海兔素改善大鼠酒精性肝损伤的效果及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:海兔素是一种溴代倍半萜,主要来源于红藻凹顶藻属海藻以及海兔中,具有抑菌、抗炎、抗肿瘤、免疫增强、抗氧化等生物学活性,对酒精暴露大鼠亦具有一定的肝脏保护作用。本研究通过探讨海兔素对酒精暴露大鼠肝脏乙醇代谢酶、抗氧化能力、DNA损伤与修复、肝细胞凋亡、氧化/硝化应激、线粒体功能以及内源性凋亡信号通路等的影响,以此阐明海兔素保肝效果及其可能作用机制。
     方法:
     1.动物分组及模型建立:两月龄健康雄性Wistar大鼠100只,体重180-220g,按体重随机分为5组,每组20只。酒精模型组以50%酒精8m1·kg1·d-1灌胃2w后,12ml·kg-1·d-1灌胃4w;海兔素低、中、高剂量组酒精剂量同模型组,同时每日分别给予海兔素50、100、150mg·kg-1·d-1灌胃;正常组以等体积生理盐水灌胃,持续6w。末次灌胃12h后,大鼠称重后给予7%水合氯醛麻醉,腹主动脉取血,剥取肝组织,分离红细胞膜,提取肝细胞线粒体及微粒体,并计算肝指数。
     2.肝脏病理学检查:H-E染色观察肝脏组织的病理学改变,透射电镜观察大鼠肝细胞超微结构变化。
     3.肝功能及脂质代谢水平评价:用赖氏法检测血清中谷丙转氨酶(ALT)和谷草转氨酶(AST)的活性;微量酶标法检测碱性磷酸酶(ALP)的活性;用COD-PAP法测定血清中TC含量;GPO-PAP法测定血清及肝脏TG含量。
     4.硝化应激程度的评价:用化学比色法检测血清中—氧化氮合酶(NOS)活性;硝酸还原法测定血清中—氧化氮(NO)含量;采用Western blotting检测大鼠肝脏中iNOS蛋白表达水平的变化。
     5.肝脏乙醇代谢酶活性的测定:制备10%肝组织匀浆,应用比色法检测肝脏乙醇脱氢酶(ADH)的活性;差速离心结合钙沉淀法制备微粒体,硝基酚法检测肝微粒体细胞色素P450亚酶2E1活性。
     6.DNA氧化损伤程度的评价:采用原位两步Ⅳ型胶原酶灌注消化分离肝细胞,制备大鼠肝细胞悬液,通过彗星实验(单细胞凝胶电泳实验)测定肝细胞DNA损伤程度;利用酶联免疫吸附测定法(ELISA法)检测血浆中8-OHdG含量,评价DNA氧化损伤程度。
     7.抗氧化综合能力的分析:酶法测定肝脏胞浆乳酸/丙酮酸比值,反映NAD+/NADH比值;利用低渗一步溶血法和红细胞膜荧光标记法检测红细胞膜流动性;微板法检测血浆中脂质过氧化物(LPO)的水平;硫代巴比妥酸法(TBA法)测定肝脏和血浆中丙二醛(MDA)的含量;黄嘌呤氧化酶法测定血清超氧化物歧化酶(SOD)活性;二硫代-2-硝基苯甲酸(DTNB)比色法测定血清谷胱甘肽过氧物酶(GSH-Px)的活性;采用比色法测定肝脏过氧化氢(CAT)的活性。
     8.线粒体功能评价:差速离心法制备线粒体,测定线粒体悬液中Mn-SOD的活性和GSH含量;比色法测定线粒体呼吸酶链复合物(MRC)活性。
     9.肝细胞凋亡的评估:采用Annexin V-FITC/PI双染法检测肝细胞凋亡情况。
     10. Western blotting法检测大鼠肝脏中iNOS、CYP2E1以及线粒体介导的内源性凋亡通路关键蛋白(Bcl-2、Bax、细胞色素C、caspase-3)的变化。
     11.用Trizol试剂提取肝脏中总RNA,反转录获得cDNA,用实时定量PCR检测肝组织中CYP2E1mRNA表达水平以及内源性凋亡相关基因(Bcl-2、Bax.细胞色素C、caspase-9、caspase-3)的mRNA表达水平。
     结果:
     1.海兔素改善酒精性肝损伤的效果评价
     与正常对照组相比,酒精模型组大鼠周体重有轻微下降,肝指数明显增加(P<0.05);与酒精模型组相比,各剂量海兔素干预组大鼠周体重均有所提高,但海兔素中、高剂量组大鼠肝指数均显著降低(P<0.05)。HE染色病理观察结果显示,海兔素各剂量组肝脏脂肪变性明显得到改善,炎性细胞浸润减少,与酒精模型组相比较,中、高剂量海兔素干预组,肝索排列逐渐恢复整齐,组织结构趋向正常。透射电镜下观察发现,各剂量海兔素组胞浆脂滴数量减少,线粒体病变明显减轻且数目有所增加,粗面内质网退化与排列紊乱程度有所改善。在本研究中,酒精模型组大鼠血清中ALT、AST和ALP的活性显著增加(P<0.05),而海兔素可有效抑制酒精诱导的血清ALT、AST和ALP的活性升高。此外,长期大量酒精灌胃能使大鼠体内脂质代谢紊乱,血清TC、TG以及肝脏TG水平升高,而海兔素干预抑制了酒精摄入引起的这些变化,同时表现出良好的血脂调节作用。
     2.海兔素对酒精暴露大鼠硝化应激和肝脏酒精代谢酶的影响
     与正常组比较,酒精模型组大鼠血清TNOS和iNOS的活性明显增加,NO含量升高,肝脏ADH及肝微粒体CYP2E1活性都有所增强(P<0.05);而不同剂量的海兔素组和酒精模型组相比,血清TNOS、iNOS活性以及NO含量均有不同程度地降低,且成剂量依赖关系,但ADH和CYP2E1活性仅150mg/kg海兔素组同时抑制了它们活性的变化。此外,中、高剂量海兔素可明显抑制大鼠肝组织中iNOS的蛋白表达(P<0.05),且海兔素的摄入明显降低了酒精诱导的CYP2E1的蛋白和mRNA过表达。
     3.海兔素对酒精暴露大鼠肝脏氧化损伤及氧化应激的影响
     酒精模型组胞浆NAD+/NADH比值、红细胞膜流动性均较正常对照组显著降低(P<0.05),而海兔素干预组可显著拮抗酒精所致的NAD+/NADH的变化以及改善红细胞膜流动性,尤其是100和150mg/kg剂量组。海兔素干预后可以明显缓解因酒精诱导的血浆8-OHdG的升高,同时彗星实验表明海兔素组大鼠肝脏分离细胞DNA损伤程度明显减轻,其尾部DNA%、尾长、尾距和Olive尾距值显著性低于酒精模型组组(P<0.05)。研究显示,酒精模型组大鼠血/肝脏LPO和MDA的水平都显著升高,相比之下,各海兔素干预组LPO和MDA水平均显示出明显的降低,并且海兔素干预组明显抑制酒精诱导的GSH的下降,恢复SOD. GSH-Px以及CAT的活性。
     4.线粒体介导的内源性凋亡通路在海兔素干预的酒精性肝损伤中的作用
     荧光显微镜Annexin V-FITC/PI双染法检测发现,酒精模型组大鼠凋亡的肝细胞数目明显增加,且多为晚期凋亡细胞。而在海兔素处理组,肝细胞凋亡数目明显减少,且多以早期凋亡为主。线粒体呼吸酶链复合物(MRC)活性检测中,可见海兔素干预逆转了酒精所致的MRC I, Ⅲ和Ⅳ活性降低,与酒精模型组相比,差异具有显著性(P<0.05)。此外,Western blotting结果显示,海兔素可上调Bcl-2的蛋白表达,下调Bax的表达,减少细胞色素C的释放,抑制caspase-3和caspase-9的激活。同时,real-time PCR的结果也显示,与酒精模型组相比,随着海兔素作用剂量的增加,肝脏内Bax、细胞色素C、caspase-9和caspase-3的mRNA的表达量逐渐下降,而Bcl-2基因mRNA表达的量逐渐增加,且差异具有显著性(P<0.05)。
     结论:
     1.根据对肝脏指数、肝脏病理学的观察、肝功能酶的评价以及脂质代谢的检测,初步证实了海兔素对酒精诱导的大鼠肝损伤具有显著的改善作用。
     2.海兔素对酒精性肝损伤的保护作用机制可能与①抑制iNOS活性,下调肝脏iNOS蛋白表达,减少NO的过量生成;②抑制大鼠肝脏ADH和微粒体CYP2E1活性,下调过表达的CYP2E1蛋白和:mRNA表达水平有关。然而海兔素作为一种具有iNOS抑制作用且可调节肝脏酒精代谢酶的物质能否成为有效预防和逆转酒精性肝损伤的药物尚需进一步的实验研究来佐证。
     3.海兔素的补充可提高机体抗氧化能力抵抗酒精所致的氧化应激,从而减轻脂质过氧化以及DNA的氧化损伤,这可能是海兔素拮抗酒精性肝损伤的机制之一
     4.过量的酒精摄入可导致肝细胞凋亡的发生,而海兔素可通过调控Bcl-2家族mRNA和转录蛋白的表达水平,抑制线粒体细胞色素C的释放,阻断caspase-3的活化,降低细胞色素C、caspase-9以及caspase-3mRNA的表达,抑制线粒体介导的凋亡通路的激活,从而达到对酒精性肝损伤的保护作用。
Objective Aplysin, belonging to one of the bromine-sesquiterpene compounds and mainly extracted from red alga Laurencia tristicha, had attracted much attention due to its potent biological activities, including anti-bacteria, anti-inflammatory, anti-tumor, immunopotentiation and antixdiant. This study intended to explore the hepatic protective effects of Aplysin against alcohol-induced liver injury in rats through regulating ethanol metabolic enzyme system, antioxidant capacity, DNA damage and repair, hepatocyte apoptosis, oxidative/nitrative stress, mitochondrial function and endogenous apoptotic signaling pathways. Thus, the potential of liver injury preventive activity and possibly related mechanism of Aplysin will be illustrated in this paper.
