肝癌细胞的N-糖蛋白质鉴定及糖基化位点分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:肝细胞癌是最常见的成人肝脏原发性肿瘤、世界第五大实体瘤和第三大癌症死亡原因,肝癌细胞系HepG2和正常肝细胞系L02是研究人肝细胞极有价值的模型,并得到广泛应用。异常糖基化在癌症发生发展中的重要作用已逐渐得到认识,然而,异常糖蛋白在肝细胞癌中的作用还未阐明。本研究运用糖蛋白质组学研究手段鉴定细胞全N-糖蛋白质及糖基化位点,并运用酰肼化学唾液酸化糖肽选择性提取方法初步研究了细胞样品中唾液酸化N-糖蛋白质及唾液酸化位点。
     方法:酰肼化学固相萃取方法和亲水相互作用固相萃取方法能够高效富集糖肽,且两种方法具有互补性。富集到的糖肽经PNGase F去糖基化、串联质谱鉴定糖肽和糖基化位点。利用一系列生物信息学工具分析癌症细胞与正常细胞糖蛋白差异。
     结果:实验结果分为两部分:
     (1)从HepG2和L02细胞中共鉴定到394个糖肽,代表235个糖蛋白,包含401个糖基化位点。酰肼方法在鉴定糖蛋白数目和富集特异性上高于亲水方法,且两者存在很好的互补性。两种方法每个糖蛋白平均鉴定到1.6个糖肽。按照ratio大于2和小于0.5统计,两种方法从HepG2和L02均鉴定到的170个糖肽中,21个表达上调,17个表达下调。与L02细胞相比,HepG2细胞糖蛋白糖结合活性、受体活性较高,控制生物学质量和细胞加工过程、参与细胞分化过程、信号转导、信号传递和信号处理的糖蛋白有所增加。两种细胞鉴定的糖蛋白在KEGG通路数据库中对应139条通路,其中细胞外基质受体通路、癌症通路、黏着斑、吞噬体通路、细胞粘附因子、血细胞生成通路、内质网蛋白加工通路、肌动蛋白细胞骨架调节通路、蛋白消化和吸收通路匹配较高。鉴定到木糖基转移酶、UDP-葡萄糖醛酸转移酶A1、糖基转移酶25和前胶原赖氨酸2-氧化戊二酸5-双加氧酶3这4个O-糖链合成通路酶。
     (2)从HepG2和L02细胞中共鉴定到60个唾液酸化糖肽,64个糖基化位点,对应41个唾液酸化糖蛋白。与全糖蛋白类似,L02细胞中鉴定到的唾液酸化糖蛋白略多于HepG2细胞。但共同鉴定的唾液酸化糖蛋白只有3个。可能反映两种细胞唾液酸化模式存在较大差异。本实验中鉴定的唾液酸化糖蛋白在Uniprot数据库中标注为已知、潜在和未知的比例为58%、13%和29%。膜蛋白分别占HepG2和L02鉴定到的唾液酸化N-糖蛋白的48%和64%。两种细胞中鉴定到的唾液酸化糖蛋白均分布在细胞、细胞器、大分子复合体等位置。HepG2和L02细胞鉴定到的糖蛋白的分子功能方而主要集中在结合活性、催化活性和分子转导活性。
Background:Hepatocellular carcinoma is one of the most commonly human cancers and the third cause of death in the world. The cancer cell line HepG2and normal hepatocellular cell line L02are valuable cell models and are already widely used in the world. The important role of abnormal glycosylation in the development and progressing of cancer is more and more recognized in different cancers, while it is not fully revealed in hepatocellular carcinoma. This research focuses on identifying N-linked glycoproteins in HepG2and L02cells by mass spectrometry based glycoproteomics.
     Method:Hydrazide chemistry and Hydrophilic Interaction methods are two complemental methods which can isolate and enrich glycopeptide in the high throughput manner. After releasing of glycan by PNGase F, the enriched formerly glycopeptides are identified by LC-MS/MS as well as their glycosylation sites. Later on, we use a series of bioinformatic tools to uncover the difference of glycoproteins between cancer cell line and normal cell line.
     Result:We obtained the following results:
     Part1:394N-linked glycopeptides, containing401glycosylation sites and representing235glycoproteins, were identified from HepG2and L02cells. More glycopeptides were identified by Hydrazide chemistry method than by Hydrophilic Interaction method. More glycopeptides were identifed when combining the two methods.21of170glycopeptides identified by both Hydrazide chemistry and Hydrophilic Interaction methods in both HepG2and L02cells were up-regulated between HepG2and L02cells according to spectral counts.17glycopeptides were down-regulated. Gene ontology analysis showed that carbohydrate binding ability and recepter ability were higher in glycoproteins of HepG2cells, as well as elevated glycoproteins which may participate in biological quality, cellular process, developmental process, signal transduction, and cellular homeostasis.139pathways were mapped in KEGG database. ECM-receptor interaction, pathways in cancer, focal adhesion, phagosome, cell adhesion molecules, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton and protein and absorption are the highest mapped pathways. Four enzymes, glucoside xylosyltransferase1, UDP glucuronosyltransferase1family Al, glycotransferase25domain containing1and procollagen-lysine-2-oxoglutarate5-dioxygenase3, in O-glycan biosynthesis were also identified by this research.
     Part2:60glycopeptides bearing sialic acids, with64glycosylation sites, were identified by a modified Hydrazide chemistry method. Like the whole glycopeptide extraction method, sialic acid focused method identified more glycopeptides in L02cells than in HepG2cells. But only3glycoproteins with sialic acids were identified in both the two cell lines, which may reflect a major change of sialic acid in glycoprotein or due to the relatively small list of identification.58%,13%and29%identified glycoproteins with sialic acid were recorded as Known, potential and no record in Uniprot database, respectively. Most of glycoproteins identified in both cells have binding ability, catalytic ability and molecular transduction ability.
引文
[1]Ohtsubo K, Marth J D. Glycosylation in Cellular Mechanisms of Health and Disease[J].Cell,2006,126(5):855-867.
    [2]Marth J D, Grewal P K. Mammalian glycosylation in immunity[J].Nature Reviews Immunology,2008,8(11):874-887.
