Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode[J]. Opt. Express,2010,18:1070-1075.
    [23]RONG Y, GE Y, HUO Y, et al. Quantum-confined Stark effect in Ge/SiGe quantum wells on Si[J]. IEEE J. Sel. Top. Quant. Electron.,2010,16(l):85-92.
    [24]DING R, BAEHR-JONES T, LIU Y, et al. Demonstration of a low vπ1 modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides[J]. Opt. Express,2010,18(15):15618-15623. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-15-15618.
    [25]BOGAERTS W, BAETS R, DUMON P, et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J]. J. Lightwave Technol.,2005, 23(1):401-412.
    [26]VLASOV Y, MCNAB S. Losses in single-mode silicon-on-insulator strip waveg-uides and bends[J]. Optics Express,2004,12(8):1622-1631.
    [27]REED G, KNIGHTS A. Silicon Photonics:an introduction[M]. Wiley,2004.
    [28]SHOJI T, TSUCHIZAWA T, WATANABE T, et al. Low loss mode size converter from 0.3 mu;m square si wire waveguides to singlemode fibres[J]. Electronics Let-ters,2002,38(25):1669-1670.
    [29]MCNAB S, MOLL N, VLASOV Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides[J]. Opt. Express,2003,11(22):2927-2939. http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2927.
    [30]BARWICZ T, WATTS M, POPOVIC M, et al. Polarization-transparent micropho-tonic devices in the strong confinement limit[J]. Nat. Photonics,2007,1(1):57-60.
    [31]TAILLAERT D, CHONG H, BOREL P, et al. A compact two-dimensional grat-ing coupler used as a polarization splitter[J]. IEEE Photon. Technol. Lett.,2003, 15(9):1249-1251.
    [32]TAKAHASHI H, AL AMIN A, JANSEN S, et al. Highly spectrally efficient DWDM transmission at 7.0 b/s/Hz using 8×65.1-Gb/s coherent PDM-OFDM[J]. J. Light-wave Technol.,2010,28(4):406-414.
    [33]WINZER P, GNAUCK A, DOERR C, et al. Spectrally efficient long-haul opti-cal networking using 112-Gb/s polarization-multiplexed 16-QAM[J]. J. Lightwave Technol.,2010,28(4):547-556.
    [34]ROELKENS G, VERMEULEN D, VAN THOURHOUT D, et al. High effi-ciency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit[J]. Appl. Phys. Lett.,2008, 92:131101.
    [35]TAILLAERT D, BIENSTMAN P, BAETS R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides[J]. Opt. Lett.,2004,29(23):2749-2751.
    [36]VAN LAERE F, ROELKENS G, AYRE M, et al. Compact and highly efficient grat-ing couplers between optical fiber and nanophotonic waveguides[J]. J. of Lightwave Technol.,2007,25(1):151-156.
    [37]CHEN X, LI C, FUNG K Y, et al. Apodized waveguide grating couplers for efficient coupling to optical fibers[J]. IEEE Photon. Technol. Lett.,2010,22(15):1156-1158.
    [38]KUZNETSOV M, HAUS H. Radiation loss in dielectric waveguide structures by the volume current method[J]. IEEE J. Quantum. Electron.,1983,19(10):1505-1514.
    [39]FLORY C. Analysis of directional grating-coupled radiation in waveguide struc-tures[J]. IEEE J. Quantum Electron.,2004,40(7):949-957.
    [40]DOERR C, CHEN L, CHEN Y, et al. Wide Bandwidth Silicon Nitride Grating Coupler[J]. IEEE Photon. Technol. Lett.,2010,22(19):1461-1463.
    [41]BORN M, WOLF E, BHATIA A. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge Univ Pr,1999.
    [42]WANG Z, TANG Y, WOSINSKI L, et al. Experimental Demonstration of a High Efficiency Polarization Splitter based on a One-Dimensional Grating with a Bragg Reflector underneath [J]. IEEE Photon. Technol. Lett.,2010,22(21):1568-1570.
