新型纳米无定型磷酸钙/聚乳酸复合材料联合碱性成纤维细胞生长因子修复关节软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节软骨的自我修复能力极为有限,由于创伤、肿瘤等原因引起的软骨损伤很难自我修复,如果得不到有效的处理韵话,往往会导致进行性的关节退变和骨关节炎的形成。临床上治疗软骨损伤的许多传统方法,如微骨折、软骨下钻孔、骨膜和软骨膜移植术等均存在一定的不足。近年来飞速发展的组织工程技术为关节软骨的修复带来了新的思路。组织工程是应用细胞生物学和工程学的原理,对病损组织的结构和功能进行再生和重建的一门新兴学科,其中新型支架材料的研制开发一直是组织工程的研究热点。本研究采用热诱导相分离的方法制备出新型纳米无定型磷酸钙/聚乳酸(ACP/PLLA)三维多孔支架材料,并与碱性成纤维细胞生长因子(bFGF)相复合来探讨它们在关节软骨修复中的应用前景。
     第一部分ACP/PLLA复合材料的制备和表征
     目的:通过对新型ACP/PLLA复合材料表征来评价其作为软骨组织工程支架材料的可行性。方法:采用热诱导相分离的方法制备ACP/PLLA复合材料,对该复合材料的显微形貌、孔径、孔隙率和力学性能进行表征。观察支架材料在浸泡PBS液后的形貌变化。同时将bFGF生长因子复合在ACP/PLLA材料上,检测bFGF在PBS溶液中的缓释情况。结果:用热诱导相分离方法制备的ACP/PLLA复合材料是一种三维多孔支架材料,材料孔径在100—200μm之间,孔隙率为91%,材料弹性模量为3.46Mpa。当材料浸泡在PBS液后,材料孔壁表面的ACP颗粒会发生形貌的变化,在原位转变为片状纳米磷灰石晶体。当bFGF复合在ACP/PLLA材料上后,bFGF在溶液中能实现缓释。结论:基于组织工程对支架材料的微观要求,新型ACP/PLLA复合材料可望成为一种理想的软骨组织工程支架材料,它可作为生长因子的载体。
     第二部分骨髓间充质干细胞的分离、培养及与复合材料的生物相容性研究
     目的:探索兔子骨髓间充质干细胞(bMSCs)的体外分离、培养方法,评价ACP/PLLA复合材料与bMSCs的生物相容性。方法:将抽取的兔子骨髓用密度梯度离心和贴壁培养法分离bMSCs,在体外进行细胞的原代和传代培养,观察细胞的生长情况。将第三代的bMSCs种植在ACP/PLLA和PLLA材料上,用MTT法检测细胞在不同材料上的黏附和增殖情况,用扫描电镜和激光共聚焦显微镜观察细胞在材料中的生长情况和形态改变。结果:分离获得的bMSCs在3天左右贴壁,并逐渐变为梭形,在14天左右细胞长满瓶底,而传代后的细胞在7天左右就长满瓶底。将bMSCs接种至ACP/PLLA和PLLA材料后,细胞在ACP/PLLA复合材料上的黏附率为77.8%,而在PLLA材料中的黏附率为51.1%,两者之间有统计学差异(P<0.05)。细胞增殖实验结果显示在种植后第3天和第6天,ACP/PLLA材料组和平板培养组的细胞数量明显多于PLLA材料组(P<0.05)。之后,平板培养组的细胞增殖速度明显减慢,而材料组的细胞仍保持较高的细胞增殖速度,在培养的第10天,ACP/PLLA材料组的细胞数量明显多于PLLA材料组和平板培养组(P<0.05)。扫描电镜和激光共聚焦显微镜观察证实在ACP/PLLA材料组中bMSCs密度要明显高于PLLA材料组。另外,扫描电镜显示bMSCs在ACP/PLLA材料上黏附良好,并开始分泌细胞外基质,提示bMSCs在材料中具有良好的活力。结论:用密度梯度离心和贴壁培养法可以分离并培养得到bMSCs。与PLLA材料相比,ACP/PLLA复合材料更能促进细胞的黏附和增殖,ACP/PLLA复合材料是一种更具优势的软骨组织工程支架材料。
     第三部分ACP/PLLA复合材料联合bFGF在兔子骨软骨缺损修复中的应用研究
     目的:探索ACP/PLLA复合材料联合bFGF生长因子修复关节软骨缺损的可行性。方法:在21只骨骼发育成熟的兔子股骨内髁制作直径4mm,深5mm的骨软骨缺损,在缺损处分别植入ACP/PLLA材料和bFGF的复合物、PLLA材料和bFGF的复合物或不做任何处理作为空白对照。在术后4周和12周取材,通过大体观察和组织学切片观察骨软骨的修复情况,并对修复组织进行RT—PCR分析,检测修复组织的基因表达情况。结果:在术后4周时,ACP/PLLA/bFGF组和PLLA/bFGF组缺损内均充满一些不成熟的或纤维样的修复组织,但没有明显的软骨组织形成。在术后12周时,ACP/PLLA/bFGF组软骨缺损表面覆盖有一层典型的透明软骨样组织,在软骨层下面也有一层连续的软骨下骨形成。在PLLA/bFGF组中,修复组织主要为纤维软骨组织,软骨下骨形成不明显。而空白对照组无论在4周还是12周缺损处凹陷明显,表面只覆盖有一薄层纤维组织,提示软骨的自我修复能力很差。RT—PCR分析结果显示在ACP/PLLA/bFGF组中有大量的Ⅱ型胶原和aggrecan基因表达,而在PLLA/bFGF组中只有少量的Ⅱ型胶原表达,没有检测到aggrecan基因。结论:用新型ACP/PLLA复合材料联合bFGF生长因子能在体内修复骨软骨缺损。
It has been well established that articular cartilage has a limited capacity for self-repair. Cartilage lesions, whenever resulting from trauma or due to the tumor, often fail to heal spontaneously and may lead to progressive destruction of the joint and the onset of osteoarthritis. Various methods have been developed to augment its healing response, for example, microfracture, subchondral drilling, perichondrial/periosteal grafts. But these efforts generally seem to be quite limited. Recently, the rapid development of tissue engineering has brought great chance for the cartilage repair. Based on the discipline of cell biology, biomaterial science and engineering, the aim of tissue engineering is to restore the structure and function of tissues lost in the injury or disease. Till now, the development of novel scaffold is the main task in cartilage tissue eingineering. In this study, a novel nano-amorphous calcium phosphate/Poly L-lactic acid (ACP/PLLA) scaffold was developed by a thermally induced phase separation technique. And this tissue engineered scaffold incorporated with basic fibroblast growth factor (bFGF) was introduced to repair articular cartilage defect.
