硅基光电化学过氧化氢传感电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。在分析检测和识别生物分子方面展现了独特的优越性和广阔的应用前景。过氧化氢(H_2O_2)在食品工业、临床应用、环境分析等领域有着广泛的应用。发展可靠、灵敏、快速、低成本的H_2O_2检测方法具有重要的实际意义。普鲁士蓝及其类似物(MHCF),具有较高的电化学可逆性,用作电子传递的媒介,可降低氧化还原物质特别是过氧化物电化学反应的过电位,在较低的电位下能加速电子的传递,对H_2O_2的电催化氧化-还原具有高度的选择性和高效性而被誉为“人工过氧化物酶”。
     本文主要探讨了两种硅基(n-n~+-Si和n-Si)的光电极。通过真空蒸镀的方法分别在n-n~+-Si、n-Si表面修饰Pt、Ni、Pt-Ni合金的金属膜后作为基体电极,在镀金属薄膜的表面再修饰普鲁士蓝或铁氰化镍薄膜形成复合光电极。实验采用两电极体系,以复合光电极与铂电导电极构成两电极体系,在0 V偏置电压,50 W卤钨灯照射下,考察该体系对H_2O_2的电流响应。实验结果表明该传感器对H_2O_2有良好的传感性能。值得注意的是,这种两电极体系检测H_2O_2,免除了使用参比电极带来的离子污染和操作不便,更有利于实现生物传感器的微型化。实验研究包括以下内容:
     1.普鲁士蓝修饰n-n~+-Si光电极对H_2O_2传感性能过氧化氢的无酶传感能克服酶所固有的稳定性不佳、易失活、成本高、在电极表面容易脱落等缺点。基于硅基底研究了一种新型的过氧化氢无酶传感器。采用n-n~+-Si型硅(111)表面沉积约40 nm厚的金属Pt膜作为基底电极,用循环伏安法在此基底电极上修饰一层晶蓝色普鲁士蓝薄膜后作为光电极,与Pt电导电极构成两电极体系。在0 V偏置电压和50 W卤钨灯照射下,考察了该光电系统对H_2O_2的电流响应,检测限为1.67×10~(-6)M。对这种新型过氧化氢传感器的工作原理做了初步探讨与分析。实验结果表明该传感器对H_2O_2有优良的传感性能。
     2.普鲁士蓝/不同金属膜/n-Si型硅H_2O_2的电化学传感抛光的n-Si(111)表面分别真空蒸镀约50 nm厚的Ni、Pt-Ni合金两种不同的金属膜。再分别用循环伏安、恒电位沉积的方法在不同的基体电极上修饰PB,做成两种不同的传感电极。考察了上述两种电极体系对光照和H_2O_2的响应程度。实验结果表明,PB/Ni/n-Si修饰电极对光照有较好响应,且在pH 6.50的磷酸缓冲溶液中对H_2O_2有较好的电催化活性。以PB/Ni/n-Si修饰电极与Pt电导电极构成两电极体系体系,0 V偏压,50 W卤钨灯照射下,该传感器电流随H_2O_2浓度的增大,还原电流在不断的增大,说明对H_2O_2有一定的光电化学响应。
     3. Pt/n-n~+-Si电极上化学沉积铁氰化镍(NiHCF)薄膜的H_2O_2传感研究采用简单的化学方法在Pt/n-n~+-Si基体电极上,沉积铁氰化镍膜作为修饰电极,并对该膜进行了x光电子能谱(XPS)表征。以NiHCF/Pt/n-n~+-Si修饰电极与Pt电导电极以及饱和甘汞(SCE)构成三电极体系,50 W卤钨灯照射下,在-0.3 V~+0.8V(vs. SCE)范围内,对H_2O_2的电催化有良好的选择性、高的灵敏性和稳定性。以NiHCF/Pt/n-n~+-Si修饰电极与Pt电导电极构成两极体系,0 V偏置电压,50 W卤钨灯光照条件下,H_2O_2在浓度10~(-6)M~10~(-4)M范围内有良好的线性关系,线性方程为y(mA)= 312.2991x + 1.5056(C)(r=0.9992),S/N=3,最低检测限为3.32×10~(-6)M。结果表明,NiHCF/Pt/n-n~+-Si修饰电极对H_2O_2有良好的光电化学响应。
     采用循环伏安和两电极体系计时电流法对n-Si、n-n~+-Si两种硅基修饰电极对H_2O_2的传感进行了比较。通过实验结果可以看出n-n~+-Si基底的普鲁士蓝类似物传感器对光照具有良好的响应信号,具有良好的稳定性和重现性。
Photo-electrochemical sensor is a new kind of developing analytical devicebased on the photo-electrochemical properties of materials. Because of its remarkablesensitivity, inherent miniaturization, portability and easy integration,photo-electrochemical analysis is becoming a promising analytical technique.Research on the quantitative detection of hydrogen peroxide (H_2O_2) receivedconsiderable attention, because H_2O_2is widely used as an oxidizing agent in chemicaland food industries. It is an essential mediator in food, pharmaceutical, clinical, andenvironmental analysis. Prussian blue (PB, ferric hexacyanoferrate) and its analoguesare the prototype of a number of poly-nuclear transition metal hexacyanometalateshaving an open, zeolite-like structure. PB is usually considered as an“artificialperoxidase”due to its high activity and selectivity toward the reduction of hydrogenperoxide and it has been extensively used in the construction of electrochemicalbiosensors.
     This thesis mainly investigates three kinds of photoelectrodes based on two kindsof silicon wafers (n-Si and n-n~+-Si). About 40 nm three different metals films of Pt, Ni,Pt-Ni alloy were coated onto the front surface of n-Si (111) or n-n~+-Si wafers in highvacuum evaporating system. Prussian blue (PB) film and nickel hexacyanoferrate(NiHCF) film have been deposited on the surface of metals coated different typessilicon wafer. Cyclic voltammograms and x-ray photoelectron spectroscopy (XPS)were used to characterize the surface of modified electrode. The modified electrodeshave been used for determination of hydrogen peroxide (H_2O_2) with a two-electrodecell in absence of reference electrode by photocurrent measurement at a zero bias butunder irradiation with 50W halogen-tungsten lamp. This work demonstrates thefeasibility of the photo-electrodes, sensitivity of H_2O_2sensors, and provides aneffective approach to detect H_2O_2. Experimental studies include the followingcontent:
     1. Hydrogen peroxide sensor based on PB modified n-n~+-Si photo-electrode
     A Prussian-blue (PB) film has been deposited on the surface of platinum coatedn-type epitactic silicon (Pt/n-n~+-Si) wafer. The electro-deposition of PB was achievedby a cyclic scan in a potential range of 0.2 to +0.6 V (vs. SCE) at 50 mV/s for 5cycles in a solution containing 2.5 mM FeCl3, 2.5 mM K3Fe(CN)6, 0.1 M KCl and 0.1 M HCl with an illumination from 50 W bromine-tungsten lamp. The emphasis is laidon that this modified silicon electrodes can be used as sensors for the photocurrentdetermination of hydrogen peroxide only in two-electrode system without referenceelectrode at a zero bias. The use of the PB modified Pt/n-n~+-Si electrode as ahydrogen peroxide sensor was demonstrated with good stability and selectivity. ThePB film was characterized by cyclic voltammetry measurements and scanningelectronic microscopy (SEM). A new photo-electrochemical sensor based ontwo-electrode system for determination of hydrogen peroxide has been developed.