    [3]Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases[J].Biochimica et Biophysica Acta (BBA)-General Subjects,2006,1760(4): 527-537.
    [4]Dube D H, Bertozzi C R. Glycans in cancer and inflammation-potential for therapeutics and diagnostics[J].Nature Reviews Drug Discovery,2005,4(6):477-488.
    [5]Haltiwanger R, Lowe J. Role of glycosylation in development [J]. Annual Review of Biochemistry,2004,73:491-537.
    [6]Zielinska D F, Gnad F, Wi et al.Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints[J].Cell,2010,141(5):897-907.
    [7]Freeze H H.Genetic defects in the human glycome[J].Nature Reviews Genetics,2006,7(7):537-551.
    [8]Jemal A, Ward E, Hao Y et al.Trends in the Leading Causes of Death in the United States,1970-2002[J].JAMA:The Journal of the American Medical Association,2005,294(10):1255-1259.
    [9]Bosch F X, Ribes J, Diaz M et al.Primary liver cancer:Worldwide incidence and trends[J].Gastroenterology,2004,127(5, Supplement 1):S5-S16.
    [10]Blomme B, Van Steenkiste C, Callewaert N et al.Alteration of protein glycosylation in liver diseases[J].Journal of Hepatology,2009,50(3):592-603.
    [11]Tam S, Hache R, Deeley R.Estrogen memory effect in human hepatocytes during repeated cell division without hormone[J]. Science,1986,234(4781):1234-1237.
    [12]Aden D P, Fogel A, Plotkin S et al.Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line[J].Nature,1979,282(5739):615-616.
    [13]Ly M, Laremore T N, Linhardt R J.Proteoglycomics:Recent Progress and.Future Challenges[J].OMICS:A Journal of Integrative Biology,2010,14(4):389-399.
    [14]Zhang H, Li X J, Martin D B et al.Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry[J]. Nature Bio techno logy,2003,21(6):660-666.
    [15]Kaji H, Saito H, Yamauchi Y et al.Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins[J].Nature Biotechnology,2003,21(6):667-672.
    [16]Tian Y A, Zhou Y, Elliott S et al.Solid-phase extraction of N-linked glycopeptides[J].nature protocols,2007,2(2):334-339.
    [17]Larsen M R, Jensen S S, Jakobsen L A et al.Exploring the sialiome using titanium dioxide chromatography and mass spectrometry[J].Molecular & Cellular Proteomics,2007,6(10):1778-1787.
    [18]Shakey Q, Bates B, Wu J A.An Approach to Quantifying N-Linked Glycoproteins by Enzyme-Catalyzed O-18(3)-Labeling of Solid-Phase Enriched Glycopeptides[J].Analytical chemistry,2010,82(18):7722-7728.
    [19]Young N M, Brisson J-R, Kelly J et al.Structure of the N-Linked Glycan Present on Multiple Glycoproteins in the Gram-negative Bacterium, Campylobacter jejuni[J]. Journal of Biological Chemistry,2002,277(45):42530-42539.
    [20]Chen C Y, Chi L M, Chi H C et al.Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics study of a thyroid hormone-regulated secretome in human hepatoma cells[J].Molecular & Cellular Proteomics,2011.
    [21]Mosley A L, Sardiu M E, Pattenden S G et al.Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes[J].Molecular & Cellular Proteomics,2010.
    [22]Durham M, Regnier F E.Targeted glycoproteomics:Serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome[J]. Journal of Chromatography A,2006,1132(1-2):165-173.
    [23]Wuhrer M, de Boer A R, Deelder A M.Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry[J].Mass Spectrometry Reviews,2009,28(2):192-206.
    [24]Suzuki N, Lee Y C. Site-specific N-glycosylation of chicken serum IgG[J].Glycobiology,2004,14(3):275-292.
    [25]Deshpande N, Jensen P H, Packer N H et al.GlycoSpectrumScan:Fishing Glycopeptides from MS Spectra of Protease Digests of Human Colostrum sIgA[J].Journal of Proteome Research,2009,9(2):1063-1075.
    [26]Apweiler R, Hermjakob H, Sharon N.On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database[J].Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1473(1):4-8.
    [27]Spiro R G.Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J].Glycobiology,2002,12(4):43R-56R.
    [28]Caragea C, Sinapov J, Silvescu A et al.Glycosylation site prediction using ensembles of Support Vector Machine classifiers[J].Bmc Bioinformatics,2007,8(1):438.
    [29]Hofsteenge J, Blommers M, Hess D et al.The Four Terminal Components of the Complement System AreC-Mannosylated on Multiple Tryptophan Residues[J].Journal of Biological Chemistry,1999,274(46):32786-32794.
    [30]Doucey M-A, Hess D, Cacan R et al.Protein C-Mannosylation Is Enzyme-catalysed and Uses Dolichyl-Phosphate-Mannose as a Precursor[J].Molecular Biology of the Cell,1998,9(2):291-300.
    [31]Furmanek A, Hofsteenge J.Protein C-mannosylation:facts and questions[J].Acta Biochimica Polonica,2000,47(3):781-789.
    [32]Stepper J, Shastri S, Loo T S et al.Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins[J].Febs Letters,2011,585(4):645-650.
    [33]Floyd N, Vijayakrishnan B, Koeppe J R et al.Thiyl Glycosylation of Olefinic Proteins: S-Linked Glycoconjugate Synthesis[J].Angewandte Chemie International Edition,2009,48(42):7798-7802.
    [34]Oman T J, Boettcher J M, Wang H et al.Sublancin is not a lantibiotic but an S-linked glycopeptide[J].nature chemical biology,2011,7(2):78-80.
    [35]Stimson E, Virji M, Makepeace K et al.Meningococcal pilin:a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose[J]. Molecular Microbiology,1995,17(6):1201-1214.
    [36]Krieg J, Hartmann S, Vicentini A et al.Recognition Signal for C-Mannosylation of Trp-7 in RNase 2 Consists of Sequence Trp-x-x-Trp[J].Molecular Biology of the Cell,1998,9:301-309.