     Part I The synthesis and characterisation of ACP/PLLA hybrid material
     Objective: To characterize the novel ACP/PLLA composite and evaluate the feasibility of this material as a scaffold for cartilage tissue engineering. Methods: The novel ACP/PLLA scaffold was developed by the thermally induced phase separation technique. The morphology, porous size, porosity and the mechanical properties of the scaffold was evaluated. The morphology changes were also observed by scanning electron microscope (SEM) when ACP/PLLA was soaked in PBS solution. Furthermore, when the growth factor bFGF was incorporated into ACP/PLLA, the controlled release of bFGF was examined. Results: The novel ACP/PLLA material was a porous three-dimensional scaffold with the pore size of around 100-200μm, porosity of 91% and elastic modulus of 3.46Mpa. When the scaffold was soaked in PBS solution, ACP particles coated on the PLLA pore walls could experience a fast phase transformation and morphological variation to flake-like crystallites. When the growth factor bFGF was incoporated into the scaffold, bFGF could release in a substained manner. Conclusion: The novel ACP/PLLA hybrid material can act as an ideal scaffold for cartilage tissue engineering and vehicle for growth factor.
     Part II The isolation, culture of bMSCs and the biocompatibility of ACP/PLLA material with bMSCs
     Objective: To investigate the method of isolation, culture of bone marrow-derived mesenchymal stem cells (bMSCs) from rabbits and evaluate their biocompatibility with ACP/PLLA scaffold. Methods: bMSCs were extracted from the bone marrow in rabbits by density gradient centrifugation method and cultured in vitro regularly. When bMSCs reached confluence, they were subcultured. The cells of the 3nd passage were seeded into ACP/PLLA and PLLA scaffolds to investigate the cell attachment and proliferation by MTT assay. The cell morphology was observed by SEM and Confocal Laser Scanning Microscope (CLSM). Results: The obtained primary bMSCs began to adhere at 3 days. Generally, it would take 14 days for the primary cells to reach confluence, and only 7 days for the passaged cells. When bMSCs were seeded into scaffolds, the cell attachment rate in ACP/PLLA was 77.8%, which was statistically higher than that in PLLA scaffold. The cell proliferation assay showed that the cell number in ACP/PLLA group and monolayer group was much higher than that in PLLA group (P<0.05) at 3 and 6 days. Thereafter, the cell proliferation rate in monolayer group slowed down, while the cells in scaffolds still increased rapidly. At 10 days, the cell number in ACP/PLLA group was higher than that in PLLA group (P<0.05). The SEM and CLSM observation further confirmed that the cell density in ACP/PLLA group was obviously higher than in PLLA group. Additionally, the SEM observation revealed that bMSCs adhered tightly onto the pore surface and began to secret the matrix. Conclusion: bMSCs can be obtained from bone marrow by the density gradient centrifugation method. Compared with PLLA scaffold, ACP/PLLA scaffold can promote the cell attachment and proliferation, thus be a more superior scaffold for cartilage tissue engineering.
