硅基波导光栅耦合器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅基波导光栅耦合器件在集成光学发展中扮演着重要角色,由于其具有多功能性、高效率、低功耗、工艺简单等优点而受到国内外研究人员的广泛关注。目前,对波导光栅耦合器件的理论分析、结构优化设计、制备方法、以及材料选择等方面还有大量的研究工作要做。
     本文在“国家自然科学基金”和“国防科技大学校预研基金”的支持下,研究了硅基波导光栅耦合器件的基本原理,利用严格耦合波理论和FDTD数值模拟方法对器件结构进行设计,探讨了器件的制备工艺和过程,并利用电子束光刻和感应耦合等离子体刻蚀技术对器件进行了加工制作。
     本文通过对硅基波导光栅耦合器件理论和实验的研究,主要取得了一下创新性成果:
     (1)设计了一种应用于波导与波导之间耦合的微型多阶梯式光栅耦合器,这种耦合器以SOI材料结构为基础,并且具有超长带宽和极小的尺寸(光栅长度仅为3微米)。入射光源限定为TE偏振光且垂直入射。模拟结果表明这种耦合器具有160nm的3dB带宽(1390nm-1550nm),耦合器入射光源波长为1550nm附近时耦合效率50%左右。同时在入射波长为1460nm时耦合器的耦合效率能达到67.5%。
     (2)提出了一种采用全刻蚀结构的高效率近垂直耦合的二元光栅耦合器,该种耦合器的制备与CMOS工艺兼容,可以利用一步套刻制作而成,并可与其他SOI器件集成。当入射波波长分别为1550nm和1563nm时,由光纤经过该耦合器耦合进入波导的耦合效率分别为59.2%和76.9%,并且还具33nm的3dB带宽。同时模拟结果也表明该结构具有19nm的刻蚀深度容差和6.5°的入射角度容差。
     (3)以全刻蚀二元闪耀光栅耦合器为基础,设计了一种对称式全刻蚀啁啾型亚波长二元闪耀光栅分束器,该分束器可以对TE模入射光实现均匀分束,当波长为1580nm的TE模光源垂直入射时,分束器水平两端的耦合效率能够分别达到43.627%和43.753%。并且该结构具有20nm的刻蚀高度容差和3°的入射角度容差,便于加工和集成。
     (4)搭建了耦合器件的测试平台。利用电子束光刻和感应耦合等离子体刻蚀技术制备了全刻蚀二元闪耀光栅耦合器和普通光栅耦合器,并对其进行了器件性能的测试,获得了一些初步的实验结果。
Waveguide grating coupler based on silicon substrate has been playing an important role in the development of integrated optics, which attracts more and more attentions. Waveguide grating coupler has many advantages over their competitors, such as versatility, high efficiency, low power consumption and simple technology. There remains lots of work to do in the research of waveguide grating coupler, such as theoretical analysis, structural optimization design, fabrication methods and material selection.
     Supported by the“National Natural Science Foundation of China”and the“Foundation of National University of Defense Technology”, the basic principles of the waveguide grating coupler based on silicon substrate is studied in this thesis, device structures is are designed with the rigorous coupled wave analysis and the FDTD simulation method, the preparation procedure and fabrication process are investigated, some devices are fabricated by Electron Beam Lithography (EBL) and Inductively Coupled Plasma (ICP) etching, and the coupling efficiency of the waveguide grating coupler is measured and analyzed by the fiber-to-waveguide coupling testing platform.
     A number of achievements were obtained through the theoretical and experimental study of the grating coupler:
     (1) A compact multilevel grating coupler based on SOI material structure is proposed to realize coupling between waveguide and waveguide, which has the ultrabroad bandwidth and extremely compact dimension (with the grating length of 3μm). The incident wave is TE polarization and designed as normal incidence. The simulation results indicate that the 3dB bandwidth of 160nm from 1390nm to 1550nm can be obtained, accompanied by the coupling efficiency of approximately 50% around 1550nm. Simultaneously, the sufficient high coupling efficiency of 67.5% at the wavelength of 1460nm has also been observed.
