基于超低频电磁波的管道机器人示踪定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着管道运输的广泛应用,管道机器人在管道工程中正发挥着日益重要的作用,尤其是在管道无损探伤与检测领域已经进入实际应用阶段。管道机器人的示踪定位技术是确定管道机器人在管道内位置的技术,现已成为决定管道机器人有效工作的重要技术。然而,传统有缆示踪定位方式由于电缆重量、信号损耗等因素影响,它严重限制了管道机器人的工作距离;同时,由于管道及其所处介质的屏蔽作用,使得常规的电磁波技术在管道机器人“示踪定位”中的应用受到了很大限制。因此,如何实现管道机器人的无缆“示踪定位”已成为提高管道机器人工作性能和实用价值的重要课题之一。本论文以国家“863”计划智能机器人主题“X射线实时成像检测管道机器人”和“海底输油管道检测机器人”项目为背景,针对管道机器人应用中的“示踪定位”问题,提出了基于超低频电磁波的无缆示踪定位方案,并就超低频电磁波示踪定位技术中存在的“超低频电磁波传播模型”、“示踪定位数据处理”等问题进行了深入的研究。
     本文回顾了国内外管道机器人的发展历程,指出目前管道机器人领域中仍存在示踪定位、能源供给、通讯等问题;分析了管道机器人已有示踪定位技术的优缺点;指出了常规电磁波在示踪定位技术中应用的局限性;分析了超低频电磁波的特点,根据超低频电磁波波长很长,对金属、土层、水等介质具有很好的穿透性能的特点,提出了基于超低频电磁波的管道机器人示踪定位的方案。
     本文提出了管道机器人示踪定位技术中的两种基本类型:自主型和被动型;结合“X射线实时成像检测管道机器人”和“海底输油管道检测机器人”项目,建立了管道机器人示踪定位的一般模型。
     基于超低频电磁波(23Hz)的传播特性,本文综合了静磁场的分析方法和麦克斯韦电磁波理论,建立了超低频电磁波的“磁偶极子传播模型”,该模型既能描述超低频电磁波的物理性能,又可便于在实际的工程中应用。在对超低频电磁波磁偶极子模型进行理论分析、数值计算的基础上,给出了基于超低频电磁波进行示踪定位的基本方法,并提出了应用于海底管道机器人示踪定位的多传感器模型。
     本文针对管道铺设环境中的介电常数、磁导率常数等参数不确定性问题,提出了输出预测曲线方法和测试样本分类方法,有效解决了实际应用中参数
In the applications of pipeline conveyance, the pipeline robot takes more important role in pipeline project, especially when the nondamage detection technique has a real application in pipeline industry. The localization of pipeline robot is a key technology which decides the application of robot in pipeline. Although the wired robot solution is now the main stream, its shortcomings, such as cable weight and signal attenuation, greatly limit its working distance. The normal electromagnetic technology can not be used in the pipeline robot localization for the steel shield. So the robot localization without cable is one of the key technologies to improve the system porformance and application level. Based on the projects“X-ray pipeline defect inspection robot”and“Seabed oil-conveying pipe inspection robot”supported by Chinese high-tech fund, this thesis presents a solution to mobile robot localization by using extreme low frequency(ELF) electromagnectic wave.
     The thesis reviews the development of pipeline robot and indicates the key application problems, such as localization technology, communication technology, and power supply technology. The exsited localization technology’s merit and faults are analysed. As the ELF electromagnectic wave has the characteristics of penetrating different media, such as metal, soil, water, and sludge, the thesis studies an ELF electromagnetic wave-based localiztion method.
     The thesis establishes a normal localization model and presents two types of localication for pipeline robot, one is the autonomous localization and the other is the passive localization.
     Using anysis method of magetostatic field and Maxwell’s electromagnetic theory, this thesis studies the ELF electromagnetic wave (23Hz) penetrability and builds the ELF electromagnetic transmission model, which descibes the physic performance of EFL electromagnetic wave transimission and simplifies the application.