     Part III The experimental study of osteochondral repair by the combination of ACP/PLLA scaffold and bFGF
     Objective: To investigate the efficacy of ACP/PLLA scaffold combined with bFGF to repair osteochondral defects in a rabbit model. Methods: Osteochondral defects (4mm in diameter and 5mm in depth) were created in the medial femoral condyles in 21 skeletally mature rabbits. The defects were either implanted with ACP/PLLA loaded with bFGF, PLLA and bFGF composite or left untreated. The rabbits were sacrificed at 4 and 12 weeks after implantation. Samples were evaluated by macroscopic and histological examination. The gene expression of the newly formed tissue was also detected by RT-PCR analysis. Results: 4 weeks after surgery, the defects were filled with fibrous or immature repair tissue in ACP/PLLA/bFGF and PLLA/bFGF groups. No obvious cartilage tissue was observed in both groups. At 12 weeks, a typical layer of hyaline cartilage was formed in the repair tissue in ACP/PLLA/bFGF group. A continuous layer of subcondral bone was also detected below the cartilage layer. However, the newly formed tissue in PLLA/bFGF group was mainly fibrocartilage with no obvious subcondral bone formed. In control group, the defect was still remained and covered by a thin layer of fibrous tissue whenever in 4 and 12 weeks, indicating the poor self-repair ability of cartilage defects. RT-PCR analysis showed that high levels of type II collagen (Col II) and aggrecan message were detected in repair tissue in ACP/PLLA/bFGF group. In contrast, only a small amount of Col II appeared in PLLA/bFGF group with no aggrecan gene expression detected. Conclusion: The osteochondral defects can be successfully repaired by the combination of ACP/PLLA and bFGF.
引文
1.Farnworth L.Osteochondral defects of the knee.Orthopaedics.2000;23(2):146-157
    2.Buckwalter JA,Mankin HA.Articular cartilage repair and transplantation.Arthritis Rheum.1998;41:1331-1342
    3.范振华.骨科康复医学.上海:上海医科大学出版社.1999:19-20
    4.Newman AP.Articular cartilage repair.Am J Sports Med.1998;26:309-324
    5.Mankin HJ.The response of articular cartilage to mechanical injury.J Bone Jt Surg Am.1982;64:460-466
    6.Steadman JR,Briggs KK,Rodrigo JJ,Kocher MS,Gill TJ,Rodkey WG.Outcomes of microfracture for traumatic chondral defects of the knee:average 11-year follow-up.Arthroscopy.2003;19:477-484
    7.Dzioba RB.The classification and treatment of acute articular cartilage lesions.Arthroscopy.1988;4:72-80
    8.崔春爱,杨镇深,陈华勇,等.自体骨膜移植修复关节软骨缺损的实验研究[J].延大学医学学报.2002;25(1):8-11
    9.Peterson L,Minas T,Brittberg M,Lindahl A.Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation:results at two to ten years.J Bone Jt Surg Am.2003;85:17-24
    10.Hangody L,Fules P.Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints:ten years of experimental and clinical experience.J Bone Jt Surg Am.2003;85:25-32
    11.Horas U,Pelinkovic D,Herr G,Aigner T,Schnettler R.Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint:a prospective,comparative trial.J Bone Jt Surg Am.2003;85:185-192
    12.Brittberg M,Lindahl A,Nilsson A,Ohlsson C,Isaksson O,Peterson L.Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N Engl J Med.1994;331:889-895
    13.Nehrer S,Domayer S,Dorotka R,Schatz K,Bindreiter U,Kotz R.Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol. 2006;57:3-8
    14. Richard T, Wan-Ju L, Rocky ST. Current states of cartilage tissue engineering. Arthritis Res Ther. 2003;5:235-238
    15. Benya PD, Shaffer JD. Dediflferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215-224
    16. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415-428
    17. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26:4273-4279
    18. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005;75:156-167
    19. Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005;26:4301-4308
    20. Mierisch CM, Cohen SB, Jordan LC, Robertson PQ Balian G, Diduch DR. Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy. 2002;l 8:892-900
    21. Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E. Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg. 2005;125:683-692
    22. Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2(rhBMP-2)on the healing of full-thickness defects of articular cartilage.J Bone Jt Surg Am.1997;79:1452-1463
    23.Madry H,Kaul G,Cucchiarini M,Stein U,Zurakowski D,Remberger K,Menger MD,Kohn D,Trippel SB.Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor Ⅰ(IGF-Ⅰ).Gene Ther.2005;12:1171-1179