     Methods
     1. Animal grouping and Model building:there were100healthy male Wistar rats aged two months, weighing180-220g, which were randomly divided into five equal groups with20in each by weight:control group, normal diet with normal saline; alcohol-model group, normal diet with alcohol administration; and three low-, medium-, and high-dose Aplysin plus alcohol treatment groups. Except the control group, all the alcohol-treated group were initially given with50%(v/v) alcohol8ml·kg-1·day-1for two weeks by intragastric administration. Then the dose of alcohol would be increased to12ml·kg-1·day-1for the remaining four weeks. In addition, three low-, medium-, and high-dose Aplysin groups were respectively given Aplysin50,100,150mg·kg-1·day-1for entire six weeks by intragastric administration. Control group would be given normal saline with the same volume for whole six weeks by intragastric administration. The rats were weighed and anesthetized with7%chloral hydrate at the twelve hours after the last treatment. Then blood samples were collected by aorta ventralis puncture to determine biochemical parameters. Liver tissue was rapidly dissected, then cut and fixed in formaldehyde saline (10%) solution for histopathological analysis and liver index. Mitochondria and microsome were extracted from isolated erythrocyte membranes.
     2. Pathological evaluation of liver:Pathological changes of liver tissue were evaluated by hematoxylin-eosin (H-E) staining; the changes of hepatocellular ultrastructure were observed by using transmission electron microscopy.
     3. Evaluation of hepatic function and level of lipid metabolism:serum alanine aminotransferase (ALT) and aspartate transaminase (AST) activities were measured by using Yoriuji method; serum alkaline phosphatase (ALP) activity was tested by using enzyme linked immunosorbent assay (ELISA); serum level of total cholesterol (TC) was measured by using COD-PAP method; serum and liver tissue level of triglyceride (TG) was tested by using GPO-PAP method.
     4. Evaluation of the extent of nitrative stress:serum nitric oxide synthase (NOS) activity was tested by using chemical colorimetry; protein expression of iNOS was measured by using western blotting.
     5. Measurement of hepatic ethanol metabolic enzymes activity:prepared10%liver homogenate was used to test the activity of alcohol dehydrogenase (ADH); microsome was prepared by using differential centrifugation Ca2+precipitation method; the activity of CYP2E1in liver microsome was measured by using p-nitrophenol hydroxylase (PNPH) method.
     6. Evaluation of the extent of DNA oxidative damage:an in situ Ⅳ collagenase two-step perfusion method were applied to isolate hepatocytes which were used to prepare liver cell suspension; the extent of DNA oxidative damage was measured by using the alkaline comet assay (single cell gel electrophoresis, SCGE); plasma level of8-OHdG was determined by using an8-hydroxy-desoxyguanosine (8-OHdG) ELISA kit.
     7. Analysis of comprehensive antioxidant abilities:cytoplasmic redox state ([NAD+]/[NADH] ratio) was estimated from the corresponding [lactate]/[pyruvate](L/P) ratio and the equation of the chemical equilibrium; the fluidity of erythrocyte membrane was performed by the fluorescence polarization technique with1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescent probe; the concentration of lipid peroxide (LPO) was determined by using lipid peroxidation assay kit; the concentration of malondialdehyde (MDA) in plasma and liver tissue was measured by using thiobarbituric acid (TBA); the activities of serous superoxide dismutase (SOD) was tested by using xanthine oxidase method; the activities of plasmic glutathione peroxidase (GSH-Px) was determined by using DTNB method; the activity of hepatic catalase (CAT) in liver tissue was tested by using visible spectrophotometry method.
     8. Evaluation of mitochondrial function:mitochondria were prepared by using differential centrifugation method and were used to determine the activity of Mn-SOD and the concentration of GSH in mitochondrial suspension; colorimetric method was utilized to measure the activity of mitochondrial respiratory chain complex (MRC).
     9. Evaluation of hepatocyte apoptosis:the extent of hepatocyte apoptosis was determined by using Annexin V-FITC/PI Apoptosis Detection Kit.
     10. Western blotting technology was utilized to determine the changes of protein expression of iNOS, CYP2E1and critical protein of mitochondria-induced endogenous apoptosis pathway in liver tissue, such as Bcl-2, Bax, cytochrome c and caspase-3.
     11. Total RNA was isolated from liver tissues using TRIzol reagent and cDNA was prepared via reverse transcription. Then the real-time PCR (qPCR) method was utilized to determine the changes of mRNA expression of CYP2E1and endogenous apoptosis related genes in liver tissue, such as Bcl-2, Bax, cytochrome c, caspase-9and caspase-3.
     Results
     1. Evaluation of protective effect of Aplysin improving alcohol-induced liver damage
     Compared with normal group, weekly-weight in alcohol-model group was slightly decreased and liver index was siginificantly increased (P<0.05), compared with alcohol-model group, weekly-weight in three low-, medium-, and high-dose Aplysin groups all went up, but liver index among medium-, and high-dose Aplysin groups was significantly decreased (P<0.05). The results from HE staining pathological observation revealed that hepatic steatosis in three low-, medium-, and high-dose Aplysin groups was obviously improved, such as reducing of inflammatory cell infiltration. In addition, compared with alcohol-model group, hepatic cords arranged orderly and hepatocyte morphology was normal in medium-and high-dose Aplysin groups. Through the observation of transmission electron microscope, among medium-and high-dose Aplysin groups, the number of lipid droplets within cytoplasm was decreased; mitochondrial pathological changes was significantly alleviated in the liver and the number of mitochondria was obviously increased; degeneration of rough endoplasmic reticulum and disorder arrangement were both improved. In this study, serum activities of ALT, AST and ALP in alcohol-model group were all prominently increased (P<0.05), but Aplysin could effectively inhibit the increasing of serum activities of ALT, AST and ALP. In addition, long-term massive alcohol-treatment could disorder lipid metabolism via intragastric administration and make the level of TC, TG within serum and liver tissue increase. Aplysin-treatment successfully inhibited these changes caused by alcohol and seemed to have a positive moderating effect of blood lipid.
     2. The effect of Aplysin against alcohol-exposed nitrative stress and ethanol metabolic enzymes in rats
     Compared with the normal group, serum activities of TNOS and iNOS in alcohol-model group was significantly increased, the concentration of NO went up, and liver activity of ADH and liver microsome activity of CYP2E1was increased (P<0.05); compared with alcohol-model group, serum activities of TNOS, iNOS and NO within three low-, medium-, and high-dose Aplysin groups were all decreased and had dose-dependent effect. However, activity of ADH and CYP2E1was only inhibited in high-dose Aplysin group. In addition, medium-, and high-dose Aplysin group could obviously inhibit protein expression of iNOS in liver tissue (P<0.05); intaking of Aplysin significantly reduce the protein or mRNA expression of CYP2E1.
     3. The effect of Aplysin against alcohol-exposed liver oxidative damage and oxidative stress
     Compared with the normal group, cytoplasm NAD+/NADH ratio and the fluidity of erythrocyte membrane in alcohol-model group were significantly decreased (P<0.05); Aplysin-treatment groups could inhibit the changes of NAD"/NADH and the fluidity of erythrocyte membrane caused by alcohol, especially in medium-, and high-dose Aplysin groups. Aplysin-treatment could significantly relieve the increasing of plasma8-OHdG induced by alcohol. On the other hand, the results of comet assay test indicated that the extent of DNA damage isolated from liver was significantly attenuated, for example, tail DNA percent, tail length, tail moment and olive tail moment were all significantly decreased compared with alcohol-model group(P<0.05) Concentration of LPO and MDA in serum or liver was both obviously increased. In contrast, concentration of LPO and MDA in all Aplysin-treatment groups significantly went down. In addition, Aplysin-treatment groups could obviously inhibit the decreasing of GSH and recover the activity of SOD, GSH-Px and CAT.
     4. The role of mitochondria-mediated endogenous apoptosis pathway for alcohol-induced liver damage interfered by Aplysin
     According to the measurement of Annexin V-FITC/PI method by using fluorescence microscope, the number of liver apoptosis was significantly increased, and most of them were the late stage apoptotic cells. In contrast, the number of liver apoptosis in Aplysin-treatment groups was obviously decreased, and most of them were the early stage apoptotic cells. During the test of activity of mitochondrial respiratory chain complex (MRC), it could be seen that Aplysin-treatment reverse the decreasing of activities of MRC I, III and IV resulted from alcohol. Compare with the alcohol-model group, the differences had significance (P<0.05). In addition, the results of Western blotting demonstrated that Aplysin could up-regulate protein expression of Bcl-2, down-regulate expression of Bax, reduce the release of cytochrome C, and inhibit the activation of caspase-3and caspase-9. The results of real-time PCR indicated that mRNA expression of Bax, cytochrome C, caspase-3, caspase-9in the liver was gradually decreased with the development of dose of Aplysin, compared with alcohol-model group. But mRNA expression of Bcl-2was gradually increased (P<0.05).
     Conclusion
     1.Based on the results of liver index, observation of hepatic histopathology, the evaluation of related enzymes of liver function, and measurement of lipid metabolism, it was initially proved that Aplysin had significantly protective effect on the improvement of alcohol-induced liver damage in rats.
