萝卜硫素制备、降解动力学及其诱导细胞凋亡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萝卜硫素(sulforaphane,1-异硫氰酸基-4-甲磺酰基丁烷,简称SF)是一种异硫氰酸酯类化合物,由西兰花中的萝卜硫苷经黑芥子酶酶解得到。研究表明,SF不仅在肿瘤发生的多个阶段发挥抑癌作用,而且还是潜在的肿瘤治疗药物,在医药和保健食品等方面越来越引起人们的重视,SF的制备和活性研究可以为研制具有预防癌症的功能性食品或药品提供理论基础和实验依据。
     本论文系统地研究了SF的制备工艺、稳定性和诱导细胞凋亡活性。以西兰花种子为原料,通过对酶解-提取工艺进行优化,提高了萝卜硫素产量;筛选了SP850树脂为吸附树脂,并对其吸附性能进行了研究;制备了SF的羟丙基-β-环糊精包合物(SF/HP-β-CD),研究了SF及其包合物的稳定性;对SF诱导B16和U251细胞凋亡及其机制等也进行了研究。主要内容如下:
     以西兰花种子为原料,通过Plackett-Burman设计、最陡爬坡和中心组合实验对SF的酶解、提取工艺进行了优化。根据Plackett-Burman设计,从11个变量中筛选出影响最大的3种因素为提取料液比、水解时间和水解料液比。在此基础上,用最陡爬坡路径逼近最大产SF区域,最后通过中心组合实验及响应面分析得出优化工艺为:水解时间13min,水解料液比(g:m1)为1:2.9,萃取料液比(g:m1)为1:17.5。在此条件下,SF的得率最高,达14.8mg/g。
     通过吸附平衡实验、吸附热力学及吸附动力学方法,研究了水相中大孔吸附树脂对SF的吸附性能。根据SF在大孔吸附树脂上的吸附率、解吸率等,筛选了大孔吸附树脂SP850为吸附树脂。吸附平衡实验表明,SP850吸附SF的最大平衡吸附容量在研究范围内随温度升高而减少,且吸附等温线更加遵循Freundlich方程,可初步推测SF在SP850活性位点上的吸附为多分子层吸附。计算了SF吸附热力学函数,(?)G<0,(?)S<0,(?)H<0,表明SP850吸附SF是一个放热过程,吸附能自发进行,随着温度升高,AG不断增加,表明在研究温度范围内降低温度有利于SF吸附。吸附动力学实验表明,吸附过程可以用拟二阶模型拟合。颗粒内扩散模型分析表明,SP850吸附SF过程受内扩散控制,在考察浓度范围内,内扩散速率常数随SF初始浓度增加而增大。SF在SP850上的吸附为快吸附,20mmin达到吸附平衡,液膜扩散是吸附初期的主要速率控制步骤。
     制备了SF/HP-B-CD包合物,研究了SF及其包合物的热降解动力学规律。采用HP-B-CD包合SF,通过红外光谱、SF/HP-β-CD核磁分析和示差扫描量热法(DSC)等方法对包合物进行表征。从红外光谱官能团强度变化、核磁氢谱的H原子位移变化和DSC分析表明HP-B-CD和SF发生了包合作用。研究了SF和SF/HP-B-CD在不同的pH(2.2、3.0、4.0、5.0和6.0)和不同加热温度(60、75、82和90℃)下的降解动力学,结果表明SF在低pH值和低温下,稳定性更高,包合作用提高了SF的稳定性,SF及其包合物的降解符合一级降解动力学方程。通过Arrhenius方程求出SF及其包合物在不同pH值和温度下,活化能为70.7-94.5kJ/mol,包合物的活化能比SF单体的要高。提出了一种描述SF及其包合物在不同pH值和温度下的降解模型,验证试验表明,该模型可以很好的预测SF在不同条件下的降解过程。提出了一种简化的指数方程,可以很好的代替Arrhenius方程。
     探讨SF诱导B16和U251细胞凋亡及其可能的机制。MTT实验表明SF能抑制B16和U251细胞增殖,抑制B16细胞和U251细胞的IC50分别为6.1+1.0μmol/L和16.4±1.4μmol/L。细胞凋亡实验表明SF能诱导B16和U251细胞凋亡,且呈一定的剂量依赖关系。SF诱导U251细胞凋亡所需的浓度要大于B16细胞。通过荧光定量PCR检测了B16和U251细胞中p21WAF1/CIP1和CyclinD1表达情况,并通过Western blot检测了Bax和Cyclin D1的表达情况及组蛋白H3和H4的乙酰化程度变化情况。结果表明SF能引起B16细胞中p21WAF1/CIP1和Bax基因表达上调,CyclinD1表达下调,B16细胞中组蛋白H3和H4乙酰化程度提高。而SF作用U251细胞后,p21WAF1/CIP1表达上调,Cyclin D1表达下调,Bax表达没有明显影响,组蛋白H3和H4的乙酰化程度没有变化。根据上述结果,推测了SF诱导B16细胞凋亡的可能机制。
Sulforaphane (1-isothiocyanate-(4R)-(methylsulfinyl) butane, SF) can be obtained through hydrolysis.of glucoraphanin by endogenous myrosinase. Studies show that SF not only restrains tumor during different stages of carcinogenesis, but also is a potential drug in the oncotherapy, thus SF has been of increasing interest for nutraceutical and pharmaceutical industries. Researches on preparation and activity of SF can provide theoretical and experimental basis for development of functional food for cancer prevention or drug for cancer treatment.