    24.Coutts RD,Sah RL,Amiel D.Effects of growth factors on cartilage repair.Instr Course Lect.1997;46:487-494
    25.Fujimoto E,Ochi M,Kato Y,Mochizuki Y,Sumen Y,Ikuta Y.Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage.Arch Orthop Trauma Surg.1999;119:139-145
    26.Shida J,Jingushi S,Izumi T,Iwaki A,Sugioka Y.Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.J Orthop Res.1996;14(2):265-272
    1.Jansen EJ,Sladek RE,Bahar H,Yaffe A,Gijbels MJ,Kuijer R,Bulstra SK,Guldemond NA,Binderman I,Koole LH.Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.Biomaterials.2005;26:4423-4431
    2.Peter SJ,Miller MJ,Yasko AW,Yaszemski MJ,Mikos AG.Polymer concepts in tissue engineering.J Biomed Mater Res.1998;43:422-427
    3.鄂征,刘流.编.医学组织工种技术与临床应用.北京出版社.2003:5:156
    4.Solchaga LA,Gao J,Dennis JE,Awadallah A,Lundberg M,Caplan AI,Goldberg VM.Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle.Tissue Eng.2002;8:333-347
    5.Hoemann CD,Sun J,Legare A,McKee MD,Buschmann MD.Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle.Osteoarthritis Cartilage.2005;13:318-329
    6.Li Z,Zhang M.Chitosan-alginate as scaffolding material for cartilage tissue engineering.J Biomed Mater Res A.2005;75(2):485-493
    7.Nehrer S,Breinan HA,Ramappa A,Hsu HP,Minas T,Shortkroff S,Sledge CB,Yannas IV,Spector M.Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model.Biomaterials.1998;19:2313-2328
    8.颜小慧.骨组织工程应用可降解聚合物的可能性探讨[J].国外医学生物医学工程(分册).2000;23(1):11-17
    9.Tamai N,Myoui A,Hirao M,Kaito T,Ochi T,Tanaka J,Takaoka K,Yoshikawa H.A new biotechnology for articular cartilage repair:subchondral implantation of a composite of interconnected porous hydroxyapatite,synthetic polymer (PLA-PEG),and bone morphogenetic protein-2(rhBMP-2).Osteoarthritis Cartilage 2005;13:405-417
    10.Dounchis JS,Bae WC,Chen AC,Sah RL,Coutts RD,Amiel D.Cartilage repair with autogenic perichondrium cell and polylactic acid grafts.Clin Orthop Relat Res.2000;377:248-264
    11. Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA. Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed. 1998;9(5):475-487
    12. Moran JM, Pazzano D, Bonassar LJ. Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 2003;9(1):63-70
    13. Gong Y, He L, Li J, Zhou Q, Ma Z, Gao C, Shen J. Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2007;82(1): 192-204
    14. Chen G, Sato T, Ushida T, Ochiai N, Tateishi T. Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng. 2004;10:323-330
    15. Caterson EJ, Nesti LJ, Li WJ, Danielson KG, Albert TJ, Vaccaro AR, Tuan RS. Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res. 2001;57(3):394-403
    16. Somrani S, Rey C, Jemal M. Thermal evolution of amorphous tricalcium phosphate. J Mater Chem. 2003; 13:888-892
    17. Masahisa N, Takashi N, Tadashi K, Masami T, Masaki O. Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials. 1996;17:1771-1777
    18. Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials. 2002;23:2553-2559
    19. Nam YS, Park TG Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20:1783-1790
    20. Zhang R, Weng WJ, Du PY, Zhao GL, Shen G, Han GR. Effert of Pluronic F127 on the pore structure of macrocellular biodegradable polylactide foams. Polym Adv Technol. 2004; 15:425-430
    21.Webster TJ,Ergun C,Doremus RH,Siegel RW,Bizios R.Enhanced functions of osteoblasts on nanophase ceramics.Biomaterials.2000;21(17):1803-1810
    22.Li PJ.Biomimetic nano-apatite coating capable of promoting bone ingrowth.J Biomed Mater Res.2003;66S:79-85
    23.Skrtic D,Antonucci JM,Eanes ED.Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites.Dent Mater.1996;12:295-301
    24.Coutts RD,Sah RL,Amiel D.Effects of growth factors on cartilage repair.Instr Course Lect.1997;46:487-494
    25.Fujimoto E,Ochi M,Kato Y,Mochizuki Y,Sumen Y,Ikuta Y.Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage.Arch Orthop Trauma Surg.1999;119:139-145
    26.Shida J,Jingushi S,Izumi T,Iwaki A,Sugioka Y.Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.J Orthop Res.1996;14(2):265-272
    27.郭晓东,杜靖远,郑启新,刘勇,段德宇,刘维钢.TGF-β1基因转染间充质干细胞的量效关系及安全性研究.同济医科大学学报.2001;30(2):125-128
    28.Mason JM,Breitbart AS,Barcia M,Porti D,Pergolizzi RG,Grande DA.Cartilage and bone regeneration using gene-enhanced tissue engineering.Clin Orthop Relat Res.2000;(379 Suppl):S171-178
    29.DeFail AJ,Chu CR,Izzo N,Marra KG.Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels.Biomaterials.2006;27(8):1579-1585