     2.The mechanism of hepatic protective effect of Aplysin against alcohol-induced liver damage in rats could be relevant with some factors, such as:1. Inhibit the activity of iNOS, down-regulate protein expression of iNOS, reduce the formation of NO;2. Inhibit the activity of ADH in liver and the activity of CYP2E1in microsome, down-regulate protein or mRNA expression of CYP2E1. But whether Aplysin would effectively prevent alcohol-induced liver damage, as one of drugs which had inhibiting effect against iNOS and regulate ethanol metabolic enzymes in liver, still needed more and further experiments to confirm.
     3.Supplement of Aplysin could enhance the ability of antioxidant to resist alcohol-induced oxidative stress, and alleviate lipid peroxidation and DNA oxidative damage. This could be one of the mechanisms of Aplysin against alcohol-induced liver damage.
     4.Overdose of intaking alcohol could lead to the liver apoptosis, but Aplysin would protect alcohol-induced liver damage, through regulating protein or mRNA expression of Bcl-2family, inhibiting the release of cytochrome C, inhibiting the activation of caspase-3, reducing the mRNA expression of cytochrome C, caspase-9and caspase-3, inhibiting the activation of mitochondria-mediated apopsis pathway.
引文
[1]Lefkowitch JH. Morphology of alcoholic liver disease [J]. Clin Liver Dis,2005,9(1):37-53.
    [2]Crabb DW, Liangpunsakul S. Alcohol and lipid metabolism [J]. J Gastroenterol Hepatol,2006, 21(3):56-60.
    [3]Mao G, Kraus GA, Kim I, et al. Effect of a mitochondria-targeted vitamin E derivative on mitochondrial alteration and systemic oxidative stress in mice [J]. Br J Nutr,2011,106(1):87-95.
    [4]中华医学会肝脏病学分会脂肪肝和酒精性肝病学组.酒精性肝病诊断标准[J].中华肝脏病杂志,2003,11(2):72.
    [5]WHO:Global Status Report on Alcohol and Health 2011. http://www.who.int/substance_abuse/ publications/global_alcohol_report/en/index.html.
    [6]Schwartz, J.M., Reinus, J.F. Prevalence and natural history of alcoholic liver disease [J]. Clin Liver Dis,2012,16(4):659-666.
    [7]黄顺玲,戴水奇,张雪红,等.湖南省酒精性肝病流行病学调查概况[J].中国医师杂志,2005,7(3):426-427.
    [8]厉有名,陈卫星,虞朝辉,等.浙江省酒精性肝病流行病学调查概况[J].中华肝脏病杂志,2003,11(11):647-649.
    [9]Tsukamoto H, Lu SC. Current conceptsin thepathogenesisof alcoholic liver injury [J]. FASEB J, 2001,15(8):1335-1349.
    [10]Guicciardi ME, Gores GJ. Apoptosis:a mechanism of acute and chronic liver injury [J]. Gut, 2005,54(7):1024-1033.
    [11]Wang H, Feng F, Zhuang BY, et al. Evaluation of hepatoprotective effect of Zhi-Zi-Da-Huang decoction and its two fractions against acute alcohol-induced liver injury in rats [J]. J Ethnopharmacol, 2009,126(2):273-279.
    [12]Albano E. Alcohol, oxidative stress and free radical damage [J]. Proc Nutr Soc,2006,65(3): 278-290.
    [13]Dey A, Cederbaum I. Alcohol and oxidative liver injury [J]. Hepatology,2006,43(1):S63-S74.
    [14]Kono H, Rusyn I, Uesugi T, et al. Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat [J]. American Journal of Physiology, Gas-trointestinal and Liver Physiology,2001,280(5):1005-1012.
    [15]Lieber CS. Micmsomal ethanol-oxidizing system (MEOS):the first 30 years (1968-1998)-a review [J]. Alcohol Clin Exp Res,1999,23(6):991-1007.
    [16]Ji L, Fu F, Zhang L, et al. Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress [J]. Am J Physiol Endocrinol Metab,2010,298(4):871-880.
    [17]Foadoddini M, Esmailidehaj M, Mehrani H, et al. Pretreatment with hyperoxia reduces in vivo infarct size and cell death by apoptosis with an early and delayed phase of protection [J]. European Journal of Cardio-thoracic Surgery,2011,39(2):233-240.
    [18]Fuchs Y, Steller H. Programmed cell death in animal development and disease [J]. Cell,2011, 147(4):742-758.
    [19]Ronis M J, Korourian S, Blackburn M L, et al. The role of ethanol metabolism in development of alcoholic steatohepatitis in the rat [J]. Alcohol,2010,44(2):157-169.
    [20]Yamamoto S, Watabe K, Araki H. Protective role of adiponectin against ethanol-induced gastric injury in mice [J]. Am J Physiol Gastrointest Liver Physiol,2012,302(8):773-780.
    [21]Boyadjieva NI, Sarkar DK, Microglia play a role in ethanol-induced oxidative stress and apoptosis in developing hypothalamic neurons [J]. Alcohol Clin Exp Res.2013,37(2):252-262.
    [22]Zhang RH, Gao JY, Guo HT, et al. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis [J]. Biochim Biophys Acta,2013, 1832(1):128-141.
    [23]Kim HB, Lee HS, Kim SJ, et al. Ethanol extract of fermented soybean, Chungkookjang, inhibits the apoptosis of mouse spleen, and thymus cells [J]. J Microbiol,2007,45(3):256-261.
    [24]Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death [J]. Nat Rev Mol Cell Biol,2008,9(1):47-59.
    [25]Lu Y, Cederbaum AI.CYP2E1 and oxidative liver injury by alcohol [J]. Free Radic Biol Med. 2008,44(5):723-738.
    [26]Cui J, Chen C, Lu H, et al. Modelling of the mitochondrial apoptosis network [J]. Int J Bioinform Res Appl,2008,4(2):172-187.
    [27]Feng Y, Lu Y, Lin X, et al. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse [J]. Life sciences,2008,82(13):752-763.
    [28]Hasenjager A, Gillissen B, Miiller A, et al. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells [J]. Oncogene,2004,23(26):4523-4535.
    [29]Zhang CL, Zeng T, Zhao XL, et al. Protective effects of garlic oil on hepatocarcinoma induced by N-nitrosodiethylamine in rats [J]. Int J Biol Sci.2012,8(3):363-374.
    [30]Li G., Ye Y, Kang J, et al. L-Theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes [J]. Food Chem Toxicol,2012,50(2):363-372.
    [31]Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria [J]. Nature,2001,412(6842):95-99.
    [32]Duh CY, Hou RS. Cytotoxic cembranoids from the soft corals Sinularia gibberosa and Sarcophyton trocheliophorum[J]. Journal of natural products,1996,59(6):595-598.
    [33]吴光健,黄汝亮,刘军,等.白桦脂醇对酒精性肝损伤的治疗作用[J].预防医学论坛,2010,16(9):825-827.
    [34]Saravanan R, Viswanathan P, Pugalendi KV. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats [J]. Life Sci,2006,78(7):713-718.
    [35]Sims JJ, Fenical W, M Wing R, et al. Marine natural products Ⅲ. Johnstonol, an unusual halogenated epoxide from the red alga Laurencia johnstonii [J]. Tetrahedron Lett.1972,13(3): 195-198.
    [36]Sun J, Shi DY, Li S, et al. Chemical constituents of the red alga Laurencia tristicha [J]. J Asian Nat Prod Res,2007,9(8):725-734.
    [37]da Silva Machado FL, Pacienza-Lima W, Rossi-Bergmann B, et al. Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea [J]. Planta Med,2011,77(7): 733-735.
    [38]Yamamura S, Hirata Y. Structures of aplysin and aplysinol naturally occurring bromo-compounds [J]. Tetrahedron,1963,19(10):1485-1496.
    [39]Ojika M, Kigoshi H, Yoshida Y, et al. Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C:isolation, structures, and bioactivities [J]. Tetrahedron, 2007,63(15):3138-3167.
    [40]刘颖,梁惠,徐宏伟,等.海兔素对S180荷瘤小鼠的抑瘤活性及其免疫作用的实验观察[J].中国药理学通报,2006,22(11):1403-1405.
    [41]贺娟,梁惠,韩磊,等.海兔素对人乳腺癌细胞增殖及血管内皮生长因子表达的影响[J].营养学报,2009,5(31):482-485.
    [42]马文龙,梁惠,刘颖.海兔素对人乳腺癌SK-BR-3细胞的抑制作用及机制研究[J].天然产物研究与开发,2012,24(9):1201-1205.
    [43]Abidov M, Ramazanov Z, Seifulla R, et al. The effects of XanthigenTM in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat [J]. Diabetes Obes Metab.2010,12(1):72-81.
    [44]Mello T, Ceni E, Surrenti C, et al. Alcohol induced hepatic fibrosis:role of acetaldehyde [J]. Mol Aspects Med,2008,29(1):17-21.
    [45]Chen KH, Li PC, Lin WH, et al. Depression by a green tea extract of alcohol-induced oxidative stress and lipogenesis in rat liver [J]. Biosci Biotechnol Biochem,2011,75:1668-1676.
    [46]You M, Crabb DW. Recent advances in alcoholic liver disease Ⅱ. Minireview:molecular mechanisms of alcoholic fatty liver [J]. Am J Physiol Gastrointest Liver Physiol,2004,287(1):1-6.
    [47]Konishi M, Ishii H. Role of microsomal enzymes in development of alcoholic liver diseases [J]. J Gastroenterol Hepatol,2007,22(1):S7-S10.
    [48]Adachi M, Ishii H. Role of mitochondfia in alcoholic liver injury [J]. Free Radic Biol Med,2002, 32(6):487-491.
    [49]Gao B, Seki E, Brenner DA, et al. Innate immunity in alcoholic liver disease [J]. Am J Physiol Gastrointest Liver Physiol,2011,300(4):S516-S525.
    [50]Ge N, Liang H, Liu Y, et al. Protective effect of Aplysin on hepatic injury in ethanol-treated rats [J]. Food and Chemical Toxicology,2013,62:361-372.