    [43]TAILLAERT D. Grating Couplers as Interface between Optical Fibres and Nanophotonic Waveguides[D]. PhD. thesis. Ghent University,2004.
    [44]SADIKU M. Numerical Techniques in Electromagnetics[M]. CRC,2000.
    [45]Optical Waveguides:Numericcal Modeling. http:// optical-waveguides-modeling.net/.
    [46]GALLAGHER D, FELICI T. Eigenmode expansion methods for simulation of op-tical propagation in photonics:pros and cons[C]//Proceedings of SPIE. vol 4987. 2003:69-82.
    [47]BIENSTAMAN P. CAMFR (Cavity Modelling Framework) manual 1.3. http: //camf r. sourcef orge. net/2007.
    [48]YEE K. Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Trans. Antennas Propagat.,1966,14(3):302-307.
    [49]SULLIVAN D. Z-transform theory and the FDTD method[J]. IEEE Trans. Antennas Propagat.,1996,44(l):28-34.
    [50]WANG Z, ZHU N, TANG Y, et al. Ultracompact low-loss coupler between strip and slot waveguides[J]. Optics letters,2009,34(10):1498-1500.
    [51]WALDHAUSL R, SCHNABEL B, DANNBERG P, et al. Efficient coupling into polymer waveguides by gratings[J]. Appl. Optics,1997,36(36):9383-9390.
    [52]BATES K, LI L, RONCONE R, et al. Gaussian beams from variable groove depth grating couplers in planar waveguides[J]. Appl. Optics,1993,32(12):2112-2116.
    [53]UESAKA K, WONG K Y, MARHIC M, et al. Wavelength exchange in a highly nonlinear dispersion-shifted fiber:theory and experiments[J]. IEEE J. Sel. Top. Quant. Electron.,2002,8(3):560-568.
    [54]FUKUDA H, YAMADA K, TSUCHIZAWA T, et al. Ultrasmall polarization splitter based on silicon wire waveguides [J]. Opt. Express,2006,14:12401-12408.
    [55]YANG B, SHIN S, ZHANG D. Ultrashort polarization splitter using two-mode interference in silicon photonic wires[J]. IEEE Photon. Technol. Lett.,2009, 21(7):432-434.
    [56]LIANG T, TSANG H. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides[J]. IEEE Photon. Technol. Lett.,2005,17(2):393-395.
    [57]AO X, LIU L, WOSINSKI L, et al. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Appl. Phys. Lett.,2006,89:171115.
    [58]WATTS M, HAUS H, IPPEN E. Integrated mode-evolution-based polarization split-ter[J]. Opt. lett.,2005,30(9):967-969.
    [59]YE W, XU D, JANZ S, et al. Passive broadband silicon-on-insulator polarization splitter[J]. Opt. lett.,2007,32(11):1492-1494.
    [60]ZHANG S. Traveling-wave Elctroabsorption Modulators[D]. PhD. thesis. Univer-sity of California Santa Barbara,1999.
    [61]LEWEN R. High-Speed Electroabsorption Modulators and p-i-n Photodiodes for Fiber-Optic Communications[D]. PhD. thesis. Royal Institute of Technology (KTH),2003.
    [62]IRMSCHER S. Design, Fabrication and Analysis of InP-InGaAsP Traveling-Wave Electro-Absorption Modulators[D]. PhD. thesis. Royal Institute of Technology (KTH),2003.
    [63]FUKANO H, YAMANAKA T, TAMURA M, et al. Very-low-driving-voltage elec-troabsorption modulators operating at 40 Gb/s[J]. J. Lightwave Technol.,2006, 24(5):2219-2224.
    [64]FUKANO H, YAMANAKA T, TAMURA M. Design and fabrication of low-driving-voltage electroabsorption modulators operating at 40 Gb/s[J]. J. Lightwave Technol.,2007,25(8):1961-1969.
    [65]FUKANO H, AKAGE Y, KAWAGUCHI Y, et al. Low chirp operation of 40 Gbit/s electroabsorption modulator integrated DFB laser module with low driving volt-age[J]. IEEE J. Sel. Top. Quant. Electron.,2007,13(5):1129-1134.