    30.Holland TA,Tabata Y,Mikos AG.In vitro release of transforming growth factor-betal from gelatin microparticles encapsulated in biodegradable,injectable oligo(poly(ethylene glycol)fumarate)hydrogels.J Controlled release.2003;91(3):299-313
    31.Huang Q,Goh JC,Hutmacher DW,Lee EH.In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor betal and the potential for in situ chondrogenesis.Tissue Eng.2002;8(3):469-82
    32. Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005;26:4301-4308
    1. Solchaga LA, Goldberg VM, Caplan AI. Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res. 2001;(391 Suppl):S161-170
    
    
    2. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE. Cartilage tissue engineering: current limitations and solutions. Clin Orthop Relat Res. 1999;367:S176-185
    
    3. Solchaga LA, Yoo JU, Lundberg M, Dennis JE, Huibregtse BA, Goldberg VM, Caplan AI. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res. 2000;18(5):773-780
    
    4. Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005;26:4301-4308
    5. Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006;27(18):3387-3395
    6. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001 ;268(2): 189-200
    7. Solchaga LA, Penick K, Porter JD, Goldberg VM, Caplan AI, Welter JF. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2005;203(2):398-409
    8. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259-264
    9. Devine SM. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl. 2002;38:73-79
    10. Johnstone B, Yoo JU. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop Relat Res. 1999;(367 Suppl):S156-162
    11.Pittenger MF,Mackay AM,Beck SC,Jaiswal RK,Douglas R,Mosca JD,Moorman MA,Simonetti DW,Craig S,Marshak DR.Multilineage potential of adult human mesenchymal stem cells.Science.1999;284(5411):143-147
    12.Friedenstein AJ,Chailakhjan RK,Lalykina KS.The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet.1970;3(4):393-403
    13.Fortier LA,Nixon AJ,Williams J,Cable CS.Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.Am J Vet Res.1998;59(9):1182-1187
    14.Haynesworth SE,Goshima J,Goldberg VM,Caplan AI.Characterization of cells with osteogenic potential from human marrow.Bone.1992;13(1):81-88
    15.Zohar R,Sodek J,McCulloch CA.Characterization of stromal progenitor cells enriched by flow cytometry.Blood.1997;90(9):3471-3481
    16.Encina NR,Billotte WG,Hofmann MC.Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma.Lab Invest.1999;79(4):449-457
    17.Koc ON,Lazarus HM.Mesenchymal stem cells:heading into the clinic.Bone Marrow Transplant.2001;27(3):235-239
    18.王庆贤,马哲,韩长玲,等.骨髓间充质干细胞研究进展[J].中华实验外科杂志.2003;20(6):575-578
    19.Djouad F,Plence P,Bony C,Tropel P,Apparailly F,Sany J,Noel D,Jorgensen C.Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood.2003;102:3837-3844
    20.Johnstone B,Yoo JU.Autologous mesenchymal progenitor cells in articular cartilage repair.Clin Orthop Relat Res.1999;(367 Suppl):S156-162
    21.周栋,胡平,江钢,等.聚经基丁酸及其共聚物在体内组织相容性和降解率的实验研究[J].武警医学.2004;14(4):210-213
    22.Hamadouche M,Meunier A,Greenspan DC,Blanchat C,Zhong JP,La Torre GP,Sedel L.Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses.J Biomed Mater Res.2001;54(4):560-566
    23.Yamane S,Iwasaki N,Majima T,Funakoshi T,Masuko T,Harada K,Minami A,Monde K,Nishimura S.Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering.Biomaterials.2005;26(6):611-619
    24.Boyan BD,Hummert TW,Dean DD,Schwartz Z.Role of material surfaces in regulating bone and cartilage cell response.Biomaterials.1996;17(2):137-146
    25.秦辉,周强,王序全,等.两种构建方法对组织工程骨种子细胞粘附和增殖的影响[J].第三军医大学学报.2004;26(11):379-382
    1.Buekwalter JA.Articular cartilage:injuries and potential for healing.J orthop Sports Phys Ther.1998;28:192-202
    2.Jackson DW,Lalor PA,Aberman HM,Simon TM.Spontaneous repair of full-thickness defects of articular cartilage in a goat model.A preliminary study.J Bone Joint Surg Am.2001;83:53-64
    3.O'Driscoll SW,Keeley FW,Salter RB.Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion.A follow-up report at one year.J Bone Jt Surg Am.1988;70:595-606
    4.Mainil-Varlet P,Rieser F,Grogan S,Mueller W,Saager C,Jakob RP.Articular cartilage repair using a tissue-engineered cartilage-like implant:an animal study.Osteoarthritis Cartilage.2001;9:S6-15
    5.Farnworth L.Osteochondral defects of the knee.Orthopedics.2000;23:146-157
    6.Grande DA,Breitbart AS,Mason J,Paulino C,Laser J,Schwartz RE.Cartilage tissue engineering:current limitations and solutions.Clin Orthop Relat Res.1999;367:S176-185
    7.Im GI,Kim DY,Shin JH,Hyun CW,Cho WH.Repair of cartilage defect in the rabbit with cultured mesenchymal stem cells from bone marrow.J Bone Joint Surg Br.2001;83:289-294