    [51]Zeng T, Guo FF, Zhang CL, et al. The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice [J]. Chemico-Biological Interactions,2008,176(2):234-242.
    [52]Nanji, AA, Mendenhall CL, French SW. Beef fat prevents alcoholic liver disease in the rat [J]. Alcohol Clin Exp Res,1989,13(1):15-19.
    [53]Lieber CS, DeCarli LM, Sorrell MF. Experimental methods of ethanol administration [J]. Hepatology,1989,10(4):501-510.
    [54]Tsukamoto H, Mkrtchyan H, Dynnyk A. Intragastric ethanol infusion model in rodents [J]. Methods Mol Biol,2008,447:33-48.
    [55]赵静波,王泰龄,张晶,等.大鼠急性酒精性肝损伤模型分析[J].中日友好医院学报,1996,10(2):17-19.
    [56]杜施霖,迟宝荣.酒精性肝损伤动物模型的研究[J].白求恩医科大学学报,2001,27(6):682-685.
    [57]Liang H, He J, Ma AG, et al. Effect of ethanol extract of alga Laurencia supplementation on DNA oxidation and alkylation damage in mice [J]. Asia Pac J Clin Nutr.2007,16:S164-168.
    [58]Aruna K, Rukkumani R, Varma PS, et al. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity [J]. Phytother Res.2005,19(5),416-421.
    [59]Xu GF, Wang XY, Ge GL, et al.Dynamic changes of capillarization and peri-sinusoid fibrosis in alcoholic liver disease [J]. World J Gastroenterol,2004,10(2):238-243
    [60]Amacher DE. Serum transaminase elevations as indicators of hepatic injury following the administration of drugs [J]. Regul Toxicol Pharmacol.1998,27(2):119-130.
    [61]Sheweita SA, Abd El-Gabar M, Bastawy M. Carbon tetrachloride-induced changes in the activity of phase Ⅱ drug-metabolizing enzyme in the liver of male rats:role of antioxidants [J]. Toxicology, 2001,165(2-3):217-224.
    [62]Devi SL, Viswanathan P, Anuradha CV. Taurine enhances the metabolism and detoxification of ethanol and prevents hepatic fibrosis in rats treated with iron and alcohol [J]. Environ Toxicol Phar, 2009,27:120-126.
    [63]Lee JS. Supplementation of Pueraria radix water extract on changes of antioxidant enzymes and lipid profile in ethanol-treated rats [J]. Clin Chim Acta,2004,347(1-2):121-128.
    [64]Venkatraman A, Shiva S, Wigley A, et al. The role of iNOS in alcohol-dependent hepatotoxicity and mitochondrial dysfunction in mice [J]. Hepatology,2004,40(3):565-573.
    [65]Lieber CS. Alcohol and the liver [J]. Gastroenterology,1994,106(4):1085-1105.
    [66]Arthur I, Cederbaum.CYP2E1-biochemical and toxicological aspects and role in alcohol-induced liver injury [J]. The Mount Sinai Journal of Medicine,2006,73(4):657-672.
    [67]Jang YY, Song JH, Shin YK, et al. Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats [J]. Pharmacol Res,2000,42(4):361-371.
    [68]郑英,张捷,楼宜嘉.大鼠肝微粒体谷胱甘肽S-转移酶简易制备法对活性影响[J].浙江大学学报(医学版),2002,31(6):429-432.
    [69]Bailey SM, Robinson G, Pinner A, et al. S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver [J]. Am J Physiol Gastrointest Liver Physiol,2006,291(5): 857-867.
    [70]江正辉,王泰龄主编.酒精性肝病[M].北京:中国医药科技出版社,2001,12-23.
    [71]胡成穆,姜辉,刘洪峰,等.金银花总黄酮对免疫性肝损伤小鼠的影响[J].2008,12(4):295-297.
    [72]Zhu JH, Zhang X, Roneker CA, et al. Role of copper,zinc-superoxide dismutase in catalyzing nitrotyrosine formation in murine liver [J]. Free Radic Biol Med.2008,45(5):611-618.
    [73]Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria [J]. Biol Chem,2002,383(3-4):401-409
    [74]逢丹,梁惠,马爱国.CYP2E1在乙醇性肝病发病机制中的作用[J].青岛大学医学院学报,2011,47(4):285-287.
    [75]晋阳,霍丽娟.a-硫辛酸对酒精性肝损伤大鼠的治疗作用[J].中国医疗前沿,2010,5(9):65-67
    [76]Tsukamoto E, Takei Y, McClain CJ, et al. How is the liver primed or sensitized for alcoholic liver disease?[J] Alcohol Clin Exp Res,2001,25(S1):171S-181S.
    [77]Jaeschke H, Gores GJ, Cederbaum Al, et al. Mechanisms of hepatotoxicity [J]. Toxicol Sci,2002, 65(2):166-176.
    [78]Roberts BJ, Song BJ, Soh Y, et al. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1 [J]. J Biol Chem,1995,270(50): 29632-29635.
    [79]Diluzio NR. Prevention of the acute ethanol-induced fatty liver by the simultaneous administration of antioxidants [J]. Life Sci,1964,3:113-118.
    [80]Conde de la Rosa L, Moshage H,Nieto N. Hepatocyle oxidant stress and alcoholic liver disease[J]. Rev Esp Enferm Dig,2008,100(3):156-163.
    [81]聂松青,薄蕙卿,林克椿.蜂王精对大鼠红细胞膜流动性的影响[J].北京医学院学报,1983,15(4):249-252.
    [82]Coccia R, Spadaccio C, Foppoli C, et al. The effect of simvastatin on erythrocyte membrane fluidity during oxidative stress induced by cardiopulmonary bypass:a randomized controlled study [J]. Clin Ther,2007,29(8):1706-1717.
    [83]郑冬凌,郝彦峰,林晓静,等.遗传性球形红细胞增多症红细胞膜流动性改变的研究[J].黑龙江医学,2002,26(11):849.
    [84]Smedsr(?)d B, Pertoft H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence [J]. J Leukoc Biol. 1985,38(2),213-230.
    [85]Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver [J]. Biochem J,1967,103(2):514-527.
    [86]刘丰.应用荧光探针DPH测定完整红细胞膜的流动性[J].南京医科大学学报,1998,16(6):527-529.
    [87]Beccerica, Piergiacom G, Curatola G, et al. Changes of lymphocyte membrane fluidity in rheumatoid arthritis:a fluorescence polarisation study [J]. Ann Rheum Dis,1988,47(11):472-477.
    [88]Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization [J]. Biochim Biophys Acta,1978,515(4):367-394.
    [89]Singh NP, McCoy MT, Tice RR, et al. A simple technique for quantitation of low levels of DNA damage in individual cells [J]. Exp Cell Res,1988,175(1):184-191.
    [90]Hellman B, Vaghef H, Bostrom B. The concepts of tail moment and tail inertia in the single cell gel electrophoresis assay [J]. Mutat. Res,1995,336(2):123-131.
    [91]Kono H, Arteel GE, Rusyn I, et al. Ebselen prevents early alcohol-induced liver injury in rats [J]. Free Radic Biol Med,2001,30(4):403-411.
    [92]Nath B, Szabo G. Alcohol-induced modulation of signaling pathways in liver parenchymal and nonparenchymal cells:implications for immunity [J]. Semin Liver Dis.2009,29(2):166-177.
    [93]厉有名.酒精性肝病的发病机制[J].中华肝脏病杂志,2003,11(11):690-691.
    [94]Lu Y, Wu D, Wang X, et al. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice [J]. Free Radical Biology & Medicine,2010,49(9):1406-1416.
    [95]Manna C, Galletti P, Cucciolla V. Oliver oil hydroxytyrosol protects human erythrocytes against oxidative damages [J]. J Nutr Biochem,1999,10(3):159-165
    [96]Constantinescu A, Han D, Packer L. Vitamin E recycling in human erythrocyte membrane [J]. J Biol Chem,1993,268(15):10906-10913.
    [97]Floyd RA, West MS, Eneff KL, et al. Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA [J]. Arch Biochem Biophys,1988,262(1):266-272.
    [98]Eder E, Espinosa-Gonzalez J, Mayer A, et al. Autoxidative activation of the nematocide 1,3-dichloropropene to highly genotoxic and mutagenic derivatives:consideration of genotoxic/carcinogenic mechanisms [J]. Chem Res Toxicol,2006,19(7):952-959.
    [99]Liang H, He J, Ma AG, et al. Effect of ethanol extract of alga Laurencia supplementation on DNA oxidation and alkylation damage in mice [J]. Asia Pac J Clin Nutr,2007,16(S1):S164-168.
    [100]Hao L, Chen L. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles [J]. Ecotoxicol Environ Saf,2012,80:103-110.
    [101]Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R, et al. Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism [J]. Free Radic Res,2009,43(2):128-137.
    [102]Banakar MC, Paramasivan SK, Chattopadhyay MB, et al. lalpha,25-dihydroxyvitamin D3 prevents DNA damage and restores antioxidant enzymes in rat hepatocarcinogenesis induced by diethylnitrosamine and promoted by phenobarbital [J]. World J Gastroenterol,2004,10(9):1268-1275.
    [103]Lykkesfeldt J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking [J]. Clin Chim Acta,2007,380(1-2):50-58.
    [104]Zhao J, Chen H, Li Y. Protective effect of bicyclol on acute alcohol-induced liver injury in mice [J]. Eur J Pharmacol,2008,586(1-3):322-331.
    [105]Bansal AK, Bansal M, Soni G, et al. Protective role of Vitamin E pretreatment on N-nitrosodiethylamine induced oxidative stress in rat liver [J]. Chem Biol Interact,2005,156(2-3): 101-111.
    [106]Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health [J]. J Nutr, 2004,134(3):489-492.