     2. Hydrogen peroxide sensor based on Prussian blue modified and coated withdifferent metals film on the surface of n-Si wafer
     About 50 nm two different metals of Ni and Pt-Ni alloy were coated onto the frontsurface of n-Si (111) wafers. The Prussian-blue (PB) film modified Ni/n-Si,Pt-Ni/n-Si electrode was prepared by a simple chemical deposition and cyclicvoltammetry. The PB/Ni-n-Si sensor showed good electro-catalytic activity and goodphotocurrent responses by adding different concentrations of H_2O_2with a definitestability.
     3. Hydrogen peroxide detection with n-silicon photo-electrodes modified bynickel hexacyanoferrate films
     By depositing a film of nickel hexacyanoferrate (NiHCF) on platinum film coatedsilicon electrodes, a new photo-electrochemical sensor for the detection of hydrogenperoxide has been developed. The stable film of NiHCF was chemically depositedonto a phosphorus heavy doped silicon (n~+-Si) with 9μm epitaxial layer (n-n~+-Si)wafers coated with about 40 nm platinum layer (Pt/n-n~+-Si). Cyclic voltammogramsand x-ray photoelectron spectroscopy (XPS) were used to characterize the NiHCFfilm on the Pt/n-n~+-Si electrode. The NiHCF modified Pt/n-n~+-Si electrode has beenused for determination of hydrogen peroxide (H_2O_2) with a two-electrode cell inabsence of reference electrode by photocurrent measurement at a zero bias. Thecomposite modified electrode demonstrated good photocurrent responses by addingdifferent concentrations of H_2O_2with a definite stability. The modified electrode wasused as a sensor for H_2O_2, with a linear range from 3.3×10 6to 1.0×10~(-4)M of H_2O_2,with a detection limit (S/N = 3) of 3.3×10~(-6)M and with a sensitivity of 42 mA M 1cm 2. This provides a facile way of detecting H_2O_2and succeeds in averting frominconvenient reference electrode.
引文
[1]杨德仁.硅材料研究进展:从微电子到光伏和光电子[J],国际学术,2003,1: 19~19.
    [2]蒋荣华,肖顺珍.半导体硅材料最新发展现状[J],半导体技术,2002,27 (2): 3~6.
    [3]代淑芬.半导体硅材料的发展现状及趋势[J],无锡南洋学院学报,2008,7 (3): 30~37.
    [4]蒋荣华.国内外半导体硅材料最新发展状况[J],新材料产业,2002,7 (104): 47~52.
    [5]靳晓宇.半导体材料的应用与发展研究[J],大众商务,2009,6 (102): 292~29.2
    [6]邱元武.硅光子学[J],光子学,2006,43 (9): 36~41.
    [7]余金中.硅基光电子学研究进展与趋势[J],世界科技研究与进展,2007,29 (5): 50~56.
    [8]余金中. Si基光电子学研究进展[J],半导体杂志,1998,23 (1): 21~32.
    [9]叶志镇,黄靖云.新颖的硅基光电材料[J],半导体杂志,2001,15(1): 11~13.
    [10]余金中.硅光子学的研究和发展趋势[J],中国光学期刊网,2006,43 (12): 68~70.
    [11]黄香平.硅薄膜微结构及悬挂键缺陷[D],中南大学,2010.
    [12]黄锋,陈瑞润,郭景杰,丁宏升,毕维生,傅恒志.太阳能电池用硅材料的研究现状与发展趋势[J],特种铸造及有色合金,2008,28 (12): 925~929.
    [13]李怀祥,王士勋,李目铮,金属修饰半导体硅组成光电化学电池的研究[J],化学学报,1991,49: 998~103.
    [14]成志秀,王晓丽.太阳能光伏电池综述[J],信息记录材料,2007,8 (2): 41~47.
    [15]王金晓.硅薄膜太阳电池材料的制备研究[D],兰州大学,2009.
    [16]张妹玉,陈胜钰,陈朝.低成本多晶硅太阳电池光致衰减的研究[J],闽江学院学报,2011,32 (2): 16~19.
    [17]铁生年,李星,李昀珺.太阳能硅材料的发展现状[J],青海大学学报,2009,27 (1): 33~38.
    [18]崔昊杨,李宏建,谢自芳,赵楚军,彭景翠.多孔硅传感器的研究进展[J],材料导报,2004,18(3): 35~37.
    [19]许媛媛,何金田,李新建,陈渝仁.多孔硅湿度传感器研究进展[J],传感器技术,2003,22 (8): 5~8.
    [20] Julia, Y., Richard, D., Martin, B., Thomas, L., Jenny ,E. Microfluidic enzyme immunosensorswith immobilised protein A andG using chemiluminescence detection[J], Biosens.Bioelectron., 2003, 19: 21~34.
    [21] Alia, M.B., Mlika, R., Ouada, H.B., M’gha eth, R., Maaref, H. Porous silicon as substrate forion sensors[J], Sens. Actuators, 1999, 74: 123~125.
    [22] Sakly, H., Mlika, R., Chaabane,.H., Beji, L., Ben Ouada, H. Anodically oxidized poroussilicon as a substrate for EIS sensors[J], Mater. Sci. Eng., C, 2006, 26: 232~235.
    [23] Benilov, A, M.Cabrera, M., V.Skryshevsky, V., Martin, J.R. Porous silicon localization forimplementation in matrix biosensors[J], Mater. Sci. Eng., B, 2007, 139: 221~225.
    [24] Jin, J.H., Min, N.K., Hong,S.I. Poly(3-methylthiophene)-based porous siliconsubstrates as aurea-sensitive electrode[J], Appl. Surf. Sci., 2006, 252: 7397~7406.
    [25] Tantra, R., Hutton, R.S., Williams, D.E. A biosensor based on transient photoeffects at asilicon electrode[J], J. Electroanal. Chem, 2002, 538-539: 205~208.