     In this paper, the production of SF and its stability and activities on inducing apoptosis were studied. Sulforaphane yield were optimized from broccoli seed using response surface methodology; Macroporous resin SP850was selected for SF adsorption, and SF adsorption performance of macroporous resin SP85O were studied; The inclusion complex of SF with hydroxypropyl-β-cyclodextrin (SF/HP-β-CD) were prepared, and thermal degradation of sulforaphane and its inclusion complex were studied; And then the effects of SF on apoptosis and its mechanism in B16mouse melanoma cells and U251human glioma cells were also studied. The main contents of this paper include:
     The production of SF from broccoli seed was optimized using response surface methodology. Three major factors (hydrolysis time, water volume and ethyl acetate volume) were screened out through Plackett-Burman (PB) factorial design. The methods of steepest ascent combined with central composite design (CCD) were employed for optimization of the SF production process. The optimal extraction conditions for SF production were a hydrolysis time of13min, a hydrolysis weight/volume ratio of1:2.9(g:ml) and an extraction weight/volume ratio of1:17.5(g:ml). The maximum SF yield was14.8mg/g.
     The adsorption equilibrium, thermodynamic and kinetics of adsorbing SF in aqueous phase by macroporous resin were studied. On the basis of the adsorption and desorption tests of SF, macroporous resin SP850resin was selected for adsorption kinetics and isotherms. Batch equilibrium experiments demonstrate that, in the examined temperature range, the equilibrium adsorption capacity of the SP850decreases with the increase of adsorption temperature. Based on the analysis of the adsorbing isotherms, the adsorption data of adsorbing SF on SP850fit the Freundlich equation well. We deduced that the adsorption of SF on macroporous resin SP850was multi-molecular layers adsorption. The thermodynamic parameters fitting reveal that△G<0,△S<0,△H<0, which indicates that the SF adsorption is exothermic, along with the increase of temperature came an increase in△G, indicated that low temperature will favor the adsorption process. Adsorption kinetics studies show that the adsorption process can be fitted with a pseudo second-order model. The intra-particle diffusion model indicated that the process of SF adsorption on SP850macroporous was controlled by the diffusion procedure, and the intra-particle diffusion rate constant Increases with the increase of initial SF concentration. Increase the temperature could accelerate the adsorption rate, but the adsorption capacity will be lowered. Film diffusion is the main controlling step in the initial adsorption.
     The pure SF and inclusion complex of SF with hydroxypropyl-β-cyclodextrin (SF/HP-B-CD) were prepared, and thermal degradation of SF and its inclusion complex were studied. FTIR,'H NMR and differential scanning calorimetry (DSC) analysis were performed to prove the formation of the inclusion complex SF/HP-B-CD inclusion complex. Then the depletion rates of SF and SF/HP-B-CD were investigated at temperatures of60,75,82and90℃and pH values of2.2,3.0,4.0,5.0and6.0. The results showed that SF and SF/HP-β-CD were more stable at lower pH values and temperatures, and SF/HP-B-CD was more stable than SF. The SF and SF/HP-B-CD degradation was observed to follow first order kinetics, and the temperature-dependent rate constants for SF and SF/HP-B-CD inclusion complex in aqueous solution were well described by the Arrhenius equation with corresponding activation energies of70.7to94.5kJ/mol, depending on the pH values. Then two models to describe the retention ratio of SF and SF/HP-B-CD at different pH values, depletion time and temperatures were proposed, a good agreement between the actual and the calculated retention values of SF was obtained. Moreover, the rate constant vs temperature relationships, which yield linear Arrhenius plots, could be described by a simpler exponential equation.
     The effects of SF on apoptosis and its mechanism in B16mouse melanoma cells and U251human glioma cells were studied. MTT assay showed that the proliferation of B16and U251cells were significantly inhibited by SF. The IC50of B16and U251after SF treatment for48h were6.1±1.0μmol/L and16.4±1.4μmol/L, respectively. Annexin V-PI double staining assay demonstrated that SF induced apoptosis in B16and U251cells, and dose-dependent manner could be found. The mRNA expression of p21WAF1/CIP1and Cydin D1in B16and U251after SF treatment for48h were measured with Quantitative real-time PCR, and the protein expression of Bax, Cyclin D1and acetylation degree of H3and H4changes were detected by Western blot. The results show that in B16cells, p21WAF1/CIP1and Bax was upregulated, Cyclin Dl was downregulated, and an increase in the degree of histone H3and H4acetylation were found after SF treatment for48h. In U251cells, however, though p21WAF1/CIP1upregulated, Cyclin D1downregulated, acetylation of histone H3and H4were not found after SF treatment for48h. The possible mechanisms of B16apoptosis were deduced.