     (2) A high-efficiency binary blazed grating nearly vertical coupler with fully-etched spacings is proposed, which is compatible with the CMOS technologies and can be fabricated in one lithography step integrated with other SOI components. For TE polarized incident light, the coupling efficiencies from a fiber to waveguide are 59.2% at the wavelength of 1550nm and 76.9% at 1563nm, respectively. A 3 dB bandwidth of 33nm is also obtained. The numerical simulation also shows that the tolerances of 19nm in etched depth and 6.5o in incident angle are achievable.
     (3) A novel syminetrical chirped grating beam splitter based on binary blazed grating is proposed, which with fully-etched grating structure. This structure can realize equal-power splitting operation under the condition of TE polarization incidence. While under the condition of absolutely normal incidence, the coupling efficiency of the left and the right branches is 43.627% and 43.753% at the wavelength of 1580nm. Moreover, this structure has tolerances of 20nm in etched depth and 3o in incident angle, which brings convenience to manufacture facility.
     (4) The coupling testing platform is constructed. The fully-etched binary blazed grating coupler and a normal grating coupler are fabricated by Electron Beam Lithography (EBL) and Inductively Coupled Plasma (ICP) etching, and the preliminary test results are obtained by testing the performance of the devices.
引文
[1] J.Strong,“The Johns Hopkins Uiversity and diffraction gratings,”J. Opt. Soc. Am., vol.50, 1148-1152, Dec. 1960, quoting G.R. Hatrison
    [2] D. Rittenhouse,“An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse,”Traps. Am. Phil. Soc. vol.2, 301, 1786
    [3] J.Fraunhofer,“Short account of the results of new experiments on the law of light and their theory, Ann. Phys.”1823, vol.74, 337
    [4] A. lariat,“Optical waives in crystals,”P. Yeh. 1984
    [5] G.W.Stroke,“Diffraction gratings,”in Handbuch der Physik, S. Flugge, ed., 426, (Springer-verlag, Berlin 1967)
    [6] S. E. Miller,“Integrated Optics: A Introduction”, Bell Syst. Tech. J., 48, 7, pp. 2059-2068, 1969
    [7] H. Kogelnik, and T. P. Sosnowski,“Holographic thin film couplers,”Bell Sys. Tech. J., 1970, vol.49, pp.1602
    [8] K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki,“Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,”Appl. Phys. Lett., 1978, 32: 647-649
    [9] P. J. Lemaire, R. M.Atkins, V. Mizrahi, W. A. Reed,“High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers,”Electron. Lett., 1993, 29:1191-1193
    [10] M. Li and S. Sheard. Experimental study of waveguide grating couplers with parallelogramic tooth profiles. Opt. Engi., 1996, 35: 3101-3106
    [11] M. L. Dakss, L. Kuhn, P. F. Heidrich and B. A. Scott.“Grating coupler for efficient excitation of optical guided waves in thin films,”Appl. Phys. Let., 1970, 16:523-525
    [12] C. V. Shank, and V. Schmidt,“Optical technique for producing 0.1μm periodic surface struetues,”Appl. Phys. Lett., 1985, vol.24(3), pp.154-155
    [13] H. W. Lehmann and R. Widmer,“Fabrication of deep square wave struetures with micron dimensions by reactive sputter etching,”Appl. Phys. Lett., 1978, vol.32(3), pp.163-165
    [14] N. Eriksson, M. Hagberg and A. Larsson,“Highly directional grating outcouplers with tailorable radiation characteristics,”IEEE J. Quantum Electron., 1996, 32: 1038-1047
    [15] M. Oh, S. Ura, T. Suhara and H. Nishihara. Integrated-optic focal spot intensity modulator using electrooptic polymer waveguide. J. Lightwave Tech., 1994, 12: 1569-1576