    8.徐卫东,吴岳嵩,赵定麟等.成纤维细胞生长因子对兔关节软骨损伤修复作用的初步探讨.中华风湿病学杂志.1998;2(3):150-151
    9.Niederauer GG,Slivka MA,Leatherbury NC,Korvick DL,Harroff HH,Ehler WC,Dunn CJ,Kieswetter K.Evaluation of multiphase implants for repair of focal osteochondral defects in goats.Biomaterials.2000;21(24):2561-2574
    10.Kandel RA,Grynpas M,Pilliar R,Lee J,Wang J,Waldman S,Zalzal P,Hurtig M.Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model.Biomaterials.2006;27(22):4120-4131
    11.Breinan HA,Minas T,Hsu HP,Nehrer S,Shortkroff S,Spector M.Autologous chondrocyte implantation in a canine model:change in composition of reparative tissue with time.J Orthop Res.2001;19(3):482-492
    12.Gotterbarm T,Richter W,Jung M,Berardi Vilei S,Mainil-Varlet P,Yamashita T,Breusch SJ.An in vivo study of a growth-factor enhanced,cell free,two-layered collagen-tricalcium phosphate in deep osteochondral defects.Biomaterials.2006;27:3387-3395
    13.Uematsu K,Hattori K,Ishimoto Y,Yamauchi J,Habata T,Takakura Y,Ohgushi H,Fukuchi T,Sato M.Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid(PLGA)scaffold.Biomaterials.2005;26:4273-4279
    14.Coutts RD,Sah RL,Amiel D.Effects of growth factors on cartilage repair.Instr Course Lect.1997;46:487-494
    15.Fujimoto E,Ochi M,Kato Y,Mochizuki Y,Sumen Y,Ikuta Y.Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage.Arch Orthop Trauma Surg.1999;119:139-145
    16.Nagai H,Aoki M.Inhibition of growth plate angiogenesis and endochondral ossification with diminished expression of MMP-13 in hypertrophic chondrocytes in FGF-2-treated rats.J Bone Miner Metab.2002;20(3):142-147
    17.Kawai K,Suzuki S,Tabata Y,Ikada Y,Nishimura Y.Accelerated tissue regeneration through incorporation of basic fibroblast growth factor impregnated gelatin microspheres into artificial dermis.Biomaterial.2000;21(5):489-499
    18.Garrett JC.Fresh osteochondral allografts for treatment of articular defects in osteochondritis dissecans of the lateral femoral condyle in adults.Clin Orthop Relat Res.1994;303:33-37
    19.Gao J,Dennis JE,Solchaga LA,Goldberg VM,Caplan AI.Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge.Tissue Eng.2002;8:827-837
    20.Sherwood JK,Riley SL,Palazzolo R,Brown SC,Monkhouse DC,Coates M,Griffith LG,Landeen LK.A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23(24):4739-4751
    21. Wayne JS, Woo SL, Kwan MK. Finite element analyses of repaired articular surfaces. Proc Inst Mech Eng [H]. 1991;205:155-162
    22. Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, Vacanti CA, Yaremchuk MJ. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101:1580-1585
    23. Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, Giardino R, Facchini A. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22:2417-2424
    24. Willers C, Chen J, Wood D, Xu J, Zheng MH. Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng. 2005; 11:1065-1076
    25. Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, Zhao Q, Dong L, Lu J, Qing Song Y. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng. 2004; 10:1818-1829
    26. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599-609
    27. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, Noel D, Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102:3837-3844
    28. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Jt Surg Am. 1993;75:532-553
    29. Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials. 2004;25:5743-5751
    30. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow:differentiation-dependent gene expression of matrix components.Exp Cell Res.2001;268:189-200
    1.Buckwalter JA,Mankin HA.Articular cartilage repair and transplantation.Arthritis Rheum.1998;41:1331-1342
    2.Steadman JR,Briggs KK,Rodrigo JJ,Kocher MS,Gill T J,Rodkey WG.Outcomes of microfracture for traumatic chondral defects of the knee:average 11-year follow-up.Arthroscopy.2003;19:477-484
    3.Dzioba RB.The classification and treatment of acute articular cartilage lesions.Arthroscopy.1988;4:72-80
    4.崔春爱,杨镇深,陈华勇,等.自体骨膜移植修复关节软骨缺损的实验研究[J].延大学医学学报.2002;25(1):8-11
    5.Bentley G,Greer RB 3rd.Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits.Nature.1971;230:385-388
    6.Klagsbrun M.Large-scale preparation of chondrocytes.Methods Enzymol.1979;58:560-564
    7.Brittberg M,Nilsson A,Lindahl A,Ohlsson C,Peterson L.Rabbit articular cartilage defects treated with autologous cultured chondrocytes.Clin Orthop Relat Res.1996;326:270-283