    [26] Zhang, X.R., Zhao, Y.P., Zhou, H.R., Qu, B. A new strategy for photoelectrochemical DNAbiosensor using chemiluminesccence reaction as lingt source, Biosens. Bioelectron., 2011,26: 2737~2741.
    [27] Zheng, Q., Bai, H.L., Wang, G.L., Xu, L.L., Chen, H.Y. A photoelectrochemicalsensor basedon CdS-polyamidoamine nano-composfilm for cell capture and detection, Biosens.Bioelectron., 2010, 25: 2045~2050.
    [28]罗芳,柳闽生,吕群,徐常龙,光电化学的特征及研究进展[J],江西教育学院学报,2000,21 (3): 32~35.
    [29]牛淑云,彭鲲,寇瑾.纳米光电材料研究简介[J],辽宁师范大学学报,2003,26(1):63~67.
    [30]杨华,袁坚,赵兹君,TiO2半导体薄膜电极的光电转换性能研究[J],硅酸盐通报,2004,1: 62~80.
    [31]邓意达,贺跃辉,唐建成,贾宝平,黄伯云,刘业翔. ZnS光电材料制备技术的研究进展[J],材料导报,2002,16 (5): 49~51.
    [32]武文俊,詹文海,孟凡顺,花建丽.半菁类染料敏化太阳能电池的光电化学性能研究[J],化学通报,2007,35: 365~360.
    [33]徐海云,田冬,徐俊,基于卟啉类有机染料敏化太阳能电池的研究进展[J],广东化工,2011,38 (218): 95~96.
    [34]郝彦忠,武文俊,戴松元. Ru(II)染料与聚3-甲基噻吩复合敏化纳米结构TiO2电极的光电化学研究[J],化学学报,2006,64 (7): 667~671.
    [35]吴凤霞,殷海荣,杨勇,王水庆. CdS敏化TiO2薄膜的制备和光电转换性质的研究[J],佛山陶瓷,2001,5 (51): 10~12.
    [36] Li, H. X., Xia R. H., Jiang Z.W., Chen S.S., Chen, D. Z., Optical Absorption Property andPhoto-catalytic Activity of Tin Dioxide-doped Titanium Dioxides[J], Chinese Journal ofChemistry, 2008, 26: 1787~1792.
    [37]刘向阳,孙国锋,尚仲伟.染料敏化太阳能电池的研究现状及反展趋势[J],洛阳师范学院学报,2006,2: 51~56.
    [38] Sun, J.J., Zhu, Y.H., Yang,X.L., Li, C.Z. Photoelectrochemical glucose biosensorincorporating CdS nanoparticles[J], Particuology, 2009, 7:347~352.
    [39]彭芳,朱德荣,司士辉,肖辉,光电化学型半导体生物传感器[J],化学进展,2008,20 (4): 586~593.
    [40]周婧,赵高凌,臧金鑫,宋斌,李红,韩高荣, CdS量子点敏化TiO2薄膜电极的制备和光电化学性能[J],硅酸盐学报,2011,39 (7): 1075~1079.
    [41]梁琳红,张中海,袁园,曾立平,金利通,新型Au/TiO2纳米管的制备及其在化学需氧量测定中的应用研究[J],化学传感器,2008,28 (2): 57~61.
    [42]李静,孙岚,庄惠芳,王成林,杜荣归,林昌健.铁掺杂TiO2纳米管阵列制备及其光电化学性质[J],电化学,2008,14 (2): 213~216.
    [43]杨术明,王纪超,寇慧芝,4-叔丁基吡啶对纳米晶TiO2电极的能带结构及光电化学性质的影响[J],电化学,2011,17 (2): 204~209.
    [44] Miyamoto, K., Wagner, T., Mimura, S., Kanoha, S., Yoshinobua, T., Sch ningd, M.J.Constant-phase-mode operation of the light-addressable potentiometric sensor[J], Sens.Actuators, B, 2011, 154:119~123.
    [45]门洪,胡德建,穆胜伟,靳继勇,王伟广,光寻址电位传感器及其应用[J],传感器与微系统,2008,27 (6): 12~14.
    [46]王光丽,徐静娟,陈洪渊,光电化学传感器的研究进展[J],中国化学B辑,2009,39 (11):336~1347.
    [47]韩泾鸿,徐磊,张虹,顾丽波,光寻址生化传感器[J],分析测试学报,2004,23(3): 9~12.
    [48]郭红荪,蔡巍,赵会欣,哈达,张文,王平.基于光电复合传感器的重金属检测算法的研究[J],传感技术学报,2011,24 (1): 18~23.
    [49] Yoshinobu, T., Iwasaki, H., Ui, Y., Schoing, M.J. The light-addressable potentiometric sensorfor multionsening and imaging[J], Methods, 2005, 37: 94~102.
    [50]秦利锋,许改霞,李蓉,叶学松,王平.基于光寻址电位传感器的单细胞传感器设计[J],浙江大学学报,2005,35(9): 1404~1408.
    [51]顾丽波,韩泾鸿,崔大付,张虹.甲胎蛋白光寻址电位式传感器的研究[J],分析化学,2005,33(1): 17~21.
    [52]苑嗣纯,葛兴,赵建庄.有机光电材料和有机光电器件[J],北京农学院学报,2010,25(1): 75~80.
    [53]贾素萍,梁敏敏,郭良宏.苯乙烯致DNA间接损伤效应的光电化学生物传感器快速检测[J],生态毒理学报,2008,3(4): 350~355.
    [54]韩世同,习海玲,史瑞雪,付贤智,王绪绪.半导体光催化研究进展与展望[J],化学物理学报,2003,1(5): 339~349.
    [55]顾晓梅,李淑华.半导体光催化效应在染料废水处理中的应用,纺织科技进展[J],2006,1: 22~23.
    [56]董秋花,赵中一.二氧化钛光电催化降解水中有机污染物的研究进展[J],安徽化工,2005,2: 41~43.
    [57]袁园,张中海,方艳菊,梁琳红,丁红春,金利通,纳米ZnO/TiO2复合膜传感器的制备及其应用于地表水中化学需氧量测定的研究[J],化学传感器,2006,26(4): 23~27 .
    [58]李波. TiO_2薄膜光电催化亚甲基蓝的研究[J],过滤与分离,2011,21(3): 12~14.
    [59] Chee, G.J., Nomura, Y., Ikebukuro, K., Karube, K. Development of photocatalytic biosensorfor the evaluation ofbiochemical oxygen demand[J],Biosens. Bioelectron., 2005, 21: 67~73.