引文
1. Cohen J H. Kristal A R, Stanford J L. Fruit and vegetable intakes and prostate cancer risk[J]. Journal of the National Cancer Institute,2000,92(1):61-68.
    2. Vermeulen M, Van den Berg R, Freidig A P, et al. Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids[J], Journal of agricultural and food chemistry,2006,54(15):5350-5358.
    3.吕静,陶文沂,程景才,等.十字花科蔬菜提取物抗肿瘤作用的研究[J].食品与生物技术学报,2007,26(4).
    4. Mithen R. Glucosinolates-biochemistry, genetics and biological activity[J]. Plant Growth Regulation,2001,34(1):91-103.
    5.李鲜,陈昆松,张明方,等.十字花科植物中硫代葡萄糖营的研究进展[J].园艺学报,2006,33(3):675-679.
    6. Liang H, Yuan Q. Natural sulforaphane as a functional chemopreventive agent:including a review of isolation, purification and analysis methods [J]. Critical reviews in biotechnology, 2012,32(3):218-234.
    7. Prochaska Z. Isolation of sulforaphane from hoary cress (Lepidium draba L.)[J]. Collect Czech Chem Commun,1959,24:2429-2430.
    8. Prochaska Z, Komersova I. Isolation of sulforaphane from Cardaria draba and its antimicrobial effect[J]. Cesk Farm,1959,8:373-376.
    9. Kushad M M, Brown A F. Kurilich A C, et al. Variation of Glucosinolates in Vegetable Crops of Brassica oleracea[J]. Journal of Agricultural and Food Chemistry,1999,47(4):1541-1548.
    10. Vallejo F, Tomas-Barberan F A, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleraceaL. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry[J]. Journal of chromatography A,2004,1054(1):181-193.
    11. Price K R, Casuscelli F, Colquhoun I J, et al. Hydroxycinnamic acid esters from broccoli florets[J]. Phytochemistry,1997,45(8):1683-1687.
    12. Kurilich A C, Jeffery E H, Juvik J A, et al. Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay [J]. Journal of Agricultural and Food Chemistry,2002,50(18):5053-5057.
    13. Gliszczynska-Swiglo A, Kaluzewicz A, Lemanska K, et al. The effect of solar radiation on the flavonol content in broccoli inflorescence[J]. Food chemistry,2007,100(1):241-245.
    14. Verkerk R, Schreiner M, Krumbein A, et al. Glucosinolates in Brassica vegetables:the influence of the food supply chain on intake, bioavailability and human health[J]. Molecular nutrition & food research,2009,53(S2):S219-S219.
    15. Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J]. Phytochemistry,2001,56(1):5-51.
    16. Vallejo F, Garcia-Viguera C, Tomas-Barberan F A. Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development[J]. Journal of agricultural and food chemistry,2003,51(13):3776-3782.
    17.邱海荣,姚雪琴,谢祝捷,等.反相高效液相色谱法检测青花菜和花椰菜中4-甲基亚磺酰丁基硫苷[J].上海农业学报,2008,24(4):72-74.
    18.谢祝捷,李媛,姚雪琴,等.青花菜基因型和环境互作对花球4-甲基亚磺酰丁基硫苷含量的影响[J].园艺学报,2010,37(4):625-630.
    19. Jongen W M F. Glucosinolates in Brassica:occurrence and significance as cancer-modulating agents[J]. Proceedings of the Nutrition Society,1996,55(1B):433-446.
    20. Hansen M, Laustsen A M, Olsen C E, et al. Chemical and sensory quality of broccoli (Brassica oleracea L. var italica)[J]. Journal of food quality,1997,20(5):441-459.
    21. Gliszczynska-Swiglo A, Ciska E, Pawlak-Lemanska K, et al. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing[J]. Food additives and contaminants,2006,23(11):1088-1098.
    22. Rodrigues A S, Rosa E A S. Effect of post-harvest treatments on the level of glucosinolates in broccoli[J]. Journal of the Science of Food and Agriculture,1999,79(7):1028-1032.
    23. Steinbrecher A, Linseisen J. Dietary intake of individual glucosinolates in participants of the EPIC-Heidelberg cohort study[J]. Annals of Nutrition and Metabolism,2009,54(2):87-96.
    24. Bonnesen C, Eggleston I M, Hayes J D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines[J]. Cancer Research,2001,61(16):6120-6130.