     For the project“Pipe inspection robot”application, the thesis studies the multisensors-based localization problem. As the envirment of pipeline consists of seawater and sediment, the media’s dielectric coefficient and magnetic
引文
1 蔡自兴. 机器人原理及其应用.中南工业大学出版社, 1998:1~3
    2 Yamamoto, Shinji. Development of inspection robot for nuclear power plant. IEEE Robotics & Automation Sociation. IEEE International Conference on Robotics and Automation. Nice, France, 1992:1559~1566
    3 Paap K.L., Christaller T., Kirchner F. A robot snake to inspect broken buildings.IEEE. IEEE International Conference on Intelligent Robots and Systems. Takamatsu, USA, 2000:2079~2082
    4 Weston J. A safer way to search disaster sites. IEEE Robotics & Automation Magazine. 2000,7(3):56~57
    5 Kochan Anna. BMW uses even more robots for both flexibility and quality. Industrial Robot. 2005,32(4):318~320
    6 Kim Pyunghyuna, Rhee Sehuna, Lee Chang Heeb. Automatic teaching of welding robot for free-formed seam using laser vision sensor. Optics and Lasers in Engineering. 1999,31(3):173~182
    7 Fridenfalk Mikael, Bolmsjo Gunnar. Design and validation of a universal 6D seam-tracking system in robotic welding using arc sensing. Advanced Robotics. 2004,18(1):1~21
    8 Blettner A., Chauveau D., Becker. Robot for computerized real time radiographic inspection of on shore pipe welds. 6th European Conference on Non Destructive Testing. Nice, France, 1994:24~28
    9 Kim Jae Seon, Son Young Tak, Cho Hyung Suck, Koh Kwang. A robust visual seam tracking system for robotic arc welding. Mechatronics. 1996,6(2):141~163
    10 Kondo N., Monta M., Fujiura. Fruit harvesting robots in Japan.Advances in Space Research. 1996,18(1-2):181~184
    11 Tony Slack etal. Robot device. UK Patent Application.No.8419630. 1985,(5):1~50
    12 Ian R Yarnell. Robot. United States Patent.No.4648454. 1987,(5):22~76.
    13 Zeungnam Bien. A Closed Form 3d Self-position Algorithm for A Mobile Robot Using Vision And Guide-marks. Robotica.1985,(19):265~274
    14 Depinna Mike, Owen Roger Debaun, Simon Brett. High energy X-ray inspection services for in-service NDE of flexible riser piping. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, BC, Canada, 2004:1079~1096
    15 Kajiwara Gyo. Improvement to X-ray piping diagnostic system through simulation (measuring thickness of piping containing rust). Journal of Testing and Evaluation. 2005,33(5):295~304
    16 邓宗全,张晓华等. 野外大口径管道焊缝 X 射线检测机器人. 哈尔滨工业大学学报. 1997,29(1):47~48
    17 姜生元, 邓宗全, 李斌. 内置动力源管内 X 射线探伤机器人的研制.机器人. 2001,23(3):211~216
    18 Rosenblatt Julio, Williams Stefan, Durrant-Whyte Hugh. A behavior-based architecture for autonomous underwater exploration. Information Sciences. 2002,(8):69~87
    19 Moraleda J., Ollero A., Orte M. A robotic system for internal inspection of water pipelines. IEEE Robotics & Automation. 1999,6(3):30~41
    20 Atkar Prasad N, Choset Howie, Rizzi Alfred A. Towards Optimal Coverage of 2-Dimensional Surfaces Embedded in [double-struck R] 3: Choice of Start Curve. IEEE International Conference on Intelligent Robots and Systems. Las Vegas, NV, United States, 2003:3581~3587
    21 Biegelbauer, Georg. The inverse approach of FlexPaint: Automation generation of robot painting motions for unknown parts. IEEE Robotics and Automation Magazine. 2005,12(3):24~34
    22 Pichler A, Vincze M, Andersen H, Madsen O, Hausler K. A method for automatic spray painting of unknown parts. IEEE International Conference on Robotics and Automation. Washington, DC, United States, 2002:444~449
    23 Porter Todd R, Knickmeyer Ernst H, Wade Ron L. Pipeline geometry pigging: Application of strapdown INS. EEE PLANS '90 - Position Location and Navigation Symposium. Las Vegas, NV, USA, 1990:353~358
    24 Jim Watts. Smart Pigs Can Improve Pipeline Integrity Safety. Pipeline and Gas Journal. 1992,(12):55~56
    25 J.L.Cordell, In-line Inspection: What Technology is Best?. Pipe Line Industry. 1991,74(7):47~48
    26 M.Yoshida, N Suzuki, A.Hagio. Development of Pipeline Inspection Pig.Nippon KoKan Technical Report. 1988,(121):37~43