    [37]Weerapana E, Imperiali B.Asparagine-linked protein glycosylation:from eukaryotic to prokaryotic systems[J].Glycobiology,2006,16(6):91R-101R.
    [38]Graham R L J, Hess S.Mass Spectrometry in the Elucidation of the Glycoproteome of Bacterial Pathogens[J].current proteomics,2010,7(1):57-81.
    [39]Dove A.The bittersweet promise of glycobiology[J].Nature Biotechnology,2001,19: 913-917.
    [40]Hart G W.Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins[J]. Annual Review of Biochemistry,1997,66(1):315-335.
    [41]Harris R J, Spellman M W.O-Linked fucose and other post-translational modifications unique to EGF modules[J].Glycobiology,1993,3(3):219-224.
    [42]Herscovics A, Orlean P.Glycoprotein biosynthesis in yeast[J].The FASEB Journal,1993,7(6):540-550.
    [43]Wilson B, Gavel Y, von Heijne G.Amino acid distributions around O-linked glycosylation sites[J].Biochemical Journal,1991,275:529-534.
    [44]Steen P V d, Rudd P M, Dwek R A et al.Concepts and Principles of O-Linked Glycosylation[J].Critical Reviews in Biochemistry and Molecular Biology,1998,33(3): 151-208.
    [45]Altheide T K, Hayakawa T, Mikkelsen T S et al.System-wide Genomic and Biochemical Comparisons of Sialic Acid Biology Among Primates and Rodents[J].Journal of Biological Chemistry,2006,281(35):25689-25702.
    [46]Alvarez-Manilla G, Atwood, Guo Y et al.Tools for Glycoproteomic Analysis:Size Exclusion Chromatography Facilitates Identification of Tryptic Glycopeptides with N-linked Glycosylation Sites[J].Journal of Proteome Research,2006,5(3):701-708.
    [47]Alvarez-Manilla G, Warren N L, Atwood J et al.Glycoproteomic Analysis of Embryonic Stem Cells:Identification of Potential Glycobiomarkers Using Lectin Affinity Chromatography of Glycopeptides[J]. Journal of Proteome Research,2010,9(5):2062-2075.
    [48]Angata T, Varki A.Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective[J].Chemical Reviews,2002,102(2):439-469.
    [49]Angyal S, Mills J.Complexes of Carbohydrates with Metal Cations. XI. Paper Electrophoresis of Polyols in Solutions of Calcium Ions[J].Australian Journal of Chemistry,1979,32(9):1993-2001.
    [50]Appenheimer M M, Huang R-Y, Chandrasekaran E V et al.Bio logic contribution of P1 promoter-mediated expression of ST6Gal I sialyltransferase[J]. Glycobiology,2003,13(8):591-600.
    [51]Ashwell G, Harford J.Carbohydrate-Specific Receptors of the Liver[J]. Annual Review of Biochemistry,1982,51(1):531-554.
    [52]Raju T S.Terminal sugars of Fc glycans influence antibody effector functions of IgGs[J].Current Opinion in Immunology,2008,20(4):471-478.
    [53]Calarese D A.Antibody Domain Exchange Is an Immunological Solution to Carbohydrate Cluster Recognition[J].Science,2003,300(5628):2065-2071.
    [54]Baenziger J U, Kumar S, Brodbeck R M et al.Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides[J].Proceedings of the National Academy of Sciences,1992,89(1):334-338.
    [55]Fukuda M, Sasaki H, Lopez L et al.Survival of recombinant erythropoietin in the circulation:the role of carbohydrates[J].Blood,1989,73(1):84-89.
    [56]Helenius A, Aebi, Markus.Intracellular Functions of N-Linked Glycans[J].Science,2001,291(5512):2364-2369.
    [57]Beck F, Lewandrowski U, Wiltfang M et al.The good, the bad, the ugly:Validating the mass spectrometric analysis of modified peptides[J].Proteomics,2011,11(6): 1099-1109.
    [58]陈闻天,刘晨,于汉杰,等.糖类相关基因芯片的设计与制备[J].中国科学-化学,2010,40(5):538-545.
    [59]兀瑞.糖结合蛋白基因芯片的制备与应用[D].西安:西北大学,2011.
    [60]简强,于汉杰,陈超,等.凝集素芯片技术检测糖蛋白方法的建立及初步应用[J].生物化学与生物物理进展,2009,36(2):254-259.
    [61]杜亚蓉.禽流感病毒糖谱与其致病性和亚型关系的研究[D].西安:西北大学,2010.
    [62]Nan G, Yan H, Yang G et al.The hydroxyl-modified surfaces on glass support for fabrication of carbohydrate microarrays[J]. Current Pharmaceutical Biotechnology,2009,10(1):138-146.
    [63]邓炜娜.监测禽流感病毒宿主特异性的糖芯片的研究[D].西安:西北大学,2009.
    [64]Sun S, Yang G, Wang T et al.Isolation of N-linked glycopeptides by hydrazine-functionalized magnetic particles[J]. Analytical and Bioanalytical Chemistry,2010,396(8):3071-3078.
    [65]王婷.磁性微粒分离纯化糖蛋白方法的建立及应用[D].西安:西北大学,2008.
    [66]Yang G, Cui T, Chen Q et al.Isolation and identification of native membrane glycoproteins from living cell by concanavalin A-magnetic particle conjugates [J]. Analytical Biochemistry,2012,421(1):339-341.
    [67]陈巧玲.肝癌患者血清中凝集素LCA识别糖蛋白的分离及鉴定[D].西安:西北大学,2011.
    [68]孙宇.禽流感病毒血凝素的分离纯化以及快速评估其宿主特异性方法的研究[D].西安:西北大学,2010.
    [69]Sun X, Yang G, Sun S et al.The Hydroxyl-Functionalized Magnetic Particles for Purification of Glycan-Binding Proteins [J].Current Pharmaceutical Biotechnology,2009,10(8):753-760.
    [70]储玮.肝癌患者和健康人血清中甘露糖结合蛋白的分离纯化与鉴定[D].西安:西北大学,2011.
    [71]Marino K, Bones J, Kattla J J et al.A systematic approach to protein glycosylation analysis:a path through the maze[J].nature chemical biology,2010,6(10):713-723.