    25. Chen S, Andreasson E. Update on glucosinolate metabolism and transport[J]. Plant Physiology and Biochemistry,2001,39(9):743-758.
    26. Nugon-Baudon L, Rabot S. Glucosinolates and glucosinolate derivatives:implications for protection against chemical carcinogenesis[J]. Nutrition research reviews,1994,7(1):205-231.
    27. Fenwick G R, Heaney R K. Glucosinolates and their breakdown products in cruciferous crops, foods and feedingstuffs[J]. Food chemistry,1983,11(4):249-271.
    28. Matusheski N V, Swarup R, Juvik J A, et al. Epithiospecifier protein from broccoli(Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane[J]. Journal of Agricultural and Food Chemistry,2006,54(6):2069-2076.
    29. Matusheski N V, Juvik J A, Jeffery E H. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli[J]. Phytochemistry,2004,65(9):1273-1281.
    30. Bellostas N, Sorensen A D, Sorensen J C, et al. Fe2--catalyzed formation of nitriles and thionamides from intact glucosinolates[J]. Journal of natural products,2007,71(1):76-80.
    31. Buskov S, Hansen L B, Olsen C E, et al. Determination of ascorbigens in autolysates of various Brassica species using supercritical fluid chromatography[J]. Journal of agricultural and food chemistry,2000,48(7):2693-2701.
    32. Bones A M, Rossiter J T. The enzymic and chemically induced decomposition of glucosinolates[J]. Phytochemistry,2006,67(11):1053-1067.
    33. Preobrazhenskaya M N, Bukhman V M, Korolev A M, et al. Ascorbigen and other indole-derived compounds from Brassica vegetables and their analogs as anticarcinogenic and immunomodulating agents[J]. Pharmacology & therapeutics,1993,60(2):301-313.
    34. Vermeulen M, Zwanenburg B, Chittenden G J F, et al. Synthesis of isothiocyanate-derived mercapturic acids[J]. European journal of medicinal chemistry,2003,38(7):729-737.
    35. D'Souza C A, Amin S, Desai D. A facile and efficient synthesis of 14C-labelled sulforaphane[J]. Journal of Labelled Compounds and Radiopharmaccuticals,2003,46(9):851-859.
    36. Whitesell J K, Wong M S. Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of sulforaphane[J]. The Journal of Organic Chemistry,1994,59(3):597-601.
    37. Daxenbichler M E, Spencer G F, Carlson D G, et al. Glucosinolate composition of seeds from 297 species of wild plants[J]. Phytochemistry,1991,30(8):2623-2638.
    38. Pereira F M V, Rosa E, Fahey J W, et al. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes[J]. Journal of agricultural and food chemistry,2002, 50(21):6239-6244.
    39. Fahey J W, Wade K L, Stephenson K K, et al. Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography[J]. Journal of Chromatography A,2003,996(1):85-93.
    40. West L G, Meyer K A, Balch B A, et al. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage[J]. Journal of agricultural and food chemistry,2004,52(4):916-926.
    41. You Y, Wu Y, Mao J, et al. Screening of Chinese brassica species for anti-cancer sulforaphane and erucin[J]. African Journal of Biotechnology,2008,7(2):147-152.
    42. Matusheski N V, Jeffery E H. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile[J]. Journal of agricultural and food chemistry,2001,49(12):5743-5749.
    43. Vaughn S F, Berhow M A. Glucosinolate hydrolysis products from various plant sources:pH effects, isolation, and purification[J]. Industrial Crops and Products,2005,21(2):193-202.
    44.李椿方.大孔吸附树脂和逆流色谱分离纯化莱菔硫烷的研究[D].北京化工大学,2008.
    45.沈莲清,苏光耀,王奎武.西兰花种子中硫苷酶解产物萝卜硫素的提纯与抗肿瘤的体外试验研究[J].中国食品学报,2008,8(5):15-21.
    46.吴元锋,沈莲清,毛建卫,等.芸苔属植物种子中萝卜硫素的提取工艺研究[J].食品与生物技术学报,2009,28(5):647-651
    47. Tanongkankit Y, Sablani S S, Chiewchan N, et al. Microwave-assisted extraction of sulforaphane from white cabbages:Effects of extraction condition, solvent and sample pretreatment[J]. Journal of Food Engineering,2013,117(1):151-157.
    48.高灿红,林俊城,徐福乐,等.15个西兰花芽苗菜中萝卜硫素含量差异研究[J].中国农学通报,2012,28(34):177-183.
    49.胡晔.中药中硫代葡萄糖苷及其降解产物的分析和中药莱菔子中Glucoraphenin的提取纯化与催化加氢工艺研究[D].北京化工大学硕士学位论文.2009.
    50. West L G, Kim N, Haas G W, et al. Method of enriching glucoraphanin in radish seed preparations:U.S. Patent 7,371,419[P].