    8.Freed LE,Grande DA,Lingbin Z,Emmanual J,Marquis JC,Langer R.Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds.J Biomed Mater Res.1994;28(8):891-899
    9.Bentley G,Biant LC,Carrington RW,Akmal M,Goldberg A,Williams AM,Skinner JA,Pringle J.A prospective,randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.J Bone Joint Surg Br.2003;85(2):223-230
    10.Micheli LJ,Browne JE,Erggelet C,Fu F,Mandelbaum B,Moseley JB,Zurakowski D.Autologous chondrocyte implantation of the knee:multicenter experience and minimum 3-year follow-up.Clin J Sport Meal.2001;11(4):223-228
    11.Richard T,Wan-Ju L,Rocky ST.Current states of cartilage tissue engineering.Arthritis Res Ther.2003;5:235-238
    12. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30(1):215-224
    13. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393-403
    14. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263-272
    15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411): 143-147
    16. Devine SM. Mesenchymal stem cells: will they have a role in the clinic? J Cell Biochem Suppl. 2002;38:73-79
    17. Johnstone B, Yoo JU. Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop Relat Res. 1999;(367 Suppl):S156-162
    18. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999;181(1):67-73
    19. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998 ;4(4):415-428
    20. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res. 2000;52(2):246-255
    21. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005;26:4273-4279
    22. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107-124
    23.Wakitani S,Goto T,Pineda S J,Young RG,Mansour JM,Caplan AI,Goldberg VM.Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage.J Bone Joint Surg Am.1994;76(4):579-592
    24.Djouad F,Plence P,Bony C,Tropel P,Apparailly F,Sany J,Noel D,Jorgensen C.Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood.2003;102:3837-3844
    25.Jansen EJ,Sladek RE,Bahar H,Yaffe A,Gijbels MJ,Kuijer R,Bulstra SK,Guldemond NA,Binderman I,Koole LH.Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.Biomaterials.2005;26:4423-4431
    26.Peter SJ,Miller MJ,Yasko AW,Yaszemski MJ,Mikos AG.Polymer concepts in tissue engineering.J Biomed Mater Res.1998;43:422-427
    27.鄂征,刘流.编.医学组织工种技术与临床应用.北京出版社.2003;5:156
    28.Wakitani S,Kimura T,Hirooka A,Ochi T,Yoneda M,Yasui N,Owaki H,Ono K.Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel.J Bone Joint Surg Br.1989;71(1):74-80
    29.卢华定,蔡道章,秦骥,等.1型胶原负载骨髓基质细胞修复兔膝关节软骨缺损.中国骨与关节损伤杂志.2006;21(6):452-454
    30.Buma P,Pieper JS,van Tienen T,van Susante JL,van der Kraan PM,Veerkamp JH,van den Berg WB,Veth RP,van Kuppevelt TH.Cross-linked type Ⅰ and type Ⅱ collagenous matrices for the repair of full-thickness articular cartilage defeets-a study in rabbits.Biomaterials.2003;24(19):3255-3263
    31.Diduch DR,Jordan LC,Mierisch CM,Balian G.Marrow stromal cells embedded in alginate for repair of osteochondral defects.Arthroseopy.2000;16(6):571-577
    32.Solchaga LA,Temenoff JS,Gao J,Mikos AG,Caplan AI,Goldberg VM.Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.Osteoarthritis Cartilage.2005;13(4):297-309
    33.Grigolo B,Roseti L,Fiorini M,Fini M,Giavaresi G,Aldini NN,Giardino R,Facchini A.Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11)into cartilage defects in rabbits.Biomaterials.2001;22(17):2417-2424.
    34.颜小慧.骨组织工程应用可降解聚合物的可能性探讨[J].国外医学生物医学工程(分册).2000;23(1):11-17
    35.Dounchis JS,Bae WC,Chen AC,Sah RL,Courts RD,Amiel D.Cartilage repair with autogenic perichondrium cell and polylactic acid grafts.Clin Orthop Relat Res.2000;377:248-264
    36.Puelacher WC,Wisser J,Vacanti CA,Ferraro NF,Jaramillo D,Vacanti JP.Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage.J Oral Maxillofac Surg.1994;52(11):1172-1177
    37.Freed LE,Marquis JC,Nohria A,Emmanual J,Mikos AG,Langer R.Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers.J Biomed Mater Res.1993;27(1):11-23
    38.Rotter N,Ung F,Roy AK,Vacanti M,Eavey RD,Vacanti CA,Bonassar LJ.Role for interleukin lalpha in the inhibition of chondrogenesis in autologous implants using polyglycolic acid-polylactic acid scaffolds.Tissue Eng.2005;11(1-2):192-200
    39.Caterson EJ,Nesti LJ,Li WJ,Danielson KG;Albert TJ,Vaccaro AR,Tuan RS.Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam.J Biomed Mater Res.2001;57(3):394-403
    40.Oh SH,Kang SG,Kim ES,Cho SH,Lee JH.Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol)blend cell scaffolds by melt-molding particulate-leaching method.Biomaterials.2003;24(22):4011-4021