    [72]刘铭琪,张扬,陈瑶函,等.糖基化肽段库构建和高通量检索新方法[J].高等学校化学学报,2010,31(10):1916-1918.
    [73]McDonald C A, Yang J Y, Marathe V et al.Combining Results from Lectin Affinity Chromatography and Glycocapture Approaches Substantially Improves the Coverage of the Glycoproteome[J].Molecular & Cellular Proteomics,2009,8(2):287-301.
    [74]Lee A, Kolarich D, Haynes P A et al.Rat Liver Membrane Glycoproteome:Enrichment by Phase Partitioning and Glycoprotein Cap ture[J]. Journal of Proteome Research,2009,8(2):770-781.
    [75]Sparbier K, Asperger A, Resemann A et al.Analysis of Glycoproteins in Human Serum by Means of Glycospecific Magnetic Bead Separation and LC-MALDI-TOF/TOF Analysis with Automated Glycopeptide Detection[J],Journal of Biomolecular Techniques,2007,18:252-258.
    [76]Cao J, Shen C, Wang H et al.Identification of N-Glycosylation Sites on Secreted Proteins of Human Hepatocellular Carcinoma Cells with a Complementary Proteomics Approach[J]. Journal of Proteome Research,2009,8(2):662-672.
    [77]Endo T.Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns[J].Journal of Chromatography A,1996,720(1-2):251-261.
    [78]Saleemuddin M, Husain Q.Concanavalin A:A useful ligand for glycoenzyme immobilization-A review[J].Enzyme and Microbial Technology,1991,13(4): 290-295.
    [79]Jung K, Cho W, Regnier F E.Glycoproteomics of Plasma Based on Narrow Selectivity Lectin Affinity Chromatography[J]. Journal of Proteome Research,2008,8(2):643-650.
    [80]Walz A, Odenbreit S, Stuhler K et al.Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay[J].Proteomics,2009,9(6): 1582-1592.
    [81]Gonzalez-Begne M, Lu B, Liao L et al.Characterization of the Human Submandibular/Sublingual Saliva Glycoproteome Using Lectin Affinity Chromatography Coupled to Multidimensional Protein Identification Technology[J].Journal of Proteome Research,2011,10(11):5031-5046.
    [82]Kaji H, Yamauchi Y, Takahashi N et al.Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging[J].nature protocols,2007,1(6):3019-3027.
    [83]Wang Y H, Wu S L, Hancock W S. Monitor ing of glycoprotein products in cell culture lysates using lectin affinity chromatography and capillary HPLC coupled to electrospray linear ion trap-Fourier transform mass spectrometry (LTQ/FTMS)[J].Biotechnology Progress,2006,22(3):873-880.
    [84]Drake R R, Schwegler E E, Malik G et al.Lectin Capture Strategies Combined with Mass Spectrometry for the Discovery of Serum Glycoprotein Biomarkers[J].Molecular & Cellular Proteomics,2006,5(10):1957-1967.
    [85]Mandal D K, Kishore N, Brewer C F. Thermodynamics of Lectin-Carbohydrate Interactions. Titration Microcalorimetry Measurements of the Binding of N-Linked Carbohydrates and Ovalbumin to Concanavalin A[J].Biochemistry,1994,33(5): 1149-1156.
    [86]Dam T K, Roy R, Das S K et al.Binding of Multivalent Carbohydrates to Concanavalin A andDioclea grandiflora Lectin[J]. Journal of Biological Chemistry,2000,275(19):14223-14230.
    [87]Lee Y. Biochemistry of carbohydrate-protein interaction[J].The FASEB Journal,1992,6(13):3193-3200.
    [88]Stocks S C, Hopwood D, Sanders D S A et al.The expression of Lewisx on carcinoembryonic antigen (CEA)-related glycoproteins of normal and inflamed oesophageal squamous mucosa[J].Glycoconjugate Journal,1994,1(4):279-286.
    [89]Sturiale L, Barone R, Palmigiano A et al.Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS[J].Proteomics,2008,8(18):3822-3832.
    [90]Cho W, Jung K, Regnier F E.Use of Glycan Targeting Antibodies To Identify Cancer-Associated Glycoproteins in Plasma of Breast Cancer Patients[J].Analytical chemistry,2008,80(14):5286-5292.
    [91]Drake P M, Cho W, Li B et al.Sweetening the Pot:Adding Glycosylation to the Bio marker Discovery Equation[J].Clinical Chemistry,2010,56(2):223-236.
    [92]Hirabayashi J.Concept, Strategy and Realization of Lectin-based Glycan Profiling[J].Journal of Biochemistry,2008,144(2):139-147.
    [93]Ferrier R J. in Advances in Carbohydrate Chemistry and Biochemistry Vol. Volume 35 (eds Tipson R S, Derek H) 31-80 (Academic Press,1978).
    [94]Boeseken J. in Advances in Carbohydrate Chemistry Vol. Volume 4 (eds Pigm W W, Wolfro M L) 189-210 (Academic Press,1949).
    [95]Foster A B. in Advances in Carbohydrate Chemistry Vol. Volume 12 (eds Melville L W, Tipson R S) 81-115 (Academic Press,1957).
    [96]Mattok G L. Wilson D L.Separation of catecholamines and metanephrine and normetanephrine using a weak cation-exchange resin[J]. Analytical Biochemistry,1965,11 (3):575-579.
    [97]Weith H L, Wiebers J L, Gilham P T.Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components[J].Biochemistry,1970,9(22):4396-4401.
    [98]Rawn J D, Lienhard G E.Binding of boronic acids to chymotrypsin[J].Biochcmistry,1974,13(15):3124-3130.
    [99]Ren L, Liu Z, Dong M et al.Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds[J].Journal of Chromatography A,2009,1216(23):4768-4774.
    [100]Xu Y, Wu Z, Zhang L et al.Highly Specific Enrichment of Glycopeptides Using Boronic Acid-Functionalized Mesoporous Silica[J].Analytical chemistry,2008,81(1): 503-508.
    [101]Jia W, Lu Z, Fu Y et al.A Strategy for Precise and Large Scale Identification of Core Fucosylated Glycoproteins[J].Molecular & Cellular Proteomics,2009,8(5):913-923.