    51.袁其朋,李利光,梁浩,谷友刚.生物转化制备4-甲基亚硫酰基丁基硫代葡萄糖苷的方法[P].ZL201010159808.6.
    52. Iori R, Bernardi R, Gueyrard D, et al. Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin:a chemoenzymatic route to sulforaphane[J]. Bioorganic & medicinal chemistry letters,1999,9(7):1047-1048.
    53. Matusheski N V, Wallig M A, Juvik J A, et al. Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea[J]. Journal of agricultural and food chemistry,2001,49(4):1867-1872.
    54. Liang H, Li C, Yuan Q, et al. Separation and purification of sulforaphane from broccoli seeds by solid phase extraction and preparative high-performance liquid chromatography[J]. Journal of agricultural and food chemistry,2007,55(20):8047-8053.
    55. Kore A M, Spencer G F, Wallig M A. Purification of the. omega.-(methylsulfinyl) alkyl glucosinolate hydrolysis products:1-isothiocyanato-3-(methylsulfinyl) propane, 1-isothiocyanato-4-(methylsulfinyl) butane,4-(methylsulfinyl) butanenitrile, and 5-(methylsulfinyl) pentanenitrile from broccoli and Lesquerella fendleri[J]. Journal of agricultural and food chemistry,1993,41(1):89-95.
    56. Li C, Liang H, Yuan Q, et al. Optimization of sulforaphane separation from broccoli seeds by macroporous resins[J]. Separation Science and Technology,2008,43(3):609-623.
    57.刘锡建,肖稳发,曹俭,等.SP850树脂分离萝卜硫素[J].食品与发酵工业,2011,37(7):197-200.
    58. Liang H, Yuan Q, Xiao Q. Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography[J]. Journal of Chromatography B,2005,828(1): 91-96.
    59. Liang H, Li C, Yuan Q, et al. Application of high-speed countercurrent chromatography for the isolation of sulforaphane from broccoli seed meal[J]. Journal of agricultural and food chemistry, 2008,56(17):7746-7749
    60. Kuang P, Song D, Yuan Q, et al. Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography[J]. Food chemistry,2013,136(2): 309-315.
    61. Zhang Y. Cho C G, Posner G H, et al. Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols[J]. Analytical biochemistry,1992.205(1):100-107.
    62. VanEtten C H, Daxenbichler M E, Williams P H, et al. Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible part from twenty-two varieties of cabbage[J]. Journal of agricultural and food chemistry,1976,24(3):452-455.
    63.吴元锋,毛建卫,袁海娜,等.气质联用分析芸苔属种子水解液中的异硫氰酸酯[J].分析试验室,2008,27(9):53-56.
    64. Chiang W C K, Pusateri D J, Leitz R E A. Gas chromatography/mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli[J]. Journal of agricultural and food chemistry,1998,46(3):1018-1021.
    65. Zhang Y, Talalay P, Cho C G, et al. A major inducer of anticarcinogenic protective enzymes from broccoli:isolation and elucidation of structure[J]. Proceedings of the national academy of sciences,1992,89(6):2399-2403.
    66. Bertelli D, Plessi M, Braghiroli D, et al. Separation by solid phase extraction and quantification by reverse phase HPLC of sulforaphane in broccoli [J]. Food chemistry,1998,63(3):417-421.
    67. Nakagawa K, Umeda T, Higuchi O, et al. Evaporative light-scattering analysis of sulforaphane in broccoli samples:Quality of broccoli products regarding sulforaphane contents [J]. Journal of agricultural and food chemistry,2006,54(7):2479-2483.
    68. Sivakumar G, Aliboni A, Bacchetta L. HPLC screening of anti-cancer sulforaphane from important European Brassica species[J]. Food chemistry,2007,104(4):1761-1764.
    69. Campas-Baypoli O N, Sanchez-Machado D I, Bueno-Solano C, et al. HPLC method validation for measurement of sulforaphane level in broccoli by-products [J]. Biomedical Chromatography,2010,24(4):387-392.
    70. Janobi A A A, Mithen R F, Gasper A V, et al. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry[J]. Journal of Chromatography B,2006,844(2):223-234.
    71. Egner P A, Kensler T W, Chen J G, et al. Quantification of sulforaphane mercapturic acid pathway conjugates in human urine by high-performance liquid chromatography and isotope-dilution tandem mass spectrometry[J]. Chemical research in toxicology,2008,21(10): 1991-1996.
    72. Van Eylen D, Oey I, Hendrickx M, et al. Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments[J]. Journal of agricultural and food chemistry,2007,55(6):2163-2170.
    73. Jin Y, Wang M, Rosen R T, et al. Thermal degradation of sulforaphane in aqueons solution[J]. Journal of agricultural and food chemistry,1999,47(8):3121-3123.
    74. Wu H, Liang H, Yuan Q, et al. Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin[J]. Carbohydrate Polymers,2010,82(3): 613-617.