    [16] A. Alphones. Double grating coupler on a grounded dielectric slab waveguide. Opt.Comm., 1992, 92:35-39
    [17] L. Li. Analysis of planar waveguide grating couplers with double surface corrugations of identical period. Opt. Comm., 1995, 114:406-412
    [18]董毅,“用于光互连的体波导光栅耦合器:分析、制备和应用,”山东大学,博士学位论文, 2008
    [19]林志浪,“SOI集成光波导器件的基础研究,”中国科学院上海微系统与信息技术研究所,博士学位论文, 2004
    [20] D. A. B. Miller,“Optics for low-energy communication inside digital processors: Quantum detectors, sources and modulators as efficient impedance converters,”Opt. Lett., vol.14, pp.146-148, Jan. 1989
    [21] L. B. Aronson and L. Hesselink,“Photorefractive waveguide switches for optical interconnects,”Proc. SPIE, vol.1212, pp.304-314, 1990
    [22] Zhou Liang, Li Zhi-Yong, Zhu Yu, Li Yun-Tao, Fan Zhong-Cao, Han Wei-Hua, Yu Yu-De, and Yu Jin-Zhong,“A novel highly efficient grating coupler with large filling factor used for optoelectronic integration,”Chin. Phys. B vol.19, No.12, (2010), 124214
    [23] Seely J F, Brown C M,“Multilayer-coated grating spectrometer operating in the extreme-ultraviolet region and based on the Seya-namioka mount,”Appl. Opt., 1993; 32 (31):6288-6293
    [24] Goldman D S, White P L, Anheier N C,“Miniatu-rized spectrometer employing planar waveguides and grating couplers for chemical analysis,”Appl. Opt., 1990; 29 (31):4583-4589
    [25] Geh B, Dorsel A. Integrated optical grating scale readout employing a double grating. Apll. Opt., 1992; 31(25):5241-5245
    [26] Nellen M, Tiefenthaler K, Lukosz W,“Integrated optical input grating couplers as biochemical sensors,”Sensors and Actuators, 1988; 15:285-295
    [27] Strasser T A, Gupta M C,“Integrated optic grating-coupler-based optical head,”Appl. Opt., 1993; 32(36):7454-7461
    [28] Wook Lee, Neal A. Hall, Zhiping Zhou, Senior Member and F. Levent Degertekin,“Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,”IEEE J. Quantum Electron., 2004, vol. 10(3), pp:643-651
    [29] G. A. Rakuljic and V. Leyva,“Volume holographic narrow-band optical filter,”Opt. Lett., 1993, vol.18, pp:459-461
    [30] V. Leyva, G. A. Rakuljic and B. O’Conner,“Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82nm,”Appl. Phys. Lett., vol.65, pp: 1079-1081
    [31] H. Kogelnik, and C. V. Shank,“Stimulated emission in a periodic structure,”Appl.Phys. Lett., 1971, vol.18, pp.152
    [32] K. S. Pennington, and L. Kuhn,“Bragg diffraction beam splitter for thin film optical guided waves,”Opt. Commun., 1971. vol.3, pp.357
    [33] Junbo Feng and Zhiping Zhou,“Polarization beam splitter using a binary blazed grating coupler,”J. Opt. Lett., 12, 1662-1664 (2007)
    [34] Yongbo Tang, Daoxin Dai and Sailing He,“Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,”IEEE Photonics Technol. Lett., 2009, vol.21, NO.4, 242-244
    [35] Zhechao Wang, Yongbo Tang, Lech Wosinski and Sailing He,“Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,”IEEE Photonics Technol. Lett., 2010, vol.22, NO.21, 1568-1570
    [36] Yongbo Tang, Zhechao Wang, Lech Wosinski, Urban Westergren and Sailing He,“Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,”J. Opt. Lett., 2010, vol.35, No.8, 1290-1292
    [37] Zhu Yu, Xu Xue-Jun, Li Zhi-Yong, Zhou Liang, Han Wei-Hua, Fan Zhong-Chao, Yu Yu-De and Yu Jin-Zhong,“High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre,”Chin. Phys. B, 2010, vol.19, No.1, 014219
    [38] Shiqian Shao and Yi Wang,“Highly compact polarization-independent grating coupler,”J. Opt. Lett., 35, 1834-1836 (2010).