    41.Sherwood JK,Riley SL,Palazzolo R,Brown SC,Monkhouse DC,Coates M,Griffith LG,Landeen LK,Ratcliffe A.A three-dimensional osteochondral composite scaffold for articular cartilage repair.Biomaterials.2002;23(24):4739-4751
    42.Gotterbarm T,Richter W,Jung M,Berardi Vilei S,Mainil-Varlet P,Yamashita T,Breusch SJ.An in vivo study of a growth-factor enhanced,cell free,two-layered collagen-tricalcium phosphate in deep osteochondral defects.Biomaterials.2006;27(18):3387-3395
    43.Li WJ,Tuli R,Okafor C,Derfoul A,Danielson KG;Hall DJ,Tuan RS.A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells.Biomaterials.2005;26(6):599-609
    44.Holland TA,Bodde EW,Bagger LS,Tabata Y,Mikos AG,Jansen JA.Osteochondral repair in the rabbit model utilizing bilayered,degradable oligo(poly(ethylene glycol)fumarate)hydrogel scaffolds.J Biomed Mater Res A.2005;75:156-167
    45.Xu C,Oyajobi BO,Frazer A,Kozaci LD,Russell RG,Hollander AP.Effects of growth factors and intedeukin-1 alpha on proteoglycan and type Ⅱ collagen turnover in bovine nasal and articular chondrocyte pellet cultures.Endocrinology.1996;137(8):3557-3565
    46.Border WA,Noble NA.Transforming growth factor beta in tissue fibrosis.N Engl J Med.1994;331(19):1286-1292
    47.Gao J,Dennis JE,Solchaga LA,Awadallah AS,Goldberg VM,Caplan AI.Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells.Tissue Eng.2001;7(4):363-371
    48.Coutts RD,Sah RL,Amiel D.Effects of growth factors on cartilage repair.Instr Course Lect.1997;46:487-494
    49.Fujimoto E,Ochi M,Kato Y,Mochizuki Y,Sumen Y,Ikuta Y.Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage.Arch Orthop Trauma Surg.1999;119:139-145
    50.Arevalo-Silva CA,Cao Y,Weng Y,Vacanti M,Rodriguez A,Vacanti CA,Eavey RD.The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage.Tissue Eng.2001;7(1):81-88
    51.徐卫东,吴岳篙,赵定麟,等.成纤维细胞生长因子对兔关节软骨损伤修复作用的初步探讨.中华风湿病学杂志.1998;2(3):150-151
    52.Nagai H,Aoki M.Inhibition of growth plate angiogenesis and endochondral ossification with diminished expression of MMP-13 in hypertrophic chondrocytes in FGF-2-treated rats.J Bone Miner Metab.2002;20(3):142-147
    53.O'Connor WJ,Botti T,Khan SN,Lane JM.The use of growth factors in cartilage repair.Orthop Clin North Am.2000;31(3):399-410
    54.Messai H,Duchossoy Y,Khatib AM,Panasyuk A,Mitrovic DR.Articular chondrocytes from aging rats respond poorly to insulin-like growth factor-1:an altered signaling pathway.Mech Ageing Dev.2000;115(1-2):21-37
    55.Olney RC,Smith RL,Kee Y,Wilson DM.Production and hormonal regulation of insulin-like growth factor binding proteins in bovine chondrocytes.Endocrinology.1993;133(2):563-570
    56.Solchaga LA,Penick K,Porter JD,Goldberg VM,Caplan AI,Welter JF.FGF-2enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells.J Cell Physiol.2005;203(2):398-409
    57.林建华,王长异,吴朝阳.骨髓基质干细胞体外分化软骨细胞的实验研究.中华实验外科杂志.2004;21(8):991-992
    58.Sakimura K,Matsumoto T,Miyamoto C,Osaki M,Shindo H.Effects of insulin-like growth factor Ⅰ on transforming growth factor betal induced chondrogenesis of synovium-derived mesenchymal stem cells cultured in a polyglycolic acid scaffold.Cells Tissues Organs.2006;183(2):55-61
    59.Kawai K,Suzuki S,Tabata Y,Ikada Y,Nishimura Y.Accelerated tissue regeneration through incorporation of basic fibroblast growth factor impregnated gelatin microspheres into artificial dermis.Biomaterial.2000;21(5):489-499
    60.Shida J,Jingushi S,Izumi T,Iwaki A,Sugioka Y.Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo.J Orthop Res.1996;14(2):265-272
    61.DeFail AJ,Chu CR,Izzo N,Marra KG.Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels.Biomaterials.2006;27(8):1579-1585
    62.Kanematsu A,Marui A,Yamamoto S,Ozeki M,Hirano Y,Yamamoto M,Ogawa O,Komeda M,Tabata Y.Type Ⅰ collagen can function as a reservoir of basic fibroblast growth factor.J Control Release.2004;99(2):281-292
    63.Huang Q,Goh JC,Hutmacher DW,Lee EH.In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor betal and the potential for in situ chondrogenesis.Tissue Eng.2002;8(3):469-482
    64.Baragi VM,Renkiewicz RR,Qiu L,Brammer D,Riley JM,Sigler RE,Frenkel SR,Amin A,Abramson SB,Roessler BJ.Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo.Osteoarthritis Cartilage.1997;5(4):275-282
    65.郭晓东,杜靖远,郑启新,刘勇,段德宇,刘维钢.TGF-β1基因转染间充质干细胞的量效关系及安全性研究.同济医科大学学报.2001;30(2):125-128
    66.Mason JM,Breitbart AS,Barcia M,Porti D,Pergolizzi RG,Grande DA.Cartilage and bone regeneration using gene-enhanced tissue engineering.Clin Orthop Relat Res.2000;(379 Suppl):S171-178