    [107]Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally [J]. Toxicon,2005,45(4): 395-402.
    [108]Batcioglu K, Ozturk C, Karagozler A, et al. Comparison of the selenium level with GSH-Px activity in the liver of mice treated with 7,12 DMBA[J]. Cell Biochem Funct,2002,20(2):115-118.
    [109]Sandstrom J, Nilsson P, Karlsson K, et al.10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain [J]. J Biol Chem,1994, 269(29):19163-19166.
    [110]赵克然,杨毅军,曹道俊主编.氧自由基与临床(第1版)[M].北京:中国医药科技出版社,2000,529-538.
    [111]Fernandez-Checa JC, Kaplowitz N, Garcia-Ruiz C, et al. GSH transport in mitochondria:defense against TNF-induced oxidative stress and alcohol-induced defect [J]. Am J Physiol,1997,273(1 Pt 1):7-17.
    [112]Conradt B. Genetic control of programmed cell death during animal development [J]. Annu Rev Genet,2009,43:493-523.
    [113]Goldin RD, Hunt, NC, Clark J, et al. Apoptotic bodies in a murine model of alcoholic liver disease:reversibility of ethanolinduced changes [J]. J Pathol,1993,171(1):73-76.
    [114]Zhao M, Laissue JA, Zimmermann A. TUNEL-positive hepatocytes in alcoholic liver disease. A retrospective biopsy study using DNA nick end-labeling [J]. Virchows Arch,1997,431(5):337-344.
    [115]Wu H, Cai P, Clemens DL,et al. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells:role of nonoxidative metabolism [J]. Toxicol Appl Pharmacol,2006,216(2):238-247.
    [116]Lieber CS. Alcoholic fatty liver:its pathogenesis and mechanism of progression to inflammation and fibrosis [J]. Alcohol,2004,34(1):9-19.
    [117]Caro AA, Cederbaum Al. Oxidative stress, toxicology, and pharmacology of CYP2E1 [J]. Annu Rev Pharmacol Toxicol,2004,44:27-42.
    [118]Swaminathan K, Clemens DL, Dey A. Inhibition of CYP2E1 leads to decreased malondialdehyde-acetaldehyde adduct formation in VL-17A cells under chronic alcohol exposure [J]. Life Sciences,2013,92(6-7):325-336.
    [119]查锡良主编.医学分子生物学(第1版)[M].北京:人民卫生出版社,2008:513-522.
    [120]Porter AG Janicke RU, Emerging roles of caspase-3 in apoptosis [J]. Cell Death Differ,1999, 6(2):99-104.
    [121]Ziol M, Tepper M, Lohez M, et al. Clinical and biological relevance of hepatocyte apoptosis in alcoholic hepatitis [J]. J Hepatol,2001,34(2):254-260.
    [122]Yacoub LK, Fogt F, Griniuviene B, et al. Apoptosis and Bcl-2 protein expression in experimental alcoholic liver disease in the rat [J]. Alcohol Clin Exp Res,1995,19(4):854-859.
    [123]Han D, Ybanez MD, Johnson HS, et al. Dynamic adaptation of liver mitochondria to chronic alcohol feeding in mice:biogenesis, remodeling, and functional alterations [J]. J Biol Chem,2012, 287(50):42165-42179.
    [124]Senft AP, Dalton TP, Nebert DW, et al. Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor [J]. Free Radic Biol Med,2002,33(9):1268-1278.
    [125]Venkatraman A, Landar A, Davis AJ, et al. Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity [J]. J Biol Chem,2004,279(21): 22092-22101.
    [126]Kaur M, Agarwal C, Singh RP, et al. Skin cancer chemopreventive agent, a-santalol, induces apoptotic death of human epidermoid carcinoma A431 cells via caspase activation together with dissipation of mitochondrial membrane potential and cytochromec release [J]. Carcinogenesis,2005, 26(2):369-380.
    [127]Sakamoto T, Kondo K, Kashio A, et al. Methimazole-induced cell death in rat olfactory receptor neurons occurs via apoptosis triggered through mitochondrial cytochrome c-mediated caspase-3 activation pathway [J]. Neurosci Res,2007,85(3):548-555.
    [128]Huttemann M, Pecina P, Rainbolt M, et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell:From respiration to apoptosis [J]. Mitochondrion.2011,11(3):369-381.
    [129]Stevens JM. Cytochrome c as an experimental model protein [J]. Metallomics,2011,3(4): 319-322.
    [130]Li P, Nijhawan D, Budihardjo I, et al. Cytochromec and dATP-dependent formation of Apaf-l/caspase-9 complex initiates an apoptotic protease protease cascade [J]. Cell,1997,91(4): 479-489.
    [131]Choi SJ, Lee HK, Kim NH, et al. Mycophenolic acid mediated mitochondrial membrane potential transition change lead to T lymphocyte apoptosis [J]. J Korean Surg Soc,2011,81(4): 235-241.
    [132]Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity[J]. Immunol Rev,2003,193:10-21.
    [133]Boattight KM, Salvesen GS. Mechanisms of caspasc activation [J]. Curt Opin Cell Biol,2003, 15(6):725-731.
    [134]Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis [J]. Biochim Biophys Acta,2006,1757(5-6):639-647.
    [135]An WW, Wang MW, Tashiro S, et al. Norcantharidin Induces Human Melanoma A375-S2 Cell Apoptosis through Mitochondrial and Caspase Pathways [J]. J Korean Med Sci,2004,19(4):560-566.
    [136]Narita M, Shimizu S, Ito T, et al. Bax interacts with permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria [J]. Proc Natl Acad Sci USA, 1998,95(25):14681-14686.
    [137]Edlich F, Banerjee S, Suzuki M, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol [J]. Cell,2011,145(1):104-116.
    [138]Zhang S, Ji G, Liu J. Reversal of chemical-induced liver fibrosis in Wistar rats by puerarin [J]. J Nutr Biochem,2006,17(7):485-491..
    [1]Tsukamoto H, Reiderberger RD, French SW, et al. Long-term cannulation model for blood sampling and intragastric infusion in the rat [J]. Am J Physiol,1984,247(3pt2):595-599.
    [2]Batra SC, Haber PS, Mirmiran-Yazdy AA, et al. Gastric metabolism of ethanol in Syrian golden hamster [J]. Dig Dis Sci,1995,40(12):2712-2716.
    [3]Lieber CS, Leo MA, Mak KM, et al. Choline fails to prevent liver fibrosis in ethanol-fed baboons but causes toxicity [J]. Hepatology,1985,5(4):561-572.
    [4]Lieber CS, Baraona E, Hernandez-Munoz R, et al. Impaired oxygen utilization:a new mechanism for the hepatotoxicity of ethanol in sub-human primates [J]. J Clin Invest,1989,83(5):1682-1690.
    [5]Zhang P, Bagby GJ, Xie M, et al. Acute ethanol intoxication inhibits neutrophil β2-integrin expression in rats during endotoxemia [J]. Alcohol Clin Exp Res,1998,22(1):135-141.
    [6]Slawecki CJ, Somes C, Ehlers CL. Effects of prolonged ethanol exposure on neurophysiological measures during an associative learning paradigm [J]. Drug Alcohol Depend,2000(1-2),58:125-132.
    [7]Lieber CS. Alcohol and the liver:1994 update[J]. Gastroenterology,1994,1069(4):1085-1105.
    [8]Lieber CS. Micmsomal ethanol-oxidizing system (MEOS):the first 30 years(1968-1998)--a review [J]. Alcohol Clin Exp Res,1999,23(6):991-1007.
    [9]Hoek JB, Pastorino JG. Ethanol oxidative stress and cytokine-induced liver cell injury [J]. Alcohol, 2002,27(1):63-68.
    [10]Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin [J]. J Clin Invest,2004,113(9):1271-1276.
    [11]Bridle K, Cheung TK, Murphy T, et al. Hepcidin is down-regulated in alcoholic liver injury: implications for the npathogenesis of alcoholic liver disease [J]. Alcohol Clin Exp Res.2006,30(1): 106-112.
    [12]Werner ER, Gorren AC, Heller R, et al. Tetrahydrobiopterin and nitric oxide:mechanistic and pharmacological aspects [J]. Exp Biol Med(Maywood),2003,228(11):1291-1302.
    [13]Lemmer A, Moreno C,Gustol T, et al. The interleukin-17 pathway is involved in human alcoholic liver disease [J]. Hepatology,2009,49(2):646-657.
    [14]Wu D, Cederbaum A I. Alcohol oxidative stress and free radical damage [J]. Alcohol Res Health, 2003,27(4):277-284.
    [15]Jones BE, Liu H, Lo CR, et al. Cytochrome P4502E1 expression induces hepatocyte resistance to cell death from oxidative stress [J]. Antioxid Redox Signal,2002,4(5):701-709.
    [16]French SW. Intragastric ethanol infusion model for cellular and molecular studies of alcoholic liver disease [J]. Journal of Biomedical Science,2001,8(1):20-27.
    [17]Thurman RG, Bradford BU, Iimuro Y, et al. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption:gender studies in rats [J]. J Nutr,1997,127(5): S903-906.
    [18]Thurman RG, Bradford BU, Iimuro Y, et al. The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury [J]. J Gastroenterol Hepatol,1998,13:S39-50.
    [19]Arteel GE, Iimuro Y, Yin M, et al. Chronic enteral ethanol treatment causes hypoxia in rat liver tissue in vivo [J]. Hepatology,1997,25(4):920-926.
    [20]Enomoto N, Ikejima K, Yamashina S, et al. Kupffer cell-derived prostaglandin E2 is involved in alcohol-induced fat accumulation in rat liver [J]. Am J Physiol Gastrointest Liver Physiol,2000, 279(1):100-106.