    [39] Jens Bolten, Jens Hofrichter, Nikolaj Moll, Sophie Sch?nenberger, Folkert Horst, Bert J. Offrein, Thorsten Wahlbrink, Thomas Mollenhauer and Heinrich Kurz,“CMOS compatible cost-ef?cient fabrication of SOI grating couplers,”Microelectronic Engineering, 2009, 86, 1114-1116
    [40] Bernd Schmid, Alexander Petrov, and Manfred Eich,“Optimized grating coupler with fully etched slots,”J. Optics Express, 13, 11066-11076 (2009)
    [41] R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe andí. Molina-Fernández,“Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure,”J. Opt. Lett., 2010, vol. 35, No. 19, 3243-3245
    [42]西原浩著,梁瑞林译,“集成光路,”北京:科学出版社, 2004
    [43]冯俊波,“基微纳光栅耦合器件及其制备技术研究,”华中科技大学,博士学位论文, 2009
    [44]王勇,“波导光栅耦合器设计及其光全息聚合制作的初步研究,”山东大学,硕士学位论文, 2007
    [45] D. Marcuse,“Theory of dielectric optical waveguides”(Academic Press. NewYork 1974)
    [46] W. Strefer,D. R. Seifres and R. D. Burnham,“Coupling coefficients for distributed feedback single-and-double heterostructure diode laser,”IEEE J. Quant. Electron., 1975, QE-11. pp.867
    [47] T. Tamir and S. T. Peng,“Analysis and design of grating couplers.”Appl. Phys., 1977, vol.14, pp.235
    [48] G. I. Stegeman, D. Sarid, J. J. Burke and D. G. Hall,“Scattering of Guided waves by surface periodic gratings for arbitrary angles of incidence: perturbation field theory and implications to normal-mode analysis,”J. Opt. Soc. Am., 1981, vol.71, pp.1947
    [49] J. H. Harris, R. K. Winn and D. G. Dalgoutte,“Theory and design of periodic couplers,”Appl. Opt., 1972, vol.11, pp.2234
    [50] Wu Yizun,“Equivalent current theory of optical waveguided coupling,”J. Opt. Soc. Am., 1987. vol.A/4, pp.1902
    [51] P. Zory, 1976,“Corrugated grating coupled devices and coupling coefficients,”in Integrated Optics WBI-1 (Optical Society of America, Washington D. C. 1976, 75CH1039-7QEC), Digest of technical papers presented in salt lake. Jan. 1976
    [52] V. A. Sychugov and J. Ctyroky,“Propagation and conversion of light waves in graded-index planar waveguides,”Sov. J. Quant. Eleetron., 1982, vol.12, pp.392
    [53] M. Neviere, R. Petit and M. Cadilhac,“About the theory of optical grating coupler-waveguide systems,”Opt. Commun., 1973. vol.8, pp.113
    [54] M. Neviere, P. Vincent, R. Petit and M. Cadilhac,“Determination of the coupling coefficient of a Holographic thin film couple,”Opt. Commun., 1973, vol.9, pp.240
    [55]邢德财,“几种介质光栅的衍射特性研究,”四川大学,硕士学位论文, 2005
    [56]季家镕,冯莹,“高等光学教程——非线性光学与导播光学,”北京:科学出版社, 2008
    [57] Haus H. A., Huang W. P., Kawakami S., et al.,“Coupled-mode theory of optical wave-guides,”Journal of lightwave technology, 1987, 5(1):16-23
    [58] Moharam M. G., Gaylord T. K,“Rigorous coupled-wave analysis of grating diffraction-e-mode polarization and losses. Journal of the optical society of America, 1983, 73(4):451-455
    [59]余金中,“硅光子学,”北京:科学出版社, 2011
    [60] R. Soref,“Applications of silicon-based optoelectronics,”MRS Bull., 1998, 20-24
    [61] L. Peters,“SOI takes over where silicon leaves off,”Semiconduct. Int., 1993, 16:48-51
    [62] Toshiaki Suhara and Hiroshi Nishihara,“Integrated optics components and devices using periodic structures,”J. Journal of Quantum Electronics, 22, 845-867 (1986).
    [63] Mark D. Salik and Pierre Chavel,“Resonant excitation analysis of waveguide grating couplers,”J. Optics Communications, 193, 127-131 (2001)
    [64]程志军,“亚波长抗反射光栅的设计与制作”,华中科技大学,硕士学位论文, 2002
    [65]金国藩,严瑛白,邬敏贤等,“二元光学,”北京:国防工业出版社, 1998
    [66] M. Miler,“’Chirped’grating coupler: a holographic approach,”J. Optical and Quantum Electronics, 1979, 11, 359-366.