    [60] Zhang L.L, Cheng H.H., Zhang H.M., Qu L.T., Direct electrochemistry and electrocatalysisof horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film[J],Electrochim. Acta, 2012, 65: 122~126.
    [61] Sun, J.J., Zhu, Y.H., Yang,X.L., Li,C.Z. Photoelectrochemical glucose biosensorincorporating CdS nanoparticles [J], Particuology , 2009, 7: 347~352.
    [62] Curri, M.L., Agostiano, A., Mallardi, A., Cosma, P., Della Monica, M., Development of anovel enzyme/semiconductor nanoparticles systemfor biosensor application [J], Mater. Sci.Eng., C, 2002, 2: 449~452.
    [63]彭芳,吴弘毅,司世辉.纳米TiO2/CD膜光电学传感器的制备及检测[J],青岛科技大学学报,2008,29 (3): 192~195.
    [64] Amadelli, R., Molinari, A., Vitali, I., Samiolo, L., Maldotti, A. Photo-electro-chemicalproperties of TiO2mediated bythe enzyme glucose oxidase [J], Catal. Today, 2005, 101:397~405.
    [65] Tang, L.H., Zhu, Y.H., Yang, X.L., Sun, j.j., Li, C.Z. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometricbiosensor triggered by photovoltaic effect [J],Biosen. Bioelectron., 2008, 24: 319~323.
    [66]方艳菊,丁红春,张中海,潘振声,金利通, QD-CdS/Ti02光电化学传感器的制备及其在化学需氧量测定中的应用研究[J],化学传感器,2005,25(4): 16~21.
    [67] Zhou, F.L., Li, X.J., Shu, j., Qang, J. Synthesis and visible light photo-electrochemicalbehaviors of In2O3-sensitized ZnO nanowire array film, J. Photochem. Photobiol., A:Chemistry, 2011, 219: 132~13.
    [68]王娟,刘毅,张伟德,碳纳米管/半导体纳米复合材料的光电化学特征及其应用[J],化学进展,2011,23 (8): 1583~1590.
    [69]吴欢文,张宁,钟金莲,洪三国. P-N复合半导体光催化剂研究进展[J],化工进展,2007,26 (12): 1669~1674.
    [70]李海鹏.过氧化氢的检测新方法研究[D],南华大学,2010.
    [71]刘海峰,柴春彦,刘国艳.光电型传感器在快速检测食品中过氧化氢中的应用[J],食品安全与检测,2008,33 (11): 278~281.
    [72] Won, Y.H., Aboagye, D., Jiang, H.S., Jitianu, A., Stanciu.l. Core/shell nanoparticles as hybridplatforms for the fabrication of a hydrogenperoxide biosensor[J], J. Mater. Chem., 2010, 20:5030-5034.
    [73]许利君.过氧化氢的测定方法及其在光催化氧化技术中的应用研究[D],浙江大学,2002.
    [74] Xuan, J., Jiang, L.P., Zhu, J.J. Nonenzymatic Hydrogen Peroxide Sensor Based onThree-dimensional Ordered Macroporous Gold Film Modified Electrode[J], Chin J AnalChem., 2010, 38(4): 513~516.
    [75]朱玲.工业过氧化氢含量测试方法的探讨[J],安徽化工,2002,6:45~46.
    [76]古映莹,李丹,高锰酸钾法、碘量法和铈量法测定过氧化氢的比较[J],理化检验化学分册,2007,43 (9): 788~791.
    [77]范华锋,张忠义,刘振林.分光光度法测定食品中过氧化氢[J],中国卫生检验杂志,2006,16(9): 1079~1080.
    [78]展海军,王华芳,谢鹏.分光光度法测定小麦过氧化氢酶活动度[J],研究报告,2010,29 (1): 31~36.
    [79]邵晓东,李瑛.鲁米诺化学发光分析法研究进展[J],化学研究,2010,21(1): 102~112.
    [80]赵辉.微乳液-鲁米诺-H_2O_2-Co(II)化学发光体系与应用,石油化工应用,2011,30 (4):27~28.
    [81]王婷,熊玉宝,高红,刘洪敏.鲁米诺-H_2O_2-Fe(11)化学发光体系的研究与应用[J],冶金分析,2007,27 (12): 50~53.
    [82]许淑芬,郑展望,徐甦.国内外液相过氧化氢的测定方法及其进展[J],中国安全科学学报,2007,17 (3): 166~170.
    [83] Hanson, A.K., Tindale, N.W., Abdel-Moati, M.A. An Equatorial Pacific rain event: influenceon the distribution of iron and hydrogen peroxide in surface waters[J], Mar. Chem., 2001, 75:69~88.
    [84]田益玲,陈冠华,魏显有.荧光分光光度法测定中药对过氧化氢的清除率,分析化学研究简报,2002,30 (2): 183~185.
    [85]陈易晖,刘艳,周建立,朱海,项丽霞.高效液相色谱-紫外检测法测定食品中的过氧化氢[J],光谱实验室,2009,26 (2): 414~417.
    [86]百红艳,宋利.过氧化氢电流型传感器检测方法的研究进展[J],广西轻工业,2011,4:86~87.
    [87]张坤生,田荟琳.过氧化氢酶的功能及研究[J],食品科技,2007,1: 9~11.
    [88]左鹏,于少明,杨杰茹,张迟.辣根过氧化物酶固定化载体材料的研究进展[J],材料导报,2007,21(11): 46~49.
    [89] Datta S.G., Dou X., Shibley A., Da B., DNA template-assisted modulation of horseradishperoxidase activity[J], Int. J. Biol. Macromol., 2012, 50: 552~557.
    [90]洪伟杰,张朝辉,芦国营,辣根过氧化物酶固定化新进展[J],现代食品科技,2006,22(1): 177~180.
    [91]扎热木·萨迪克,徐静娟,陈洪渊.纳米材料在电化学生物传感器中的应用[J],分析科学学报,2009,25 (2): 217~222.
    [92] Mao, C.J., Chen, X.B., Niu, H.L., Song, J.M., Cui, R.J. A novel enzymatic hydrogen peroxidebiosensor based on Ag/C nanocables[J], Biosens. Bioelectron., 2012, 31: 544~547.
    [93] Yardimci, F.S., Senel, M., Baykal, A. Amperometric hydrogen peroxide biosensor based oncobalt ferrite–chitosan nanocomposite[J], Mater. Sci. Eng., C, 2012, 32: 269~275.
    [94] Gu, Z.G., Yang, S.P., Li, Z.J., Liu, J.K. An ultrasensitive hydrogen peroxide biosensor basedon electrocatalytic synergy of graphene–gold nanocomposite, CdTe–CdS core–shell quantumdots and gold nanoparticles[J], Anal. Chim. Acta, 2011, 701: 75~80.