    75.邹翔.莱菔硫烷诱导人肝瘤HepG-2细胞G_2/M期阻滞及凋亡的机制研究[D].北京中医药大学,2010.
    76. Cheung K L, Kong A N. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention[J]. The AAPS journal,2010,12(1):87-97.
    77. Wogan G N, Hecht S S, Felton J S, et al. Environmental and chemical carcinogenesis[C]//Seminars in cancer biology. Academic Press,2004,14(6):473-486.
    78. Maheo K, Morel F, Langouet S, et al. Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes[J]. Cancer Research,1997,57(17):3649-3652.
    79. Barcelo S, Gardiner J M, Gescher A, et al. CYP2E1-mediated mechanism of anti-genotoxicity of the broccoli constituent sulforaphane[J]. Carcinogenesis,1996,17(2):277-282.
    80. Kensler T W. Chemoprevention by inducers of carcinogen detoxication enzymes [J]. Environmental Health Perspectives,1997,105(Suppl 4):965-970.
    81. Chen C, Kong A N T. Dietary cancer-chemopreventive compounds:from signaling and gene expression to pharmacological effects[J]. Trends in pharmacological sciences,2005,26(6): 318-326.
    82. Pool-Zobel B, Veeriah S, Bohmer F D. Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005,591(1):74-92.
    83. Saracino M R, Lampe J W. Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention[J]. Nutrition and cancer,2007,59(2):121-141.
    84. Vasiliou V, Ross D, Nebert D W. Update of the NAD (P) H:quinone oxidoreductase (NQO) gene family[J]. Hum Genomics,2006,2(5):329-335.
    85. Dinkova-Kostova A T, Fahey J W, Wade K L, et al. Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts [J]. Cancer Epidemiology Biomarkers & Prevention,2007,16(4):847-851.
    86. Prestera T, Talalay P. Electrophile and antioxidant regulation of enzymes that detoxify carcinogens[J]. Proceedings of the National Academy of Sciences,1995,92(19):8965-8969.
    87. Jiang Z Q, Chen C, Yang B, et al. Differential responses from seven mammalian cell lines to the treatments of detoxifying enzyme inducers[J]. Life sciences,2003,72(20):2243-2253.
    88. Basten G P, Bao Y, Williamson G. Sulforaphane and its glutathione conjugate but not sulforaphane nitrile induce UDP-glucuronosyl transferase (UGT1A1) and glutathione transferase (GSTA1) in cultured cells [J]. Carcinogenesis,2002,23(8):1399-1404.
    89. Svehlikova V, Wang S. Jakubikova J, et al. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells[J]. Carcinogenesis,2004,25(9): 1629-1637.
    90. Brooks J D, Paton V G, Vidanes G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane[J]. Cancer Epidemiology Biomarkers & Prevention,2001,10(9): 949-954.
    91. Bacon J R, Williamson G, Garner R C, et al. Sulforaphane and quercetin modulate PhIP-DNA adduct formation in human HepG2 cells and hepatocytes[J]. Carcinogenesis,2003,24(12): 1903-1911.
    92. Munday R, Munday C M. Induction of phase II detoxification enzymes in rats by plant-derived isothiocyanates:comparison of allyl isothiocyanate with sulforaphane and related compounds[J]. Journal of agricultural and food chemistry,2004,52(7):1867-1871.
    93. Jones S B, Brooks J D. Modest induction of phase 2 enzyme activity in the F-344 rat prostate[J], BMC cancer,2006,6(1):62.
    94. McWalter G K, Higgins L G, McLellan L I, et al. Transcription factor Nrf2 is essential for induction of NAD (P) H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates [J]. The Journal of nutrition,2004, 134(12):3499S-3506S.
    95.崔俣,马海英,孔力.Nrf2/ARE通路与机体抗氧化机制的研究进展[J].吉林大学学报:医学版,2011,37(1):187-190.
    96. Kwak M K, Wakabayashi N, Kensler T W. Chemoprevention through the Keapl-Nrf2 signaling pathway by phase 2 enzyme inducers[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2004,555(1):133-148.
    97. Min K J, Kim J H, Jou I, et al. Adenosine induces hemeoxygenase-1 expression in microglia through the activation of phosphatidylinositol 3-kinase and nuclear factor E2-related factor 2[J]. Glia,2008,56(9):1028-1037.
    98. Myzak M C, Karplus P A, Chung F L, et al. A Novel Mechanism of Chemoprotection by Sulforaphane Inhibition of Histone Deacetylase:Inhibition of Histone Deacetylase [J]. Cancer research,2004,64(16):5767-5774.
    99. Halkidou K, Gaughan L, Cook S, et al. Upregulation and nuclear recruitment of HDAC 1 in hormone refractory prostate cancer[J]. The Prostate,2004,59(2):177-189.