    [102]Lewandrowski U, Lohrig K, Zahedi R et al.Glycosylation Site Analysis of Human Platelets by Electrostatic Repulsion Hydrophilic Interaction Chromatography[J].Clinical Proteomics,2008,4(1):25-36.
    [103]Zhang H, Guo T, Li X et al.Simultaneous Characterization of Glyco-and Phosphoproteomes of Mouse Brain Membrane Proteome with Electrostatic Repulsion Hydrophilic Interaction Chromatography[J]. Molecular & Cellular Proteomics,2010,9(4):635-647.
    [104]Hao P, Guo T, Sze S K.Simultaneous Analysis of Proteome, Phospho- and Glycoproteome of Rat Kidney Tissue with Electrostatic Repulsion Hydrophilic Interaction Chromatography[J].Plos One,2011,6(2):e16884.
    [105]Hemstrom P, Irgum K.Hydrophilic interaction chromatography[J]. Journal of Separation Science,2006,29(12):1784-1821.
    [106]Tajiri M.Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment[J].Glycobiology,2005,15(12):1332-1340.
    [107]Neue K, Mormann M, Peter-Katalinic J et al.Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides[J].Journal of Proteome Research,2011,10(5): 2248-2260.
    [108]Wada Y, Tajiri M, Yoshida S.Hydrophilic Affinity Isolation and MALDI Multiple-Stage Tandem Mass Spectrometry of Glycopeptides for Glycoproteomics[J].Analytical chemistry,2004,76(22):6560-6565.
    [109]Picariello G, Ferranti P, Mamone G et al.Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry[J].Proteomics,2008,8(18):3833-3847.
    [110]Halgglund P, Bunkenborg J, Elortza F et al.A New Strategy for Identification of N-Glycosylated Proteins and Unambiguous Assignment of Their Glycosylation Sites Using HILTC Enrichment and Partial Deglycosylation[J].Journal of Proteome Research,2004,3(3).
    [111]Lam M P Y, Lau E, Siu S O et al.Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples[J].Electrophoresis,2011,32(21):2930-2940.
    [112]Lam M P Y, Siu S O, Lau E et al.Online coupling of reverse-phase and hydrophilic interaction liquid chromatography for protein and glycoprotein characterization[J]. Analytical and Bioanalytical Chemistry,2010,398(2):791-804.
    [113]Parker B L, Palmisano G, Edwards A V G et al.Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment[J].Molecular & Cellular Proteomics,2011.
    [114]Zhao Y, Yu L, Guo Z et al.Reversed-phase depletion coupled with hydrophilic affinity enrichment for the selective isolation of N-linked glycopeptides by using Click OEG-CD matrix[J].Analytical and Bioanalytical Chemistry,2011:1-7.
    [115]Mysling S, Palmisano G, H(?)jrup P et al.Utilizing Ion-Pairing Hydrophilic Interaction Chromatography Solid Phase Extraction for Efficient Glycopeptide Enrichment in Glycoproteomics[J].Analytical chemistry,2010,82(13):5598-5609.
    [116]Snovida S I, Bodnar E D, Viner R et al.A simple cellulose column procedure for selective enrichment of glycopeptides and characterization by nano LC coupled with electron-transfer and high-energy collisional-dissociation tandem mass spectrometry[J].Carbohydrate Research,2010,345(6):792-801.
    [117]Li J, Li X, Guo Z et al.Click maltose as an alternative to reverse phase material for desalting glycopeptides[J].Analyst,2011,136(19):4075-4082.
    [118]Wuhrer M, Koeleman C A M, Hokke C H et al.Protein Glycosylation Analyzed by Normal-Phase Nano-Liquid Chromatography-Mass Spectrometry of Glycopeptides[J].Analytical chemistry,2004,77(3):886-894.
    [119]Takegawa Y, Deguchi K, Keira T et al.Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography[J].Journal of Chromatography A,2006,1113(1-2):177-181.
    [120]Kuo C-W, Wu I L, Hsiao H-H et al.Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles[J].Analytical and Bioanalytical Chemistry,2012,402(9):2765-2776.
    [121]Tajiri M, Yoshida S, Wada Y.Differential analysis of site-specific glycans on plasma and cellular fibronectins:application of a hydrophilic affinity method for glycopeptide enrichment[J].Glycobiology,2005,15(12):1332-1340.
    [122]Ding W, Hill J J, Kelly J.Selective Enrichment of Glycopeptides from Glycoprotein Digests Using Ion-Pairing Normal-Phase Liquid Chromatography[J].Analytical chemistry,2007,79(23):8891-8899.
    [123]Ding W, Nothaft H, Szymanski C M et al.Identification and Quantification of Glycoproteins Using Ion-Pairing Normal-phase Liquid Chromatography and Mass Spectrometry[J].Molecular & Cellular Proteomics,2009,8(9):2170-2185.
    [124]Palmisano G, Melo-Braga M N, Engholm-Keller K et al.Chemical Deamidation:A Common Pitfall in Large-Scale N-Linked Glycoproteomic Mass Spectrometry-Based Analyses[J].Journal of Proteome Research,2012,11 (3):1949-1957.
    [125]Chen R, Tan Y, Wang M et al.Development of glycoprotein capture based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma[J].Molecular & Cellular Proteomics,2011.
    [126]Zhou Y, Aebersold R, Zhang H.Isolation of N-Linked Glycopeptides from Plasma[J].Analytical chemistry,2007,79(15):5826-5837.
    [127]Chen Y, Cao J, Yan G et al.Two-step protease digestion and glycopeptide capture approach for accurate glycosite identification and glycoprotein sequence coverage improvement[J].Talanta,2011,85(1):70-75.
    [128]Wollscheid B, Bausch-Fluck D, Henderson C et al.Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins[J].Nature Biotechnology,2009,27(4):378-386.
    [129]Zou Z, Ibisate M, Zhou Y et al.Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format[J].Analytical chemistry,2008,80(4):1228-1234.
    [130]Weigel P H, Yik J H N.Glycans as endocytosis signals:the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors[J].Biochimica et Biophysica Acta (BBA)-General Subjects,2002,1572(2-3):341-363.