    27 杨理践. 徐世文. 高松巍. 基于 BP 神经网络的有杆抽油系统故障智能判断. 沈阳工业大学学报. 2004,26(6):667~669
    28 杨 理 践 . 管 道 漏 磁 在 线 检 测 技 术 . 沈 阳 工 业 大 学 学 报 . 2004,27(10):522~525
    29 Vradis George, Schempf Hagen. Robotic system inspects live gas mains. Gas Industries. 2004,48(8):16~18
    30 Anon. Measuring bending stress in buried metal gas pipes. Journal of Failure Analysis and Prevention. 2004,4(4):6~7
    31 Roh Se-Gon, Choi Hyouk Ryeol. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Transactions on Robotics. 2005,21(1):1~17
    32 Roberts, Richard D. Inspection of serpentine piping coils in process heaters utilizing intelligent pigs. Safety in Ammonia Plants and Related Facilities Symposium 2004. Denver, CO, United States, 2004:135~139
    33 Snodgrass B., Smith G. Low-cost pipeline inspection by the measurement and analysis of pig dynamics. Pipes and Pipelines International. 2001,46(1):14~19
    34 Russell David, Smith George H. Pigs innovative instrumentation lowers pipeline inspection costs. Sea Technology. 2004,45(4):35~39
    35 Clarke, Ian. Robotic pipeline inspection systems in Russia. No-Dig International. 2003,14(2):8~10
    36 Ong J.K., Kerr D., Bouazza-Marouf K. Design of a semi-autonomous modular robotic vehicle for gas pipeline inspection. Journal of Systems and Control Engineering. 2003,217(2):109~122
    37 Albert Matthew E, Connell Jonathan H. Visual rotation detection and estimation for mobile robot navigation. 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, United States, 2004:4247~4252
    38 Kondo Michio, Ohnishi Kouhei. Constructing a platform of robust position estimation for mobile robot by ODR. 8th IEEE International Workshop on Advanced Motion Control. Kawasaki, Japan, 2004:263~268
    39 Ushimi Nobuhiro, Yamamoto Motoji, Mohri Akira. Two wheels caster typeodometer for omni-directional vehicles. IEEE International Conference on Robotics and Automation. Taipei, Taiwan, 2003:497~502.
    40 Meng Qinghao, Bischoff Rainer. Odometry based pose determination and errors measurement for a mobile robot with two steerable drive wheels. Journal of Intelligent and Robotic Systems: Theory and Applications.2005, 41(4):263~282
    41 熊小芸,陈硕. 跻身于人工智能与计算机视觉研究的前沿──访计算机视觉专家马颂德研究员. 世界科学. 1994,(4):18~20
    42 刘曙光, 刘明远, 何钺. 机器视觉及其应用. 机械制造. 2000,(7):20~22.
    43 Ramachandram Dhanesh, Rajeswari Mandava. Neural network-based robot visual positioning for intelligent assembly. Journal of Intelligent Manufacturing. 2004,15(2):219~231
    44 Song Kai-Tai, Chien Chen-Chu. Visual tracking of a moving person for a home robot. Journal of Systems and Control Engineering. 2005,219(4):259~269
    45 Carelli Ricardo, Oliva Eduardo, Soria Carlos,Nasisi Oscar. Combined force and visual control of an industrial robot. Robotica. 2004, 22(2):163~171
    46 Yu Wen, Moreno-Armendariz Marco A. Robust visual servoing of robot manipulators with neuro compensation. Journal of the Franklin Institute. 2005,342(7):824~838
    47 Nasisi Oscar, Carelli Ricardo. Adaptive servo visual robot control. Robotics and Autonomous Systems. 2003, 43(1):51~78
    48 Okuno Hiroshi G, Nakadai Kazuhiro, Hidai Ken-Ichi. Human-robot non-verbal interaction empowered by real-time auditory and visual multiple-talker tracking. Advanced Robotics. 2003,17(2):115~130
    49 Yamane Satoshi, Yamamoto Hikaru, Sharif Leila H, Oshima Kenji. Intelligent cooperative control system in visual welding robot. Welding Research Abroad. 2003,49(6-7):9~17
    50 Okuno Hiroshi G, Nakadai Kazuhiro, Lourens Tino, Kitano Hiroaki. Sound and visual tracking for humanoid robot. Applied Intelligence. 2004,20(3):253~266
    51 D.Marr.视觉计算理论.科学出版社.1988:112~115
    52 王天珍. 计算视觉研究. 空军雷达学院学报. 1999,(1):17~22
    53 张霄汉, 陈小平等. 一种基于视觉的步行机器人 Monte Carlo 自定位系统机器人. 2006,21(4):415~421
    54 Yau Wei-yun, Wang Han. Coordinating the eyes, head and arm of an autonomous robot. Engineering Applications of Artificial Intelligence. 1998,11(2):163~174
    55 刘刚,柯映林.管道机器人全程定位理论和方法研究——基于光纤光栅空间曲率传感器. 浙江大学学报(工学版). 2004,38(6):687~690.