    [21]Adachi Y, Bradford BU, Gao W, et al. Inactivation of Kupffer cells prevents early alcohol-induced liver injury [J]. Hepatology,1994,20(2):453-460.
    [22]Adachi Y, Moore LE, Bradford BU, et al. Antibiotics prevent liver injury in rats following long-term exposure to ethanol [J]. Gastroenterology,1995,108(1):218-224.
    [23]Iimuro Y, Ikejima K, Rose ML, et al. Nimodipine, a dihydropyridine-type calcium channel blocker, prevents alcoholic hepatitis due to chronic intragastric ethanol exposure in the rat [J]. Hepatology,1996,24(2):391-397.
    [24]Wheeler MD, Kono H, Yin M, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease[J]. Free Radic BiolMed,2001,31(12):1544-1549.
    [25]Arteel GE, Raleigh JA, Bradford BU, et al. Acute alcohol produces hypoxia directly in rat liver tissue in vivo:role of Kupffer cells [J]. Am J Physiol,1996,271(3pt1):494-500.
    [26]曲相如,孙景春,卢秀花,等.实验性肝损伤动物模型的制备和评价[J].中国实验诊断学,2009,13(10):1477-1479.
    [27]Enomoto N, Ikejima K, Bradford BU, et al. Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin [J]. Gastroenterology,1998,115(2):443-451.
    [28]陈素芸,姜磊,管探,等.国产13C-美沙西丁呼气试验对小鼠急性肝损伤的评价[J].上海交通大学学报(医学版),2010,30(1):55-58.
    [29]梁惠,逢丹,贺娟,等.凹顶藻萜类化合物对酒精暴露大鼠氧化损伤保护作用[J].营养学报,2009,31(6):574-578.
    [30]陈世林,洪汝涛,刁磊,等.水飞蓟素对大鼠急性酒精性肝损伤的保护作用[J].安徽医科大学学报,2010,45(2):209-211.
    [31]张艾玲,梁惠,逢丹,等.海藻萜类化合物对大鼠急性酒精性肝损伤的保护作用研究[J].中国食品学报,2008,8(3):23-27.
    [32]刘仁慧,王宪龄,刘方洲,等.柴胡黄芩配伍抗大鼠急性酒精性肝损伤作用的实验研究[J].时珍国医国药,2006,17(2):163-164.
    [33]郭科男,钱宁,董小君,等.苦碟子注射液对乙醇所致大鼠急性肝损伤的影响[J].时珍国医国药,2009,20(3):543-544.
    [34]彭勃,苗明三,王颖芳,等.橄榄解酒饮对大小鼠急性酒精性肝损伤的影响[J].上海中医药杂志,2003,37(10):48-51.
    [35]朱平生,庞亚丽,王宇亮,等.大鼠急性酒精性肝损伤模型的脂质过氧化损伤观察[J].中华中医药杂志(原中国医药学报),2006,21(6):376-377.
    [36]田苗苗,霍丽娟,晋阳.乙酰半胱氨酸对急性酒精性肝损伤大鼠NF-κ,B和TNF-a的影响[J].山西医科大学学报,2010,41(2):113-115.
    [37]王海英,梁惠,马爱国.海藻萜类化合物联合VE对酒精性肝损伤大鼠影响[J].中国公共卫生,2009,25(11):1356-1358.
    [38]赵洪川,房龙,李靖涛,等.茴三硫对大鼠急性酒精性肝损伤的防治作用[J].中国新药杂志,2005,14(7):852-855.
    [39]赵静波,王泰龄,张晶,等.大鼠急性酒精性肝损伤模型分析[J].中日友好医院学报,1996,10(2):17-19.
    [40]王宪龄,刘仁慧,张影,等.柴胡黄芩配伍抗小鼠急性酒精性肝损伤的实验研究[J].中药材, 2004,2(10):756-758.
    [41]赵敏,杨杏芬,黄俊明,等.小鼠酒精性肝损伤模型的研究[J].卫生研究,2005,34(1):121.
    [42]彭勃.橄榄解酒饮对急性酒精性肝损伤大鼠、小鼠丙氨酸转氨酶、天冬氨酸转氨酶的影响[J].中医杂志,2004,45(10):774-776.
    [43]Carson EJ, Pruett SB. Development and characterization of a binge drinking model in mice for evaluation of the immunological effects of ethanol [J]. Alcohol Clin Exp Res.1996,20(1):132-138.
    [44]Ding WX, Li M, Chen, XY, et al. Autophagy reduces acute ethanol-Induced hepatotoxicity and steatosis in Mice [J]. Gastroenterology,2010,139(5):1740-1752.
    [45]Hanae Izu, Megumi Shobayashi, Yasuko Manabe, et al. Sake yeast suppresses acute alcohol-induced liver injury in mice[J]. Biochem,2006,70(10):2488-2493.
    [46]Yan SL, Yin, MC. Protective and Alleviative Effects from 4 Cysteine-Containing Compounds on Ethanol-Induced Acute Liver Injury through Suppression of Oxidation and Inflammation [J]. Food Science,2007,72(7):511-515.
    [47]Kim SJ, Jung YS, Kwon do Y, et al. Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation [J]. Biochemical and Biophysical Research Communications,2008,368(4):893-898.
    [48]Yang R, Han X, Delude RL,et al. Ethyl pyruvate ameliorates acute alcohol-induced liver injury and inflammation in Zinc inhibition of acute ethanol-induced liver damage in mice [J]. J Lab Clin Med, 2003,142(5):322-331.
    [49]Lambert JC, Zhou Z, Wang L, et al. Prevention of alterations in intestinal permeability is involved in mice [J]. Pharmacology and Experimental Therapeutics,2003,305(3):880-886.
    [50]Zhou Z, Sun X, James Kang Y. Metallothionein protection against alcoholic liver injury through inhibition of oxidative stress [J]. Experimental Biology and Medicine,2002,227[3]:214-222.
    [51]Wang H, Feng F, Zhuang BY, et al. Evaluation of hepatoprotective effect of Zhi-Zi-Da-Huang decoction and its two fractions against acute alcohol-induced liver injury in rats [J]. Ethnopharmacology,2009,126(2):273-279.
    [52]Rodd-Henricks ZA, Bell RL, Kuc KA, et al. Effects of ethanol exposure on subsequent acquisition and extinction of ethanol selfadministration and expression of alcoholseeking behavior in adult alcohol-preferring rats. II. Adult exposure[J]. Alcohol Clin Exp Res,2002,26 (11):1642-1652.
    [53]Smith DG, Learn JE, McBride WJ, et al. Long-term effects of alcohol drinking on cerebral glucose utilization in alcohol-preferring rats [J]. Pharmacol Biochem Behav,2001,69(3-4):543-553.
    [54]Arteel GE. Animal models of alcoholic liver disease [J]. Dig Dis,2010,28(6):729-736.
    [55]Lieber CS, DeCarli LM. Liquid diet technique of ethanol administration:1989 update [J]. Alcohol Alcohol,1989,24(3):197-211.
    [56]Keegan A, Martini R, Batey R. Ethanol-induced liver injury in the rat:a model of steatosis, inflammation and pericentral fibrosis [J]. J Hepatol,1995,23(5):591-600.
    [57]Ramaiah S, Rivera C, Arteel G Early-phase alcoholic liver disease:an update on animal models, pathology, and pathogenesis [J]. International Journal of Toxicology,2004,23(4):217-231.
    [58]French SW, Miyamotok, Tsukamoto H. Ethanol-induced hepatic fibrosis in the rat:Role of the amount of dietary fat [J]. Alcohol Clin Exp Res,1986,10(6):S135-143.
    [59]Nanji AA, Tsukamoto H, French SW. Relationship between fatty liver and subsequent development of necros is, inflammat ion and fibrosis in experimental alcoholic liver disease [J]. Exp Mol Pathol,1989,51(2):441-448.
    [60]Tsukamoto H, Matsuoka M, French S. Experimental models of hepatic fibrosis [J]. Semi Liver Dis,1990,10 (1):56-60.
    [61]Nanji AA, Sadrzadeh Sm, Yang EK, et al. Dietary saturated fatty acids:a novel treatment for alcoholic liver disease[J]. Gastroenterology,1995,109(2):547-550.
    [62]Wheeler MD, Kono H, Rusyn I, et al. Chronic ethanol increases adeno-associated viral transgene expression in rat liver via oxidantand NF-κB-dependent mechanisms [J]. Hepatology,2000,32(5): 1050-1059.
    [63]De la M Hall P, Lieber CS, DeCarli LM, et al. Models of alcoholic liver disease in rodents:a critical evaluation [J]. Alcohol Clin Exp Res,2001,25(5):S254-261.
    [64]Tsukamoto H, Home W, Kamimura S, et al. Experimental liver cirrhosis induced by alcohol and iron [J]. J Clin Invest,1995,96(1):620-630.
    [65]李东良,郭红哲,杨才生,等.大鼠酒精性肝损伤模型的建立及病理学观察[J].中西医结合肝病杂志,2000,10(2):30-31.
    [66]李舒丹,厉有名,虞朝辉.大鼠慢性酒精性肝损伤模型的建立[J].浙江医学,2002,24(9):524-526.
    [67]赵敏,杨杏芬,黄俊明,等.小鼠酒精性肝损伤模型的动态研究[J].中国公共卫生,2005,21(9):1101-1102.
    [68]唐袁婷,管小琴,刘莉,等.茶多酚对酒精性肝病核因子-κB活性的调节作用[J].中华肝脏病杂,2009,17(4):301-305.
    [69]赵初环,卢中秋,李惠萍,等.大鼠酒精性肝病模型的建立[J].浙江临床医学,2007,9(4):435-436.
    [70]国家食品药品监督管理局食品许可司.《保健食品审评专家培训》资料汇编(三)——保健食品检验与评价技术规范(2003版).2011,172.