    [131]Lehmann F, Tiralongo E, Tiralongo J.Sialic acid-specific lectins:occurrence, specificity and function [J]. Cellular and Molecular Life Sciences,2006,63(12): 1331-1354.
    [132]Zhao J, Simeone D M, Heidt D et al.Comparative Serum Glycoproteomics Using Lectin Selected Sialic Acid Glycoproteins with Mass Spectrometric Analysis:Application to Pancreatic Cancer Serum[J]. Journal of Proteome Research,2006,5(7):1792-1802.
    [133]Palmisano G, Lendal S E, Engholm-Keller K et al.Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry[J].nature protocols,2010,5(12):1974-1982.
    [134]Lewandrowski U, Zahedi R P, Moebius J et al.Enhanced N-Glycosylation Site Analysis of Sialoglycopeptides by Strong Cation Exchange Prefractionation Applied to Platelet Plasma Membranes[J].Molecular & Cellular Proteomics,2007,6(11): 1933-1941.
    [135]Ghesquiere B, Buyl L, Demol H et al.A New Approach for Mapping Sialylated N-Glycosites in Serum Proteomes[J].Journal of Proteome Research,2007,6(11): 4304-4312.
    [136]Li Y, Tian Y, Rezai T et al.Simultaneous Analysis of Glycosylated and Sialylated Prostate-Specific Antigen Revealing Differential Distribution of Glycosylated Prostate-Specific Antigen Isoforms in Prostate Cancer Tissues[J]. Analytical chemistry,2010,83(1):240-245.
    [137]Brinkman-Van der Linden E C M, Sonnenburg J L, Varki A.Effects of Sialic Acid Substitutions on Recognition by Sambucus nigra Agglutinin and Maackia amurensis Hemagglutinin[J].Analytical Biochemistry,2002,303(1):98-104.
    [138]Nilsson J, Ruetschi U, Halim A et al.Enrichment of glycopeptides for glycan structure and attachment site identification[J].Nature Methods,2009,6(11):809-811.
    [139]Kurogochi M, Matsushista T, Amano M et al.Sialic Acid-focused Quantitative Mouse Serum Glycoproteomics by Multiple Reaction Monitoring Assay[J].Molecular & Cellular Proteomics,2010,9(11):2354-2368.
    [140]Zeng Y, Ramya T N C, Dirksen A et al.High-efficiency labeling of sialylated glycoproteins on living cells[J].Nature Methods,2009,6(3):207-209.
    [141]Herbert C G, Johnstone R A W. Mass spectrometry basics. (CRC Press,2003).
    [142]Fenn J, Mann M, Meng C et al.Electrospray ionization for mass spectrometry of large biomolecules[J].Science,1989,246(4926):64-71.
    [143]Karas M, Hillenkamp F.Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons[J].Analytical chemistry,1988,60.
    [144]Aebersold R, Mann M.Mass spectrometry-based proteomics[J].Nature,2003,422(6928):198-207.
    [145]Zubarev R A, Kelleher N L, McLafferty F W.Electron capture dissociation of multiply charged protein cations. A nonergodic process[J].the Journal of the American Chemical Society,1998,120(13):3265-3266.
    [146]McLafferty F, Horn D, Breuker K et al.Electron capture dissociation of gaseous multiply charged ions by Fourier-trans form ion cyclotron resonance[J]. Journal of the American Society for Mass Spectrometry,2001,12(3):245-249.
    [147]Syka J E P, Coon J J, Schroeder M J et al.Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9528-9533.
    [148]Mikesh L M, Ueberheide B, Chi A et al.The utility of ETD mass spectrometry in proteomic analysis[J].Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2006,1764(12):1811-1822.
    [149]Kuster B, Mann M.18O-Labeling of N-Glycosylation Sites To Improve the Identification of Gel-Separated Glycoproteins Using Peptide Mass Mapping and Database Searching[J].Analytical chemistry,1999,71(7):1431-1440.
    [150]Dunn B.Cancer:Solving an age-old problem[J].Nature,2012,483(7387):S2-S6.
    [151]Conley S J, Gheordunescu E, Kakarala P et al.Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia[J].Proceedings of the National Academy of Sciences,2012,109(8):2784-2789.
    [152]Hakomori S-i.Tumor Malignancy Defined by Aberrant Glycosylation and Sphingo(glyco)lipid Metabolism[J].Cancer Research,1996,56(23):5309-5318.
    [153]Wagner K W, Punnoose E A, Januario T et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL[J].Nature Medicine,2007,13(9):1070-1077.
    [154]Siegel R, Naishadham D, Jemal A.Cancer statistics,2012[J].CA:A Cancer Journal for Clinicians,2012,62(1):10-29.
    [155]Jacobs I J, Skates S J, MacDonald N et al.Screening for ovarian cancer:a pilot randomised controlled trial[J].The Lancet,1999,353(9160):1207-1210.
    [156]Hanash S, Taguchi A.The grand challenge to decipher the cancer proteome[J].Nature Reviews Cancer,2010,10(9):652-660.
    [157]Skolnick A A.Armed with Epidemiologic Research, China Launches Programs to Prevent Liver Cancer[J].JAMA:The Journal of the American Medical Association,1996,276(18):1458-1459.
    [158]Bruix J, Sherman M.Management of hepatocellular carcinoma:An update[J].Hepatology,2011,53(3):1020-1022.
    [159]Wang X W, Grisham J W, Thorgeirsson S S.Biology of Hepatocellular Carcinoma: Past, Present and Beyond[J].Molecular Genetics of Liver Neoplasia,2010:3-17.
    [160]Feng J T, Shang S, Beretta L.Proteomics for the early detection and treatment of hepatocellular carcinoma[J].Oncogene,2006,25(27):3810-3817.
    [161]Lee H-J, Na K, Kwon M-S et al.A new versatile peptide-based size exclusion chromatography platform for global profiling and quantitation of candidate biomarkers in hepatocellular carcinoma specimens[J].Proteomics,2011,11(10):1976-1984.