    [95] Du, Z.F., Li, C.C., Li, L.M., Wang, T.H. Simple fabrication of a sensitive hydrogen peroxidebiosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film[J],Mater. Sci. Eng., C, 2009, 29: 1794~1797.
    [96] Wang,P., Li, S.Q., Kan, J.P. A hydrogen peroxide biosensor based on polyaniline/FTO[J],Sens. Actuators, B, 2009, 137: 662~668 .
    [97] Sheng, Q.L., Wang, M.Z., Zheng, J.B. A novel hydrogen peroxide biosensor based onenzymatically induced deposition of polyaniline on the functionalized graphene–carbonnanotube hybrid materials[J], Sens. Actuators, B, 2011, 106: 1070~1077.
    [98]屈建莹,陈文静.明胶固定辣根过氧化物酶制备H2O2传感器[J],化学学报,2010,68 (3):257~262.
    [99]谭生伟,谭学才,张金磊,赵丹丹,刘力.基于壳聚糖/TiO2新型杂化材料的过氧化氢传感器[J],分析试验室,2011,30 (2): 51~54.
    [100]干宁,王鲁雁,李天华,陈晓东,徐伟民. 5ˊ-核苷酸酶和HRP酶共固定修饰电极快速检测鸡肉中肌苷酸含量[J],传感技术学报,2008,21(1): 21~31.
    [101]干宁,葛从辛.苯胺红T与辣根过氧化氢酶共固定无试剂过氧化氢传感器的研制[J],传感技术学报,2005,18 (4): 689~692.
    [102] Yan, Y.H., Yang, G.M., Huang, Y., Lu, X.X. A new hydrogen peroxide biosensor based ongold nanoelectrode ensembles/multiwalled carbon nanotubes/chitosan film-modifiedelectrode[J], Colloids Surf., A: Physicochem. Eng. Aspects, 2009, 340: 50~55.
    [103] Liu, X.Q., Feng, H.Q., Zhao, R.X., Wang, Y.B., Liu, X.H. A novel approach to construct ahorseradish peroxidase/hydrophilic ionic liquids/Au nanoparticles dotted titanate nanotubesbiosensor for amperometric sensing of hydrogen peroxide[J], Biosens. Bioelectron., 2012,31: 101~104.
    [104] Lin, C.Y., Lai, Y.H., Baalamurugan, A. Electrode modified with a composite film of ZnOnanorods an.Yd Ag nanoparticles as a sensor for hydrogen peroxide[J], Talanta, 2010, 82:340~347.
    [105] Kang, X.B., Pang, G.C.,Liang, X.Y., Wang, M., Liu, J., Zhu, M.M. Study on a hydrogenperoxide biosensor based on horseradish peroxidase /GNPs-thionine /chitosan[J],Electrochim. Acta, 2012, 62: 327~334.
    [106] Wang, J.F., Yuan, R., Chai, Y., Li, W.J., Fu, P., Min, L.G. Using flower like Polymer-coppernanostructure composite and novel organic–inorganic hybrid material to construct anamperometric biosensor for hydrogen peroxide[J], Colloids Surf., B:Biointerfaces, 2010, 75:425~431.
    [107] Li, Y.L., Zhang, J., Zhu, H., Yang, F., Yang, X.R. Gold nanoparticles mediate the assemblyof manganese dioxide nanoparticles for H2O2amperometric sensing[J], Electrochim. Acta,2010, 55: 5123~5128.
    [108] Xu, B., Ye, M.L., Yu, Y.X., Zhang, W.D. A highly sensitive hydrogen peroxide amperometricsensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes[J], Anal.Chim. Acta, 2010, 674:20~26.
    [109] Qi,H.G., Zhang,C.X., Li,X.R. Amperometric third-generation hydrogen peroxide biosensorincorporating multiwall carbon nanotubes and hemoglobin[J], Sens. Actuators, B, 2006, 114:364~370.
    [111] Zhao, W., Wang, H.C., Qin, X., Wang, X.S., Zhao, Z.X., Miao, Z.Y., Chen, L.L., Shan, M.M.,Fang,Y.X., Chen,Q. A novel nonenzymatic hydrogen peroxide sensor based on multi-wallcarbon nanotube/silver nanoparticle nanohybrids modified gold electrode[J], Talanta , 2009,89: 1029~1033.
    [112] Zhang, L., Ni, Y.G., Li, J., Zhao, G.C. Porous cuprous oxide microcubes for non-enzymaticamperometric hydrogen peroxide and glucose sensing, Electrochem. Commun., 2009, 11:812–815.
    [113]金根娣,张瑞,胡效亚.镍和氧化镍膜修饰的过氧化氢传感器的研究[J],化学传感器,2008,28 (3): 28~32.
    [114]杨阿喜,金根娣.镍·氧化镍/铜-氧化亚铜复合纳米粒子修饰玻碳电极测定过氧化氢[J],应用化学,2009,26 (12): 1466~1470.
    [115] Liu, Y., Chu, Z.Y., Jin, W.Q. A sensitivity-controlled hydrogen peroxide sensor based onself-assembled Prussian Blue modified electrode[J], Electrochem. Commun., 2009, 11:484~487.
    [116] Haghighi, B., Hamidi, H., Gorton, L. Electrochemical behavior and application of Prussianblue nanoparticle modified graphite electrode[J], Sens. Actuators, B, 2010,147: 270~276.
    [117] Charradi, K., Gondran, G., Mousty, C. H2O2determination at iron-rich clay modifiedelectrodes[J], Eectrochim. Acta, 2009, 54: 4237~4244.
    [118]杨志宇,李建平,彭图治.普鲁士蓝在化学传感器中的研究及应用[J],理化检验-化学分册,2004,40 (6): 368~372.
    [119]汪学英.普鲁士蓝/壳聚糖修饰的化学和生物传感器研究[D],苏州大学,2007.
    [120]卢惠婷,陈昌国,董海峰.普鲁士蓝修饰生物传感器的研究进展[J],理化检验-化学分册,2010,46 (4):460~464.
    [121] Zhang, J., Li, J., Yang, F., Zhang, B.L., Yang, X.R. Preparation of Prussian blue @ Ptnanoparticles/carbon nanotubes composite material for efficient determination of H2O2[J],Sens. Actuators, B, 2009, 143: 373~380.
    [122] Li, J.P., Wei, X.P., Yuan, Y.H. Synthesis of magnetic nanoparticles composed by Prussianblue and glucose oxidase for preparing highly sensitive and selective glucose biosensor[J],Sens. Actuators, B, 2009, 139: 400~406.