    [66]NAKAJIMA H, YAMANAKA T, FUKANO H, et al. High-performance electroab-sorption modulators utilizing microwave reflection control technique[J]. J. Light-wave Technol.,2008,26(5):505-511.
    [67]KOBAYASHI W, ARAI M, YAMANAKA T, et al. Design and fabrication of 10-/40-Gb/s, uncooled electroabsorption modulator integrated DFB laser with butt-joint structure[J]. J. Lightwave Technol.,2010,28(1):164-171.
    [68]HATTA T, MIYAHARA T, ISHIZAKI M, et al. Inductance-controlled electroab-sorption modulator modules using the flip-chip bonding technique[J]. J. Lightwave Technol.,2005,23(2):582-587.
    [69]RARING J, JOHANSSON L, SKOGEN E, et al.40-Gb/s widely tunable low-drive-voltage electroabsorption-modulated transmitters[J]. J. Lightwave Technol.,2007, 25(1):239-248.
    [70]DUMMER M, KLAMKIN J, NORBERG E, et al. Transmission line characteriza-tion of undercut-ridge traveling-wave electroabsorption modulators[J]. IEEE Pho-ton. Technol. Lett.,2008,20(15):1302-1304.
    [71]DUMMER M, RARING J, KLAMKIN J, et al. Selectively-undercut traveling-waveelectroabsorption modulatorsincorporating a p-InGaAs contact layer[J]. Opt. Express,2008,16(25):20388-20394.
    [72]XIONG B, WANG J, ZHANG L, et al. High-speed ((?)40 GHz) integrated electroab-sorption modulator based on identical epitaxial layer approach[J]. IEEE Photon. Technol. Lett.,2005,17(2):327-329.
    [73]SUN C, XIONG B, WANG J, et al. Fabrication and packaging of 40-Gb/s AlGaInAs multiple-quantum-well electroabsorption modulated lasers based on identical epi-taxial layer scheme[J]. J. Lightwave Technol.,2008,26(11):1464-1471.
    [74]BILLIA L, ZHU J, RANGANATH T, et al.40-gb/s EA modulators with wide temperature operation and negative chirp[J]. IEEE Photon. Technol. Lett.,2005, 17(1):49-51.
    [75]WU T, CHIU Y, LIN F. High-speed (60 GHz) and low-voltage-driving electroab-sorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide[J]. IEEE Photon. Technol. Lett.,2008,20(14):1261-1263.
    [76]LIN F, WU T, CHIU Y. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure[J]. Opt. Express,2009,17(12):10378-10384.
    [77]SHI J W, SHIAO A C, CHU C C, et al. Dual-depletion-region electroabsorption modulator with evanescently coupled waveguide for high-speed ((?)40 GHz) and low driving-voltage performance[J]. IEEE Photon. Technol. Lett.,2007,19(5):345-347.
    [78]CHACINSKI M, WESTERGREN U, WILLEN B, et al. Electroabsorption mod-ulators suitable for 100-Gb/s ethernet[J]. IEEE Electron Device Lett.,2008, 29(9):1014-1016.
    [79]CHACINSKI M, WESTERGREN U, THYLEN L, et al. ETDM transmitter module for 100-Gb/s ethernet[J]. IEEE Photon. Technol. Lett.,2010,22(2):70-72.
    [80]TSUZUKI K, ISHIBASHI T, ITO T, et al. A 40-Gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3 V[J]. IEEE Photon. Technol. Lett.,2005,17(1):46-48.
    [81]CHEN H. Development of an 80Gbit/s InP-based Mach-Zehnder Modulator[D]. PhD. thesis. Berlin University of Technology,2007.
    [82]AKIYAMA S, ITOH H, SEKIGUCHI S, et al. InP-based Mach-Zehnder modulator with capacitively loaded traveling-wave electrodes[J]. J. Lightwave Technol.,2008, 26(5):608-615.
    [83]HECTO:High-Speed Electro-Optical Components for Integrated Transmitter and Receiver in Optical Communication, http://www.hecto. eu/.