    [162]Yokoo H, Kondo T, Fujii K et al.Proteomic signature corresponding to alpha fetoprotein expression in liver cancer cells[J].Hepatology,2004,40(3):609-617.
    [163]Fujii K, Kondo T, Yokoo H et al.Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye[J].Proteomics,2006,6(5):1640-1653.
    [164]Higai K, Shibukawa K, Muto S et al.Targeted proteo-glycomics analysis of Sialyl Lewis X antigen expressing glycoproteins secreted by human hepatoma cell line[J].Analytical Sciences,2003,19(1):85-92.
    [165]Block T M, Comunale M A, Lowman M et al.Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(3):779-784.
    [166]Zwickl H, Traxler E, Staettner S et al.A novel technique to specifically analyze the secretome of cells and tissues[J].Electrophoresis,2005,26(14):2779-2785.
    [167]Petrak J, Myslivcova D, Man P et al.Proteomic analysis of iron overload in human hepatoma cells[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2006,290(5):G1059-G1066.
    [168]Li L, Chen S H, Yu C H et al.Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray[J]. Journal of Proteome Research,2008,7(2):611-620.
    [169]Ngoka L C.Dramatic down-regulation of oxidoreductases in human hepatocellular carcinoma hepG2 cells:proteomics and gene ontology unveiling new frontiers in cancer enzymology[J].Proteome Science,2008,6:29.
    [170]Spano D, Russo R, Di Maso V et al.Galectin-1 and its involvement in hepatocellular carcinoma aggressiveness[J].Molecular medicine (Cambridge, Mass.),2010,16(3-4): 102-115.
    [171]Campion B, LEGer D, Wieruszeski J-M et al.Presence of fucosylated triantennary, tetraantennary and pentaantennary glycans in transferrin synthesized by the human hepatocarcinoma cell line Hep G2[J].European Journal of Biochemistry,1989,184(2): 405-413.
    [172]Saitoh A, Aoyagi Y, Asakura H.Structural Analysis on the Sugar Chains of Human al-Antitrypsin:Presence of Fucosylated Biantennary Glycan in Hepatocellular Carcinoma[J]. Archives of Biochemistry and Biophysics,1993,303(2):281-287.
    [173]程志祥.重楼总皂苷作用人肝癌细胞系HepG2的蛋白质组学研究[D].南京:南京医科大学,2008.
    [174]江晓华.多烯紫杉醇对人肝癌细胞系HepG2蛋白质组影响的体外实验研究[D].长沙:中南大学,2006.
    [175]田浪.人肝癌多药耐药细胞系HepG2/ADM和其亲本细胞系HepG2蛋白质双向电 泳图谱的差异分析[D].武汉:华中科技大学,2008.
    [176]李岚.肝癌相关抗原及自身抗体的血清蛋白组及蛋白芯片分析[D].杭州:浙江大学,2008.
    [177]白瑞霞.肝癌细胞株HepG2的G1期、G2/M期细胞蛋白质组表达差异的研究[D].呼和浩特:内蒙古医学院,2007.
    [178]刘婷CyclinE干扰RNA对肝癌HepG2细胞株蛋白组的影响[D].呼和浩特:内蒙古医学院,2008.
    [179]李卫华,缪晓辉,戚中田,等.应用蛋白质组学技术筛选乙型肝炎病毒X蛋白作用相关蛋白质[J].中华传染病杂志,2010,28(2).
    [180]黄清玲.乙型肝炎病毒全基因水平对HepG2细胞的影响及其机制的初步研究[D].福州市:福建医科大学,2008.
    [181]锁爱莉,姚煜,张王刚.人肝癌细胞HepG2和人正常肝细胞7702的差异蛋白质组学研究[J].西安交通大学学报(医学版),2011,32(5):545-549.
    [182]Xu Y, Zhang S-Z, Huang C-H et al.Keratin 17 identified by proteomic analysis may be involved in tumor angiogenesis[J].Bmb Reports,2009,42(6):344-349.
    [183]刘坤HepG2.2.15与HepG2细胞蛋白复合体和分泌蛋白谱差异比较[D].北京:中国人民解放军军事医学科学院,2007.
    [184]陈明.多维液相色谱质谱联用技术及其在人类肝脏蛋白质组学研究中的应用[D].北京:中国人民解放军军事医学科学院,2007.
    [185]Gou L, Tong A, Chen L et al.Comparative plasma membrane associated proteomics of immortalized human hepatocytes[J].Biochemistry (Moscow),2008,73(11):1200-1206.
    [186]张艳,范学工,陈仁,等.幽门螺杆菌对人肝细胞系HepG2细胞蛋白质组的影响[J].世界华人消化杂志,2004,12(6):1325-1328.
    [187]Crooks G E, Hon G, Chandonia J-M et al.WebLogo:A Sequence Logo Generator[J].Genome Research,2004,14(6):1188-1190.
    [188]Liu H, Sadygov R G, Yates J R.A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics[J]. Analytical chemistry,2004,76(14):4193-4201.
    [189]Conesa A, Gotz S, Garcia-Gomez J M et al.Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J].bioinformatics,2005,21(18):3674-3676.
    [190]Shakin-Eshleman S H, Spitalnik S L, Kasturi L.The Amino Acid at the X Position of an Asn-X-Ser Sequon Is an Important Determinant of N-Linked Core-glycosylation Efficiency[J]. Journal of Biological Chemistry,1996,271(11):6363-6366.
    [191]Mellquist J L, Kasturi L, Spitalnik S L et al.The Amino Acid Following an Asn-X-Ser/Thr Sequon Is an Important Determinant of N-Linked Core Glycosylation Efficiency[J].Biochemistry,1998,37(19):6833-6837.
    [192]Kasturi L, Eshleman J R, Wunner W H et al.The Hydroxy Amino Acid in an Asn-X-Ser/Thr Sequon Can Influence N-Linked Core Glycosylation Efficiency and the Level of Expression of a Cell Surface Glycoprotein[J]. Journal of Biological Chemistry,1995,270(24):14756-14761.
    [193]Gavel Y, Heijne G v.Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites:implications for protein engineering[J].Protein Engineering,1990,3(5):433-442.