    [71]Enomoto N, Yamashina S, Kono H, et al. Development of a new, simple rat model of early alcohol-induced liver in jury based on sensitization of Kuffer cells [J]. Hepatology,1999,29(6): 1680-1685.
    [1]Murphy MP. How mitochondria produce reactive oxygen species [J]. Biochem J,2009,417(1): 1-13.
    [2]Gonzalez FJ. The 2006 Bernard B. Brodie Award Lecture. Cyp2el [J]. Drug Metab Dispos,2007, 35(1):1-8.
    [3]Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology [J]. Physiol Rev,2007,87(1):245-313.
    [4]Bansal S, Srinivasan S, Anandasadagopan S, et al. Additive effects of mitochondrion-targeted cytochrome CYP2E1 and alcohol toxicity on cytochrome c oxidase function and stability of respirosome complexes. [J]. J Biol Chem,2012,287(19):15284-15297.
    [5]Kehrer JP. Free radicals as mediators of tissue injury and disease [J]. Crit Rev Toxicol,1993, 23(1):21-48.
    [6]Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury:present concepts [J]. J Gastroenterol Hepatol,2011,26(1):S173-179.
    [7]Watson WH, Yang X, Choi YE, et al. Thioredoxin and its role in toxicology [J]. Toxicol Sci,2004, 78(1):3-14
    [8]Calabrese EJ, Canada AT. Catalase:its role in xenobiotic detoxification [J]. Pharmacol Ther,1989, 44(2):297-307.
    [9]Toppo S, Flohe L, Ursini F, et al. Catalytic mechanisms and specificities of glutathione peroxidases: variations of abasic scheme [J]. Biochim Biophys Acta,2009,1790(11):1486-1500.
    [10]Negre-Salvayre A, Auge N, Ayala V, et al. Pathological aspects of lipid peroxidation [J]. Free Radic Res,2010,44(10):1125-1171.
    [11]Sevanian A, Hochstein P. Mechanisms and consequences of lipid peroxidation in biological systems. Annu Rev Nutr,1985,5:365-390
    [12]Gao H, Zhou YW. Anti-lipid peroxidation and protection of liver mitochondria against injuries by picroside II [J]. World J Gastroenterol,2005,11(24):3671-3674.
    [13]Yuan HD, Jin GZ, Piao GC. Hepatoprotective effects of an active part from Artemisia sacrorum Ledeb. against acetaminophen-induced toxicity in mice [J]. J Ethnopharmacol,2010,127(2):528-533.
    [14]谢议凤,刘建国,刘庆,等.异甘草酸镁对小鼠急性酒精性肝损伤的保护作用[J].实用医学杂志,2010,26(3):381-383.
    [15]Hao L, Chen L. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles [J]. Ecotoxicol Environ Saf,2012,80:103-110.
    [16]Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R, et al. Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism [J]. Free Radic Res,2009,43(2):128-137.
    [17]Banakar MC, Paramasivan SK, Chattopadhyay MB, et al. lalpha,25-dihydroxyvitamin D3 prevents DNA damage and restores antioxidant enzymes in rat hepatocarcinogenesis induced by diethylnitrosamine and promoted by phenobarbital [J]. World J Gastroenterol,2004,10(9):1268-1275.
    [18]Gueraud F, Atalay M, Bresgen N, et al. Chemistry and biochemistry of lipid peroxidation products [J]. Free Radic Res,2010,44(10):1098-1124.
    [19]Dianzani MU.4-hydroxynonenal from pathology to physiology [J]. Mol Aspects Med,2003, 24(4-5):263-272.
    [20]Marnett LJ. Oxy radicals, lipid peroxidation, and DNA damage [J]. Toxicology,2002,181-182: 219-222.
    [21]Negre-Salvayre A, Auge N, Ayala V, et al. Pathological aspects of lipid peroxidation [J]. Free Radic Res,2010,44(10):1125-1171.
    [22]De Minicis S, Brenner DA. Oxidative stress in alcoholic liver disease:role of NADPH oxidase complex [J]. J. Gastroenterol. Hepatol.,2008,23, S98-103.
    [23]孙艳,吴阳,刘兵,等.酒精性肝病的研究进展[J].吉林大学学报(医学版),2006,32(4):733-736.
    [24]Radi R, Peluffo G., Alvarez MN, et al. Unraveling peroxynitrite formation in biological systems [J]. Free Radic Biol Med,2001,30(5):463-488.
    [25]Jian HZ, Zhang X, Roneker CA, et al. Role of copper, zinc superoxide dismutase in catalyzing nitrotyrosine formation in murine liver [J]. Free Radic Biol Med,2008,45(5):611-618.
    [26]Cover C, Fickert P, Knight TR, et al. Pathophysiological role of poly (ADPribose) polymerase (PARP) activation during acetaminopheninduced liver cell necrosis in mice. Toxicol Sci,2005,84(1): 201-208
    [27]James LP, McCullough SS, Knight TR, et al. Acetaminophen toxicity in mice lacking NADPH oxidase activity:role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res, 2003,37(12):1289-1297.
    [28]Nathan C. Inducible nitric oxide synthase:regulation subserves function [J]. Curr Top Microbiol Irnmunol,1995,196:1-4.
    [29]Venkatraman A, Shiva S, Wigley A, et al. The role of iNOS in alcohol-dependent hepatotoxicity and mitochondrial dysfunction in mice [J]. Hepatology,2004,40(3):565-573.
    [30]Bailey SM, Robinson G, Pinner A, et al. S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver [J]. Am J Physiol Gastrointest Liver Physiol,2006,291(5): 857-867.
    [31]江正辉,王泰龄主编.酒精性肝病[M].北京:中国医药科技出版社,2001,12-23.
    [32]胡成穆,姜辉,刘洪峰,等.金银花总黄酮对免疫性肝损伤小鼠的影响[J].2008,12(4):295-297.
    [33]Zhu JH, Zhang X, Roneker CA, et al. Role of copper,zinc-superoxide dismutase in catalyzing nitrotyrosine formation in murine liver [J]. Free Radic Biol Med.2008,45(5):611-618.
    [34]Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria [J]. Biol Chem,2002,383(3-4):401-409.
    [35]Cover C, Mansouri A, Knight TR, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity [J]. J Pharmacol Exp Ther,2005,315(2):879-887.
    [36]Knight TR, Jaeschke H. Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis:mitochondrial dysfunction versus glutathione depletion [J]. Toxicol Appl Pharmacol,2002, 181(2):133-141.
    [37]晋阳,霍丽娟.a-硫辛酸对酒精性肝损伤大鼠的治疗作用[J].中国医疗前沿,2010,5(9):65-67.
    [38]Wheeler MD, Nakagami M, Bradford BU, et al. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat [J]. J Biol Chem,2001,276(39): 36664-36672.
    [39]Tang YH, Gao C, Xing MY, et al. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage [J]. Food Chem Toxicol,2012,50(5):1194-1200.
    [40]Kietzmann T, Jungermann K. Modulation by oxygen of zonal gene expression in liver studied in primary rat hepatocyte cultures [J]. Cell Biol Toxicol,1997,13(4-5):243-255.
    [41]Yan HM, Ramachandran A, Bajt ML, et al. The oxygen tension modulates acetaminopheninduced mitochondrial oxidant stress and cell injury in cultured hepatocytes [J]. Toxicol Sci,2010,117(2): 515-523.
    [42]Agarwal R, Macmillan-Crow LA, Rafferty TM, et al. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase [J]. J Pharmacol Exp Ther,2011,337(2):110-118.
    [43]Masubuchi Y, Suda C, Horie T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice [J]. J Hepatol,2005,42(1):110-116.
    [44]Reid AB, Kurten RC, McCullough SS, et al. Mechanisms of acetaminophen-induced hepatotoxicity:role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes [J]. J Pharmacol Exp Ther,2005,312(2):509-516
    [45]冯怡燕,李海.线粒体通透性转换与非酒精性脂肪性肝病[J].肝脏,2009,14(3):256-258.
    [46]Kanno T, Sato EE, Muranaka S, et al. Oxidative stress underlies the mechanism for Ca(2+)-induced permeability transition of mitochondria [J]. Free Radic Res,2004,38(1):27-35.
    [47]Brown MS, Goldstein JL. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane bound transcription factor [J]. Cell,1997,89(3):331-340.
    [48]Browning JD, Horon JD. Molecular mediators of hepatic steatosis and liver injury [J]. J Clin Invest,2004,14(2):147-152.
    [49]范建高,曾民德主编.脂肪性肝病(第2版)[M].北京:人民卫生出版社,2013,37-53.
    [50]Oyanagi E, Yano H, Kato Y, et al. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria [J]. Cell Biochem Funct,2008,26(7):778-786.
    [51]Gogvadze V, Orrenius S, ZhivotovskyB, et al. Multiple pathways of cytochrome C release from mitochondria in apoptosis [J]. Biochimicaet Biophysica Acta,2006,1757(5-6):639-647.
    [52]Boujrad H, Gubkina O, Robert N, et al. AIF-mediated programmed necrosis:a highly regulated way to die [J]. Cell Cycle,2007,6(21):2612-2619.
    [53]Widlak P, Garrard W. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G [J]. J Cell Biochem,2005,94(6):1078-1087.
    [54]Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells [J]. Cancer Res,2001, 61(4):1659-1665.
    [55]Cover C, Mansouri A, Knight TR, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity [J]. J Pharmacol Exp Ther,2005,315(2):879-887.
    [56]Ray SD, Sorge C., Raucy JL, et al. Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury [J]. Toxicol Appl Pharmacol,1990, 106(2):346-351.
    [57]Bajt ML, Farhood A, Lemasters JJ,et al. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity [J]. J Pharmacol Exp Ther,2008,324(1):8-14.