    100. Huffman D M, Grizzle W E, Bamman M M, et al. SIRT1 is significantly elevated in mouse and human prostate cancer[J]. Cancer research,2007,67(14):6612-6618.
    101. Seligson D B, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence[J]. Nature,2005,435(7046):1262-1266.
    102. Zhu P, Martin E, Mengwasser J, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis[J]. Cancer cell,2004,5(5):455-463.
    103. Ho E, Clarke J D, Dashwood R H. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention[J]. The Journal of nutrition,2009,139(12):2393-2396.
    104. Myzak M C, Hardin K, Wang R, et al. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells[J]. Carcinogenesis,2006,27(4):811-819.
    105. Dashwood R H, Ho E. Dietary histone deacetylase inhibitors:from cells to mice to man[J]. Seminars in cancer biology,2007,17(5):363-369.
    106. Myzak M C, Dashwood W M, Orner G A, et al. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apcmin mice[J]. The FASEB journal,2006,20(3): 506-508.
    107. Reed J C. Apoptosis-based therapies[J]. Nature reviews Drug discovery,2002,1(2):111-121.
    108. Karmakar S, Weinberg M S, Banik N L, et al. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane[J]. Neuroscience,2006,141(3):1265-1280.
    109. Park S Y, Kim G Y, Bae S J, et al. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3[J]. Oncology reports,2007,18(1):181-187.
    110. Choi S, Lew K L, Xiao H, et al. D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1[J]. Carcinogenesis,2007,28(1):151-162.
    111.吴华彰,赵云利.西兰花种子提取萝卜硫素的酶解体系[J].光谱实验室,2012,29(1):431-434.
    112.黄肖钦,马朱莉,李娜,等.西兰花种子酶解生成萝卜硫素的条件研究[J].上海工程技术大学学报,2010,24(3):277-280.
    113.杨海荣,马绍英,赵利敏,等.响应面分析法优化西兰花离体细胞系萝卜硫素提取工艺[J].食品工业科技,2012,33(15):206-209.
    114.张国良,赵秀娟,张宇秋,等.蔬菜中莱菔硫烷提取工艺的正交优选[J].哈尔滨医科大学学报,2009,43(6):626-628.
    115. Stowe R A, Mayer R P. Efficient screening of process variables[J]. Industrial & Engineering Chemistry,1966,58(2):36-40.
    116.胡升,梅乐和,姚善泾.响应面法优化纳豆激酶液体发酵[J].食品与发酵工业,2003,29(1):13-17.
    117. Zhang L J, Zheng A, Jin A. et al. Optimization of fermentation conditions for pristinamycin production by immobilized Streptomyces pristinaespiralis using response surface methodology[J]. Electronic Journal of Biotechnology,2012,15(4).
    118. Gao.H, Liu M, Liu J, et al. Medium optimization for the production of avermectin Bla by Streptomyces avermitilis 14-12A using response surface methodology[J]. Bioresource Technology,2009,100(17):4012-4016.
    119. Plackett R L, Burman J P. The design of optimum multifactorial experiments [J]. Biometrika, 1946:305-325.
    120. Singh V, Tripathi C K M. Production and statistical optimization of a novel olivanic acid by Streptomyces olivaceus MTCC 6820[J]. Process Biochemistry,2008,43(11):1313-1317.
    121. Lu Y, Mei L. Optimization of fermentation conditions for P450 BM-3 monooxygenase production by hybrid design methodology[J]. Journal of Zhejiang University SCIENCE B, 2007,8(1):27-32.
    122. Jwanny E W, El-Sayed S T, Rashad M M, et al. Myrosinase from roots of Raphanus sativus[J]. Phytochemistry,1995,39(6):1301-1303.
    123. Chiang P Y, Ciou J Y. Effect of pulverization on the antioxidant activity of water caltrop (Trapa taiwanensis Nakai) pericarps[J]. LWT-Food Science and Technology,2010,43(2): 361-365.
    124. Hu J, Chen Y, Ni D. Effect of superfine grinding on quality and antioxidant property of fine green tea powders[J]. LWT-Food Science and Technology,2012,45(1):8-12.
    125.王晓林,李珍,钟方丽.大孔树脂法纯化玉竹总皂苷的工艺研究[J].食品科学,2012,33(018):83-87.
    126.李淑珍,李进,‘杨志江,等.大孔树脂分离纯化黑果枸杞总黄酮的研究[J].食品科学,2009(1):19-24.
    127.黄建明,郭济贤,陈万生,等.大孔树脂对草乌生物碱的吸附性能及提纯工艺[J].复旦学报(医学版),2003,30(3):267-269.
    128.艾志录,王育红,王海,等,大孔树脂对苹果渣中多酚物质的吸附研究[J].农业工程学报,2007,23(8):245-248.