    [194]Tian Y, Esteva F J, Song J et al.Altered expression of sialylated glycoproteins in breast cancer using hydrazide chemistry and mass spectrometry[J].Molecular & Cellular Proteomics,2012.
    [195]孙士生.人血清、唾液和H1N1流感病毒中的蛋白糖基化分析[D].西安:西北大学,2011.
    [196]Varki A.Sialic acids as ligands in recognition phenomena[J].The FASEB Journal,1997,11 (4):248-255.
    [197]Schauer R.Sialic acids and their role as biological masks[J].Trends in Biochemical Sciences,1985,10(9):357-360.
    [198]Takashima S, Tachida Y, Nakagawa T et al.Quantitative Analysis of Expression of Mouse Sialyltransferase Genes by Competitive PCR[J].Biochemical and Biophysical Research Communications,1999,260(1):23-27.
    [199]Harduin-Lepers A, Mollicone R, Delannoy P et al.The animal sialyltransferases and sialyltransferase-related genes:a phylogenetic approach[J].Glycobiology,2005,15(8): 805-817.
    [200]Schauer R.Achievements and challenges of sialic acid research[J].Glycoconjugate Journal,2000,17(7):485-499.
    [201]Varki A.Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins[J].Nature,2007,446(7139):1023-1029.
    [202]liver D, Johansson P, Miller-Podraza H et al. in Methods in Enzymology Vol. Volume 363 (eds Yuan C L, Reiko T L) 134-157 (Academic Press,2003).
    [203]Born G V, Palinski W.Unusually high concentrations of sialic acids on the surface of vascular endothelia[J].the British Journal of Experimental Pathology,1985,66(5): 543-549.
    [204]Dekan G, Gabel C, Farquhar M G.Sulfate contributes to the negative charge of podocalyxin, the major sialoglycoprotein of the glomerular filtration slits[J]. Proceedings of the National Academy of Sciences,1991,88(12):5398-5402.
    [205]Ajit V.Sialic acids in human health and disease[J]. Trends in Molecular Medicine,2008,14(8):351-360.
    [206]Jamieson J C, McCaffrey G, Harder P G.Sialyltransferase:A novel acute-phase reactant[J]. Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1993,105(1):29-33.
    [207]Yasukawa Z, Sato C, Kitajima K.Inflammation-dependent changes in a2,3-, a2,6-, and a2,8-sialic acid glycotopes on serum glycoproteins in mice[J].Glycobiology,2005,15(9):827-837.
    [208]Gunnarsson P, Levander L, Pahlsson P et al.The acute-phase protein α1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (Siglecs)[J].The FASEB Journal,2007,21(14):4059-4069.
    [209]Weinhold B, Seidenfaden R, Rockle I et al.Genetic Ablation of Polysialic Acid Causes Severe Neurodevelopmental Defects Rescued by Deletion of the Neural Cell Adhesion Molecule[J] Journal of Biological Chemistry,2005,280(52):42971-42977.
    [210]Johnson C P, Fujimoto I, Rutishauser U et al.Direct Evidence That Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion[J] Journal of Biological Chemistry,2005,280(1):137-145.
    [211]El Maarouf A, Petridis A K, Rutishauser U.Use of polysialic acid in repair of the central nervous system[J].Proceedings of the National Academy of Sciences,2006,103(45):16989-16994.
    [212]Rutishauser U.Polysialic acid in the plasticity of the developing and adult vertebrate nervous system[J].Nature Reviews Neuroscience,2008,9(1):26-35.
    [213]Vimr E R, Kalivoda K A, Deszo E L et al.Diversity of Microbial Sialic Acid Metabolism[J].Microbiology and Molecular Biology Reviews,2004,68(1):132-153.
    [214]Kim Y, Varki A.Perspectives on the significance of altered glycosylation of glycoproteins in cancer[J].Glycoconjugate Journal,1997,14(5):569-576.
    [215]Chen S, Fukuda M. in Methods in Enzymology Vol. Volume 416 (ed Minoru F) 371-380 (Academic Press,2006).
    [216]Ajona D, Castano Z, Garayoa M et al.Expression of Complement Factor H by Lung Cancer Cells[J].Cancer Research,2004,64(17):6310-6318.
    [217]Rhodes J M.Usefulness of novel tumour markers[J]. Annals of Oncology,1999,10(suppl4):S118-S121.
    [218]Yin B W T, Lloyd K O.Molecular Cloning of the CA125 Ovarian Cancer Antigen[J].Journal of Biological Chemistry,2001,276(29):27371-27375.
    [219]Wahrenbrock M G, Varki A.Multiple Hepatic Receptors Cooperate to Eliminate Secretory Mucins Aberrantly Entering the Bloodstream:Are Circulating Cancer Mucins the "Tip of the Iceberg"?[J].Cancer Research,2006,66(4):2433-2441.
    [220]Malykh Y N, Schauer R, Shaw L.N-Glycolylneuraminic acid in human tumours[J].Biochimie,2001,83(7):623-634.
    [221]Ju T, Cummings R D.Protein glycosylation:Chaperone mutation in Tn syndrome[J].Nature,2005,437(7063):1252-1252.
    [222]Ju T, Lanneau G S, Gautam T et al.Human Tumor Antigens Tn and Sialyl Tn Arise from Mutations in Cosmc[J].Cancer Research,2008,68(6):1636-1646.
    [223]Martin L T, Marth J D, Varki A et al.Genetically Altered Mice with Different Sialyltransferase Deficiencies Show Tissue-specific Alterations in Sialylation and Sialic Acid 9-O-Acetylation[J]Journal of Biological Chemistry,2002,277(36): 32930-32938.
    [224]Bairoch A, Apweiler R, Wu C H et al.The Universal Protein Resource (UniProt)[J].Nucleic Acids Research,2005,33(suppl 1):D154-D159.
    [225]Chen R, Jiang X, Sun D et al.Glycoproteomics Analysis of Human Liver Tissue by Combination of Multiple Enzyme Digestion and Hydrazide Chemistry[J].Journal of Proteome Research,2009,8(2):651-661.
    [226]Liu T, Qian W J, Gritsenko M A et al.Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry[J].Journal of Proteome Research,2005,4(6):2070-2080.