    [84]DOERR C, ZHANG L, WINZER P, et al. Compact high-speed InP DQPSK modu-lator[J]. IEEE Photon. Technol. Lett.,2007,19(15):1184-1186.
    [85]BASAK J, LIAO L, LIU A. et al. Developments in gigascale silicon optical modu-lators using free carrier dispersion mechanisms[J]. Adv. Opt. Technol.,2008.
    [86]FUJIKATA J, USHIDA J, NAKAMURA T, et al.25 GHz Operation of Silicon Optical Modulator with Projection MOS Structure[C]//OFC/NFOEC 2010. OSA 2010:OMI3.
    [87]GREEN W, ROOKS M, SEKARIC L, et al. Ultra-compact, low RF power,10 Gb/s silicon Mach-Zehnder modulator[J]. Opt. Express,,15(25).
    [88]XU Q, MANIPATRUNI S, SCHMIDT B, et al.12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Opt. Express,2007,15(2):430-436.
    [89]YOU J, PARK M, PARK J, et al.12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric pn diode[J]. Opt. Express,2008, 16:18340-18344.
    [90]PARK J, YOU J, KIM I, et al. High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode[J]. Opt. Express,2009, 17(18):15520-15524.
    [91]FENG N, LIAO S, FENG D, et al. High speed carrier-depletion modulators with 1.4 V-cm VπL integrated on 0.25μm silicon-on-insulator waveguides[J]. Opt. Express, 2010,18(8):7994-7999.
    [92]DONG P, LIAO S, FENG D, et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator[J]. Opt. Express,2009,17(25):22484-22490.
    [93]ZHENG X, LEXAU J, LUO Y, et al. Ultra-low-energy all-CMOS modulator inte-grated with driver[J]. Opt. Express,2010,18:3059-3070.
    [94]MARRIS-MORINI D, VIVIEN L, FEDELI J, et al. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure[J]. Opt. Express. 2008,16(1):334-339.
    [95]LIOW T, ANG K, FANG Q, et al. Monolithic integration and optimization of waveg-uide silicon modulators and germanium photodetectors[C]//. vol 7719. SPIE 2010: 77191T.
    [96]LIU A, JONES R, LIAO L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature,2004,427(6975):615-618.
    [97]KUO Y, LEE Y, GE Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature,2005,437(7063):1334-1336.
    [98]FANG A, PARK H, COHEN O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser[J]. Opt. Express,2006,14:9203-9210.
    [99]LIANG D, FIORENTINO M, OKUMURA T, et al. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.[J]. Opt. express,2009, 17(22):20355.
    [100]CHEN H, FANG A, BOVINGTON J, et al. Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor[C]//International Topical Meet-ing on Microwave Photonics,2009. MWP'09.2009:1-4.
    [101]PARK H, FANG A, JONES R, et al. A hybrid AlGaInAs-silicon evanescent waveg-uide photodetector[J]. Opt. Express,2007,15(10):6044-6052.
    [102]CHEN H, KUO Y, BOWERS J. High speed hybrid silicon evanescent Mach-Zehnder modulator and switch[J]. Opt. Express,2008,16:20571-20576.
    [103]TANG Y, CHEN H, PETERS J, et al. Over 40 GHz Traveling-Wave Electroabsorp-tion Modulator Based on Hybrid Silicon Platform[C]//Submitted to OFC/NFOEC 2011.
    [104]LI G, SUN C, PAPPERT S, et al. Ultrahigh-speed traveling-wave electroabsorption modulator-designand analysis[J]. IEEE Trans. Microwave Theory Tech.,1999,47(7 Part 2):1177-1183.
    [105]POZARDM. Microwave Engineering[M].2nd ed.1998.
    [106]LEWEN R, IRMSCHER S, WESTERGREN U, et al. Segmented transmission-line electroabsorption modulators[J]. J. Lightwave Technol.,2004,22(1):172.
    [107]SHIRAIM, ARIMOTO H, WATANABE K, et al.40 Gbit/s electroabsorption mod-ulators with impedance-controlled electrodes[J]. Electron. Lett.,2003,39(9):733-735.