    [123] Karyaikin, A.A. Prussian blue and its analogues: Electrochemistry and Analyticalapplications[J], Electroanalysis, 2011, 13(10): 813~819.
    [124] Li, N.B., Park, J.H., Kwon, S.J. Characterization and electrocatalytic properties of Prussianblue electrochemically deposited on nano-Au/PAMAM dendrimer-modified goldelectrode[J], Biosens. Bioelectron., 2008, 23: 1519~1526.
    [125] Abbaspour, A., Kamyabi, M.A. Electrochemical formation of Prussian blue films with asingle ferricyanide solution on gold electrode[J], J. Electroanal. Chem., 2005, 584:117~123.
    [126] Liu, S.Q., Li, H., Sun, W.H., Wang, X.M., Chen, Z.G., Xu, J.J., Ju, H.X., Chen, H.Y.Photoinducedly electrochemical preparation of Prussian blue film and electrochemicalmodification of the film with cetyltrimethylammonium cation[J], Electrochim. Acta, 2011,56: 4007~4014.
    [127] Ping, J.F., Wu, J., Fan, k., Ying, Y.B. An amperometric sensor based on Prussian blue andpoly (o-phenylenediamine) modified glassy carbon electrode for the determination ofhydrogen peroxide in beverages[J], Food Chem., 2011, 126: 2005~2009.
    [128] Song, Z.J., Yuan, R., Chai, Y.Q., Yin, B., Fu, p., Wang, J.F. Multilayer structuredamperometric immunosensor based on gold nanoparticles and Prussian bluenanoparticles/nanocomposite functionalized interface[J], Electrochim. Acta, 2010, 55:1778~1784.
    [129] Demiri, S., Najdoski, M., Velevska, J.J. A simple chemical method for deposition ofelectrochromic Prussian blue thin films[J], Mater. Res. Bull., 2011, 46: 2484~2488.
    [130] Liu, Y.L., Chu, Z.Y., Jin, W.Q. A sensitivity-controlled hydrogen peroxide sensor based onself-assembled Prussian Blue modified electrode[J], Electrochem. Commun., 2009, 11:484~487.
    [131]丁海云,杨圣婴,李一峻,何锡文.纳米级普鲁士蓝的制备表征及其在电分析化学中的应用[J],分析测试学报,2008,27(1):97~102.
    [132] Gaitan, M., Goncales, V.R., Soler-Illia, G.A.A., Barald, L.M., Córdoba de Torresi,S.I.Structure effects of self-assembled Prussian blue confined in highly organized mesoporousTiO2on the electrocatalytic properties towards H2O2detection[J], Biosens. Bioelectron.,2010, 26: 890~893
    [133]陈昌国,董海峰,卢惠婷.普鲁士蓝修饰碳糊电极测定过氧化氢的研究[J],分析科学学报,2009,25(2): 232~234.
    [134] Hao, X., Li Y., Pritzker, M., Pulsed electrodeposition of nickel hexacyanoferrate films forelectrochemically switched ion exchange [J], Sep. Purif. Technol., 2008, 63: 407~414.
    [135] Nguyen, B.T.T., Ang,J.Q., Toh,C.S. Sensitive detection of potassium ion using Prussian bluenanotube sensor[J], Electrochem. Commun., 2009, 11: 1861~1864.
    [136] Ang, J.Q., Nguyen, B.T.T., Toh, C.S. A dual K+-Na+selective Prussian blue nanotubessensor[J], Sens. Actuators, B, 2011, 157: 417~423.
    [137]刘赵荣,王玉春,弓巧娟.电化学掺铜(Ⅱ)类普鲁士蓝膜修饰电极的制备及其对亚硝酸根的测定[J],分析化学研究简报,2010,38(7): 1040~1043.
    [138]杨志宇,李建平.普鲁士蓝掺杂固体石蜡碳糊电极及过氧化氢和水合肼的测定[J],桂林工学院学报,2004,24 (2): 219~222.
    [139]张贵贤,傅崇岗.基于溶胶一凝胶普鲁士蓝膜修饰玻碳电极电催化氧化测定水果中抗坏血酸V[J],理化检验-化学分册,2007,43(4): 260~263.
    [140] Karyakin, A.A., Puganova, E.A., Bolshakov, I.A., Karyakina, E.E. Electrochemical Sensorwith Record Performance Characteristics[J], Angew. Chem., 2007, 119: 7822~7824.
    [141] Malinauskas, A., Araminaite, R., Mickeviciute, G., Garjonyte, R. Evaluation of operationalstability of Prussian blue and cobalt hexacyanoferrate-based amperometric hydrogenperoxide[J], Mater. Sci. Eng., C, 2004, 24: 513~519.
    [142]李彤,姚子华,王振川.基于普鲁士蓝修饰电极的H2O2传感器,河北大学学报(自然科学版),2007,27 (5): 499~504.
    [143] Tseng, K.S., Chen, L.C., Ho, K.C. Amperometric detection of hydrogen peroxide at aPrussian Blue-modified FTO electrode[J], Sens. Actuators, B , 2005, 108: 738~745.
    [144] Zhang, J., Li, J., Yang, F., Zhang, B.L., Yang, X.R. Pt nanoparticles-assisted electrolessdeposition of Prussian blue on the electrode: Detection of H2O2with tunable sensitivity[J], J.Electroanal. Chem., 2010, 638: 173~177.
    [145] Che, X., Yuan, R., Li, J.J., Song, Z.J., Li, W.J., Zhong, X. A glucose biosensor based onchitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed byone-step electrodeposition[J], Colloids Surf., B: Biointerfaces, 2011, 84: 454~461.
    [146]凌敏,马涛,胡治流.普鲁士蓝及其衍生物在电化学方面的应用[J],广西工学院学报,2003,14 (4): 62~65.
    [147] Zhong, X., Yuan, R., Chai, Y.Q. Synthesis of chitosan-Prussian blue-graphene compositenanosheets for electrochemical detection of glucose based on pseudobienzymechanneling[J], Sens. Actuators, B, 2012, 162: 334~340.
    [148] Wang, C.Y., Chen, S.H., Xiang, Y., Li, W.J., Zhong, X., Li, J.J. Glucose biosensor based onthe highly efficient immobilization of glucose oxidase on Prussian blue-gold nanocompositefilms[J], J. Mol. Catal. B: Enzym., 2011, 69: 1~7.
    [149] Li, J.P., Wei, X.P., Yuan, Y.H. Synthesis of magnetic nanoparticles composed by Prussianblue and glucose oxidase for preparing highly sensitive and selective glucose biosensor[J],Sens. Actuators, B, 2009, 139: 400~406.