    [58]刘晓婷,王延让,张明.线粒体介导细胞凋亡的研究进展[J].环境与健康杂志,2013,30(2): 182-185.
    [59]King AL, Swain TM, Dickinson DA, et al.Chronic ethanol consumption enhances sensitivity to Ca2+-mediated opening of the mitochondrial permeability transition pore and increases cyclophilin D in liver [J]. Am J Physiol Gastrointest Liver Physiol,2010,299(4):954-966.
    [60]Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics [J]. Br J Cancer,1972,26(4):239-257.
    [61]Youle RJ, Strasser A. The BCL-2 protein family:opposing activities that mediate cell death [J]. Nat Rev Mol Cell Biol,2008,9(1):47-59.
    [62]Lu Y, Cederbaum AI.CYP2E1 and oxidative liver injury by alcohol [J], Free Radic Biol Med. 2008,44(5):723-738.
    [63]Cui J, Chen C, Lu H, et al. Modelling of the mitochondrial apoptosis network [J]. Int J Bioinform Res Appl,2008,4(2):172-187.
    [64]Feng Y, Lu Y, Lin X, et al. Endomorphins and morphine limit anoxia-reoxygenation-induced brain mitochondrial dysfunction in the mouse [J]. Life sciences,2008,82(13):752-763.
    [65]Hasenjager A, Gillissen B, Miiller A, et al. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells [J]. Oncogene,2004,23(26):4523-4535.
    [66]Rust C, Gores GJ. Apoptosis and liver disease[J]. Am J Med,2000,108(7):567-574.
    [67]Naveau S, Emilie D, Balian A, et al. Plasma levels of soluble tumor necrosis factor recetors p55 and p75 in patients with alcoholic liver of increasing seveity [J]. J Hepatol,1998,28(5):778-784.
    [68]Zhao M, Laissue JA, Zimmerman A. TUNEL-positive hepatocytes in alcoholic liver disease. A retrospective study using DNA nick end labeling [J].Virchows Arch,1997,431(5):337-344.
    [69]Ziol M, Tepper M, Lohez M, et al. Clinical and biological relevance of hepatcyte apoptosis in alcoholic hepatitis [J]. J Hepatol,2001,34(2):254-260.
    [70]Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats [J]. Lab Invest,1996,74(1):86-107.
    [71]Cohen GM. Caspase:the executions of apoptosis [J]. Biochem J,1997,326(1):1-16.
    [72]Day CP. Apoptosis in alcoholic hepatitis:a novel therapeutic target [J]. J Hepatol,2001,34(2): 330-333.
    [73]Genova ML, Pich MM, Bernacchia A, et al. The mitochondrial production of reactive oxygen species in relation to aging and pathology [J]. Ann N Y Acad Sci,2004,1011:86-100.
    [74]Choksi KB, Boylston WH, Rabek JP, et al. Oxidatively damaged proteins of heart mitochondrial electron transport complexes [J]. Biochim Biophys Acta,2004 2,1688(2):95-101.
    [75]Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced Liver injury [J]. Alcohol, 2002,27(1):1015-1022.
    [76]Garcia-Ruiz C, Fernandez-Checa JC. Mitoehondrial glutathione:hepatocellular survival-death switch [J]. J Gastroenterol Hepatol,2006,21:S3-6.
    [77]Chadrasekaran K, Swaminathan K, Kumar SM, et al. Elevated glutathione level does not protect against chronic altohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes-alcohol dehydrogenase and cytochrome P450 2E1[J]. Toxicol In Vitro,2011,25(4):969-978.
    [78]Natori S, Rust C, Stadheim LM, et al. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis [J]. J Hepatol,2001,34(2):248-253.
    [79]Mantena SK, King AL, Andringa KK, et al. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease [J]. World J Gastroenterol,2007,13(37): 4967-4973.
    [80]Zhang X, Tachibana S, Wang H, et al. Interleukin-6 is an important mediator for mitochondrial DNA repair after alcoholic liver injury in mice [J]. Hepatology,2010,52(6):2137-2147.
    [81]Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease [J]. Mol Aspects med,2008,29(1-2):9-16.
    [82]Schonhoff CM, Gaston B, Tannick JB. Nitrosylation of cytochrome C during Apoptosis [J]. J Biol Chem,2003,278(20):18265-18270.
    [83]van Loo Q Saelens X, Van Gupr M, et al. The role of mitochondrial factors in apoptosis:a Russian roulette with more than one bullet [J]. Cell Death Differ,2002,9(10):1031-1042.
    [84]Khan SM, Dauffenbach LM, Yeh J. Mitochondria and Caspases in induced apoptosis in human luteinized granulosa cells [J]. Biochem Biophysical Res Commun,2000,269(2):542-545.
    [85]King AL, Swain TM, Dickinson DA, et al. Chronic ethanol consumption enhances sensitivity to Ca2+-mediated opening of the mitochondrial permeability transition pore and increases cyelophilin Din liver [J]. Am J Physiol Gastrointest Liver Physiol,2010,299(4):954966.
    [86]Conde de la Rosa L, Moshage H, Nieto N. Hepatocyte oxidant stress and alcoholic liver disease [J]. Rev Esp Enferm Dig,2008,100(3):156-163.
    [87]Bilzer M, Jaeschke H, Vollmar AM,et al. Prevention of Kupffer cell-induced oxidant injury in rat liver by atrial natriuretic peptide [J]. Am J Physiol,1999,276(5Pt1):1137-1144.
    [88]Jaeschke H. Enhanced sinusoidal glutathione efflux during endotoxin-induced oxidant stress in vivo [J]. Am J Physiol,1992,263(1Pt1):60-68.
    [89]Liu P, Fisher MA, Farhood A, et al. Beneficial effects of extracellular glutathione against endotoxininduced liver injury during ischemia and reperfusion [J]. Circ Shock,1994,43(2):64-70.
    [90]Jaeschke H, Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury [J]. J Leukoc Biol,1997,61(6):647-653.
    [91]Entman ML, Youker K, Shoji T, et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CDllb/CD18-ICAM-1 adherence [J]. J Clin Invest,1992,90(4): 1335-1345.
    [92]Jaeschke H, Ho YS, Fisher MA, et al. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia:importance of an intracellular oxidant stress [J]. Hepatology,1999,29(2):443-450.
    [93]Gujral JS, Hinson JA, Farhood A, et al. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia [J]. Am J Physiol Gastrointest Liver Physiol,2004,287(1): 243-252.
    [94]Hasegawa T, Malle E, Farhood A, et al. Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver:attenuation by ischemic preconditioning [J]. Am J Physiol Gastrointest Liver Physiol,2005,289(4):760-767.
    [95]Schauer RJ, Gerbes AL, Vonier D, et al. Induction of cellular resistance against Kupffer cell-derived oxidant stress:a novel concept of hepatoprotection by ischemic preconditioning [J]. Hepatology,2003,37(2):286-295.
    [96]Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury [J]. Liver Int, 2006,26(8):912-919.
    [97]Jaeschke H. Molecular mechanisms of hepatic ischemiareperfusion injury and preconditioning [J]. Am J Physiol GastrointestLiver Physiol,2003,284(1):15-26.
    [98]Koop DR, Klopfenstein B, Iimuro Y, et al. Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1 [J]. Mol Pharmacol,1997,51(6):944-50.
    [99]Garab D, Fet N, Szabo A, et al. Remote ischemic preconditioning differentially affects NADPH oxidase isoforms during hepatic ischemia-reperfusion [J]. Life Sci.2014, doi: 10.1016/j.lfs.2014.04.014.
    [100]Tahir M, Rehman MU, Lateef A, et al. Diosmin protects against ethanol-induced hepatic injury via alleviation of inflammation and regulation of TNF-aand NF-κB activation [J]. Alcohol.2013 Mar;47(2):131-139.
    [101]Kono H, Fujii H, Asakawa M, et al. Functional heterogeneity of the kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin [J]. J Surg Res,2002, 106(1):179-187.
    [102]Jaeschke H, Bautista AP, Spolarics Z, et al. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia [J]. Free Radic Res Commun,1991,15(5): 277-284.
    [103]Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver [J]. Am J Physiol,1991,260(3Pt1):355-362.
    [104]Schauer RJ, Gerbes AL, Vonier D, et al. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia [J]. Ann Surg,2004,239(2):220-231.
    [105]Jaeschke H. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemiareperfusion and other acute inflammatory conditions [J]. Am J Physiol Gastrointest Liver Physiol,2006,290(6):1083-1088.
    [106]Gujral JS, Farhood A, Bajt ML, et al. Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice [J]. Hepatology,2003,38(2):355-363.
    [107]Rehman H, Ramshesh VK, Theruvath TP, et al. NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice [J]. J Pharmacol Exp Ther,2008,327(3):699-706.
    [108]Jaeschke H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo:the protective effect of allopurinol [J]. J Pharmacol Exp Ther, 1990,255(3):935-941.
    [109]Jaeschke H, Bautista AP, Spolarics Z, et al. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats [J]. J Leukoc Biol,1992,52(4):377-382.
    [110]Jaeschke, H, Farhood A, Smith CW. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo [J]. FASEB J,1990,4(15):3355-3359.
    [I11]Liu PG, He SQ, Zhang YH, et al. Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice [J]. World J Gastroenterol,2008,14(18):2832-2837.
    [112]Bugianesi E, Pagotto U, Manini R, et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepaticfat content not to liver disease severity [J]. J Ciin Endoerinol Metab,2005,90(6):3498-3504.
    [113]Fischer M, You M, Matsumoto M,et al. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice [J]. J Biol Chem,2003,278(30):27997-28004.
    [114]谢晶日,张永,王海强.中性粒细胞跨膜迁移在酒精性脂肪性肝病发病机制中的研究[J].中西医结合肝病杂志,2012,22(1):64-65.