    129. Redlich O, Peterson D L. A useful adsorption isotherm[J]. Journal of Physical Chemistry, 1959,63(6):1024-1024.
    130. Allen S J, McKay G, Khader K Y H. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat [J]. Environmental Pollution,1989,56(1):39-50.
    131. Wu J, Yu H Q. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass:Isotherms, kinetics and thermodynamics [J]. Journal of hazardous materials,2006,137(1):498-508.
    132. Liu Y, Liu Y J. Biosorption isotherms, kinetics and thermodynamics [J]. Separation and Purification Technology,2008,61(3):229-242.
    133.宋应华,朱家文,陈葵,等.大孔树脂对红霉素的吸附动力学研究[J].离子交换与吸附,2007,23(4):349-359.
    134.王秀芳,田勇,钟国英,等.氯霉素在活性炭上的吸附平衡与动力学[J].高校化学工程学报,2010,24(1):162-166.
    135. Cheung C W, Porter J F, McKay G. Sorption kinetics for the removal of copper and zinc from effluents using bone char [J]. Separation and Purification Technology,2000,19(1):55-64.
    136. Sandhu A K, Gu L. Adsorption/Desorption Characteristics and Separation of Anthocyanins from Muscadine (Vitis rotundifolia) Juice Pomace by Use of Macroporous Adsorbent Resins [J]. Journal of agricultural and food chemistry,2013,61(7):1441-1448.
    137.李稳宏,唐璇,李新生,等.黄姜黄色素在大孔树脂上的吸附动力学研究[J].离子交换与吸附,2008,24(6):526-534.
    138. Srihari V, Das A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons [J]. Desalination,2008,225(1):220-234.
    139.王亚军,董方智,于蕾,郑裕国.阳离子交换树脂SAC001×7对阿卡波糖的吸附性能研究[J].高校化学工程学报,2012,26(3):493-498.
    140. Choy K K H, Porter J F, Mckay G. Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon [J]. Chemical Engineering Journal,2004,103(1): 133-145.
    141.廖才智.B-环糊精的应用研究进展[J].化工科技,2010,18(5):69-72.
    142.卢朝成,杨静,张伟,等.妥曲珠利羟丙基-β-环糊精包合物的制备及表征[J].过程工程学报,2012,12(6):982-988.
    143. Hou Z, Qin P, Zhang Y, et al. Identification of anthocyanins isolated from black rice (Oryza sativa) and their degradation kinetics [J]. Food Research International,2013,50:691-697.
    144. Abassi P, Abassi F, Yari F, et al. Study on the interaction of sulforaphane with human and bovine serum albumins[J]. Journal of Photochemistry and Photobiology B:Biology,2013,122: 61-67.
    145.袁海娜.异硫氰酸酯的制备,功效分析及包合技术研究[D].浙江大学,2010.
    146.樊金玲,朱文学,巩卫东,等.牡丹花色苷的热稳定性和降解动力学[J].应用化学,2010,27(2):231-236.
    147. Neoh T L, Yamamoto C, Ikefuji S, et al. Heat stability of allyl isothiocyanate and phenyl isothiocyanate complexed with randomly methylated B-cyclodextrin[J]. Food Chemistry,2012, 131(4):1123-1131.
    148. Peleg M, Normand M D, Corradini M G. The Arrhenius equation revisited[J]. Critical Reviews in Food Science and Nutrition,2012,52(9):830-851.
    149. Sapru V, Labuza T P. Temperature dependence of thermal inactivation rate constants of bacterial spores in a glassy state[J]. Journal of Industrial Microbiology,1993,12(3-5): 247-250.
    150. Do D P, Pai S B, Rizvi S A A, et al. Development of sulforaphane-encapsulated microspheres for cancer epigenetic therapy[J]. International journal of pharmaceutics,2010,386(1):114-121.
    151.杨国俊,张军,崔玲玲,等.莱菔硫烷对A549细胞株CYR61基因表达的影响[J].肿瘤防治研究,2009(10):821-824.
    152.王楠,沈莲清.蔬菜种子中5种异硫代氰酸酯类化合物对人肺癌细胞抑制作用的研究[J].中国食品学报,2010,10(4):67-72.
    153.曹树稳,余燕影,邓泽元.萝卜硫烷对乳腺癌细胞增殖,细胞周期,细胞凋亡的影响及作用机制研究[J].营养学报,2005,27(5):417-421.
    154.邹翔.莱菔硫烷诱导人肝瘤HepG-2细胞G_2/M期阻滞及凋亡的机制研究[D].北京 中医药大学,2010.
    155.徐华,陈易,王少峰,等.莱菔硫烷对人胃癌SGC7901细胞周期的影响及其机制[J].中国医院药学杂志,2010(14):1193-1197.
    156.赵和千,王宏勤,刘晓东,等.莱菔硫烷诱导人脑胶质瘤细胞凋亡的研究[J].中国医疗前沿,2010,5(20).