    [1] Notsu, H., Tatsuma, T., Fujishima, A. Tyrosinase-modified boron-doped diamond electrodesfor the determination of phenol derivatives[J], J. Electroanal. Chem., 2002, 523: 86~92.
    [2] Zhao, F., Wu, X., Wang, M.K., Liu, Y., Gao, L.N., Dong, S.J. Electrochemical andBioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon CompositeMaterials[J], Anal. Chem., 2004, 76: 4960~4967.
    [3] Yao, H., Li, N., Xu, S., Xu, J.Z., Zhu, J.J., Chen,H.Y. Electrochemical study of a newmethylene blue/silicon oxide nanocomposition mediator and its application for stablebiosensor of hydrogen peroxide[J], Biosens. Bioelectron., 2005, 21: 372~377.
    [4]宣婕,姜立萍,朱俊杰,基于三维有序大孔金电极的过氧化氢无酶传感器[J],分析化学(FENXI HUAXUE)研究报告,2010,38 (4): 513~516.
    [5] Karyakin, A.A. Prussian Blue and Its Analogues: Electrochemistry and AnalyticalApplications[J], Electroanalysis, 2001, 13 (10): 813~819.
    [6] Boym, A., Kalchm, K., Pietsch, R. Voltammetric Behavior of Perborate on Prussian BlueModified Carbon Paste Electrodes[J], Electroanalysis, 1990, 2: 155~161.
    [7] Deng, Q., Li, B., Dong, S.J. Self-gelatinizable copolymer immobilized glucose biosensorbased on Prussian Blue modified graphite electrode[J], Analyst, 1998, 123: 1995~1999.
    [8] Zhang, Y., Sun, X.M., Zhu, L.Z., Shen, H.B., Jia, N.Q. Electrochemical sensing based ongraphene oxide/Prussian blue hybrid film modified electrode[J], Electrochim. Acta, 2011, 56:1239~1245.
    [9]陈昌国,董海峰,卢惠婷,普鲁士蓝修饰碳糊电极测定过氧化氢的研究[J],分析科学学报,2009,25 (2): 232~234.
    [10] Lian, L.Z., Ruo, Y., CHai, Y.Q., Wang, N., Zhu, Q. A Novel Amperometric HydrogenPeroxide Biosensor Based on PB and Nano Au as well as Sol-gel Matrixes[J], Sout hwestChina Normal University (Natural Science), 2005, 30 (5) : 862~869.
    [11] Li, N.B., Park, J.H., Park, K.S., Kwon, S.J., Shin, H.K., Kwak, J.Y.Characterization andelectrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAMdendrimer-modified gold electrode[J], Biosens. Bioelectron., 2008, 23: 1519~1526.
    [12] Zeng, X.D., Li, X.F., Liu, X.Y., Luo, S.L., Wei, W.Z. A third-generation hydrogen peroxidebiosensor based on horseradish peroxidase immobilized on DNA functionalized carbonnanotubes[J], Biosens. Bioelectron., 2009, 25: 896~900.
    [13] Liu, S.Q., Li, J., Sun, W.H., Wang, X.M., Chen, Z.G., Xu, J.J. Photoinducedlyelectrochemical preparation of Prussian blue film and electrochemical modification of thefilm with cetyltrimethylammonium cation[J], Electrochim. Acta, 2011, 56: 4007~4014.
    [14] Gaitan, M., Goncales, V.R., Soler-Illia, G.A.A., Baraldo, L.M., Torresi, C.D. Structure effectsof self-assembled Prussian blue confined in highly organized mesoporous TiO2on theelectrocatalytic properties towards H2O2detection[J], Biosens. Bioelectron., 2010, 26:890~893.
    [15] Koncki, R., Wolfbeis, O.S. Optical chemical sensing based on thin films of Prussian Blue[J],Sens. Actuators, B, 1998, 51: 355~358.
    [16]彭芳,朱德荣,司士辉,肖辉.光电化学型半导体生物传感器[J],化学进展,2008,20(4): 587~593。
    [17] Pournaghi-Azar, M. H., Nahalparvari, H. Electroless preparation and electrochemicalbehavior of a platinum-doped nickel hexacyanoferrate film–zinc modified electrode: catalyticability of the electrode for electrooxidation of methanol[J], J. Solid State Eletrochem., 2004,8: 550~557.
    [18] Zhang, D., Wang, K., Sun, D. C., Xia, X. H., Chen,H.Y. Ultrathin Layers of Densely PackedPrussian Blue Nanoclusters Prepared from a Ferricyanide Solution[J], Chem. Mater., 2003,15: 4163~4165.
    [19] Zhang, D., Zhang, K., Yao, L.Y., Xia, X. H., Chen, H.Y. Multilayer Assembly of PrussianBlue Nanoclusters and Enzyme-Immobilized Poly (toluidine blue) Films and Its Applicationin Glucose Biosensor Construction[J], Langmuir, 2004, 20: 7303~7307.
    [20] Zhang, Y., Sun, X, .Zhu, L., Shen, H., Jia, N. Electrochemical sensing based on grapheneoxide/Prussian blue hybrid film modified electrode[J], Electrochim. Acta, 2011, 56: 1239~1245.
    [21]刘恩科,朱秉升,罗晋生.半导体物理学(第4版) [M],国防工业出版社,北京: 1994,p179~181.
    [22]李怀祥,王士勋,李国铮.金属修饰半导体硅组成光电化学电池的研究[J],化学学报,1991,49: 998~102.
    [1]门洪,胡德建,穆胜伟,靳继勇,王伟广.光寻址电位传感器及其应用[J],传感器与微系统,2008,27 (6): 12~17.
    [2] Tantra, R., Hutton, R.S., Williams, D.E., A biosensor based on transient photoeffects at asilicon electrode[J], J. Electroanal. Chem., 2002, 538-539: 205~208.
    [3] Zhang, D., Zhang, K., Yao, Y.L., Xia, X.H., Chen, H.Y. Multilayer Assembly of Prussian BlueNanoclusters and Enzyme-Immobilized Poly (toluidine blue) Films and Its Application inGlucose Biosensor Construction[J], Langmuir, 2004, 20, 7303~7307.
    [4] Zhang, K.Y., Zhang, L., Wang, C., Geng, T., Wang, H.Y., Zhu, J. A sensitive amperometrichydrogen peroxide sensor based on thionin/EDTA/carbon nanotubes-chitosan composite filmmodified electrode[J], Microchim. Acta, 2010, 171: 139~144.
    [5] Ping, J.F., Shi, P.R., Kai, F., Wu, J., Ying, Y.B., Copper oxide nanoparticles and ionic liquidmodified carbon electrode for the non-enzymatic electrochemical sensing of hydrogenperoxide[J], Microchim. Acta, 2010, 171: 117~123.
    [6]Yan, Q., Wang, Z.L., Zhang, J., Peng, H., Chen, X.J., Hou, H.N., Liu, C.R. Nickel hydroxidemodified silicon nanowires electrode for hydrogen peroxide sensor applications[J],Electrochim. Acta, 2012, 61: 148~153.
    [7]李彤,姚子华,干振川,基于普鲁士蓝修饰电极的H2O2传感器[J],河北大学学报(自然科学版),2007,27 (5): 499~504.
    [8] Karyakin, A.A. Prussian Blue and Its Analogues: Electrochemistry and AnalyticalApplications[J], Electroanalysis , 2001, 13(10): 813~818.
    [9]李丽花,徐琴,王海燕,胡效亚.普鲁士蓝一多壁碳纳米管复合材料修饰电极测定过氧化氢[J],分析化学(FENXIHUAXUE)研究报告,2007,35(6): 835~838.
    [10] Zhang, Y., Sun, X.M., Zhu, L.Z., Shen, H.B., Jia ,N.Q. Electrochemical sensing based ongraphene oxide/Prussian blue hybrid film modified electrode[J], Electrochim. Acta, 2011, 56:1239~1245.
    [1] Parka, J.H., Fryec, F., Andersona, N.E., Pajerowskia, D.M., Huhd, Y.D., Talhamc, D.R.,Meisela, M.W. Cooling rate-dependent charge-transfer-induced spin transition inK0.4Co1.3[Fe(CN)6]·nH2O Prussian blue analog[J], J. Magn. Magn. Mater., 2007, 310:1458~1459.
    [2] Gao, B., Yao, J.L., Xue, D.S. Spin-glass behavior of the polyvinyl pyrrolidone-protectedPrussianblue analog K114Mn[Fe(CN)6]0.88nanocubes [J], Physica, B, 2011, 406: 2528~2531.
    [3] Cafun, J.-D., Londinière, L., Rivière, E., A., Bleuzen, A. Metal dilution effects on theswitching properties of CoFe Prussian blue analogues[J], Inorg. Chim. Acta, 2008, 361:3555~3563.
    [4] Kumar, A., Yusuf, S.M. Magnetic properties of multi-metal Prussian Blue analogueCo0.75Ni0.75[Fe(CN)6]·6.8H2O[J], Physica B , 2005, 362: 278~285.
    [5] Kosaka, W., Tozawa, M., Hashimoto, K., Ohkoshi,S. Synthesis and superparamagneticproperty of a Co–Cr Prussian blue analogue nanoparticles inside Nafion membrane[J], Inorg.Chem. Commun., 2006, 9: 920~922.
    [6] Dong, W., Zhang, W., Ou-Yang, Y., Zhua, L.N., Liao, D.Z., Yoshimurac, K., Jiang, Z.H., Yan,S.P., Cheng, P. Molecular-based magnet with two magnetic transition temperature: APrussian-blue analogue Mn3[Cr(CN)6]2·12H2O[J], J. Magn. Magn. Mater., 2006, 309 (2007):7~10.
    [7] Gao, B., Yao, J.L., Xue, D.S. Vacancy-induced spin-glass behavior of Prussianblue analogueFe1.1IICrxII[CrIII(CN)6]0.6x·nH2O nanowires[J], J. Magn. Magn. Mater., 2010, 22: 2505~2508.
    [8] Fiorito, P.A., Co′rdoba de Torresi, S.I. Hybrid nickel hexacyanoferrate/polypyrrole compositeas mediator for hydrogen peroxide detection and its application in oxidase-based biosensors[J],J. Electroanal. Chem., 2005, 581: 31~37.
    [9] Wang, X.Y., Zhang, Y., Banks, E.C., Chen, Q.Y., Ji, X.B. Non-enzymatic amperometricglucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes[J],Colloids. Surf., B: Biointerfaces, 2010, 78: 363~366.
    [10] Wang, Z.D., Hao, X.G., Zhang, Z.L., Liu, S.B., Liang, Z.H., Guan, G.Q. One-step unipolarpulse electrodeposition of nickel hexacyanoferrate/chitosan/carbon nanotubes film and itsapplication in hydrogen peroxide sensor[J], Sens. Actuators, B , 2012, 162: 353~360.
    [11] Carpania, I., Giorgettia, M., Berrettonia, M., Buldinib, P.L., Gazzanoc, M., Tonellia, D. A newapproach for the synthesis of K+-free nickel hexacyanoferrate[J], J. Solid State Chem., 2006,179: 3981~3988.
    [12] Bagkar, N., Betty, C.A., Hassan, P.A., Kahali, K., Bellare, J.R., Yakhmi, J.V. Self-assembledfilms of nickel hexacyanoferrate: Electrochemical properties and application in potassium ionsensing[J], Thin Solid Films, 2006, 497: 259~266.
    [13]彭芳,朱德荣,司士辉,肖辉.光电化学型半导体生物传感器[J],化学进展,2008,20(4): 586~593.
    [14] Chen, W., Tang, J., Cheng, H.J., Xia, X.H. A simple method for fabrication of solecomposition nickel hexacyanoferrate modified electrode and it application [J], Talanta, 2009,80: 539~543.
    [15] Pournaghi-Azar, M. H., Nahalparvari, H. Electroless preparation and electrochemicalbehavior of a platinum-doped nickel hexacyanoferrate film–zinc modified electrode: catalyticability of the electrode for electrooxidation of methanol[J], J. Solid State Eletrochem., 2004,8: 550~557.
    [16]李春香,阳明辉,沈国励,俞汝勘.铁氰酸镍修饰的过氧化氢电化学传感器的研究[J],化学传感器,2003,23 (2): 9~17.
    [17] Cataldi, T.R.I., Guascito, R., Salvi, A.M. XPS study and electrochemical behaviour of thenickel hexacyanoferrate film electrode upon treatment in alkalinesolutions[J], J. Electroanal.Chem., 1996, 417: 83~88.
    [18] Robert Hillman, A., Skopek, M.A., Gurman.S.J. EXAFS structural studies of electrodepositedCo and Ni hexacyanoferrate films[J], J. Solid State Eletrochem., 2010, 14: 1997~2010.
    [19]李怀祥,王士勋,李国铮.金属修饰半导体硅组成光电化学电池的研究[J],化学学报,1991,49: 998~102.
    [20] Lin, L.F., Huang, X.J., Wang, L.S., Tang, A.M. Synthesis, characterization and theelectrocatalytic application of prussian blue/titanate nanotubes nanocomposite[J], Solid StateSciences, 2010, 12: 1764~1769.