    56 吴知非, 吴敏生. 一种可用于管道爬行器的静磁场型定位系统. 测控技术. 2001,20(4):1~5
    57 Galvez J.A., Gonzalez De Santos P., Pfeiffer F. Intrinsic tactile sensing for the optimization of force distribution in a pipe crawling robot.Transactions on Mechatronics. 2001,6(1):26~35
    58 尚文, 马旭东, 戴先中. 融合多传感器信息的移动机器人自定位方法. 东南大学学报(自然科学版). 2004,34(6):784~788
    59 曹治国, 邹飞勇, 吴一飞, 张天序. Rough 集-神经网络系统在信息融合目标识别中的应用.华中科技大学学报(自然科学版).2004,32(S1):114~116
    60 李冬辉, 周巍巍. 基于多分辨率小波网络-BP 神经网络 D-S 证据理论信息融合模型的直流系统故障诊断方法. 电网技术. 2004,28(24):16~20.
    61 Venkatraman S, Caffery Jr. Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments. 2004 IEEE Wireless Communications and Networking Conference. Atlanta, GA, United States, 2004:274~278
    62 Ma Changlin, Klukas R., Lachapelle G. An enhanced two-step least squared approach for TDOA/AOA wireless location. IEEE International Conference on Communications. Anchorage, AK, United States, 2003:987~991
    63 Ken-ichi Itoh, Soichi Watanabe, Takuro Sato, etal. Radio Source Positioning using Received Time of Arrival Differences. IEEE Vehicular Technology Conference. Amsterdam, Neth, 1999:2062~2066
    64 赵春晖, 赵枫. 多测量点准单站无源定位技术的研究. 制导与引信, 1996,(2):33~37
    65 Zhu Min, You Zhisheng, Nie Jiansun. The application of wavelet for passive location using TDOA information. Proceedings of the International Conference on Wavelet Analysis and Its Applications (WAA). Chongqing, China, 2003:466~471
    66 Zhang Chen, Liu Jun-Min, Liu Shi, Li Wu-Han. Research on improving TDOA location accuracy based on data fusion. Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication. Shanghai, China, 2004:761~764
    67 唐劲飞, 龚沈光, 王金根. 磁偶极子模型下目标定位和参数估计的两种新方法.电子学报. 2003,31(1):154~157
    68 任志良, 黄玉盈, 陈泽茂. 磁偶极子源的被动测距与跟踪. 数据采集与处理. 2001,16(3):380~383
    69 Choi H.R., Ryew S.M. Robotic system with active steering capability for internal inspection of urban gas pipelines. Mechatronics. 2002,12(5):713~736
    70 R.Dechter, D. Frost. Back jump-based back tracking for Constraint Satisfaction Problems. Artificial Intelligence. 2002, 136(6):147~188
    71 刘 新 芽 . 电 磁 波 在 一 维 非 均 匀 介 质 中 的 透 射 . 物 理 学 报 . 2000,49(2):186~189
    72 COVER T M, HART P E. Nearest neighbor pattern classification. In Trans IEEE Inform Theory. 1967, IT-13:21~27
    73 Molina I., Roa L.J., Arrebola F. Hierarchical image segmentation based on nearest neighbour region chains. Electronics Letters. 2000,36(13):1111~1113
    74 Dozier Gerry, Bowen James, Homaifar Abdollah. Solving constraint satisfaction problems using hybrid evolutionary search. IEEE Transactions on Evolutionary Computation. 1998,2(1):23~33
    75 Lee Jaewook, Chiang Hsiao-Dong. Theory of stability regions for a class of nonhyperbolic dynamical systems and its application to constraint satisfaction problems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2002,49(2):196~209
    76 贠明凯, 刘力. 数字实时成像(DR)与 X 射线胶片成像对比分析. CT 理论与应用研究. 2005,14(3):13~17.
    77 Zhou Xiao, Lu Tiansheng and Li Zhijun. NN-based environment recognition of pipeline robot. Proceedings of the World Congress on Intelligent Control and Automation (WCICA). Hefei, 2000:1257~1260
    78 Zhang Xiao-Guang, Xu Jian-Jian and Ge Guang-Ying. Defects recognition on X-ray images for weld inspection using SVM. Proceedings of 2004International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004:3721~3725
    79 马红雨, 苏剑波. 基于自抗扰控制器的机器人无标定三维手眼协调. 自动化学报, 2004,30(3):400~406
    80 付鹰, 蔡自兴, 杨勇. 移动机器人视觉导航的并行处理技术研究. 华中科技大学学报(自然科学版). 2004,32(S1):80~82
    81 张国亮, 赵彦玲, 王义文. 焊缝视觉跟踪系统中标定算法的研究. 哈尔滨理工大学学报. 2005,10(1):25~28
    82 李闯, 丁晓青, 吴佑寿. 基于边缘的字符串定位算法. 清华大学学报(自然科学版). 2005,45(10):2335~2338
    83 玉振明, 毛士艺, 袁运能, 高飞. 基于边缘检测小波变换的图像融合研究. 电子学报. 2005, 33(8):146~150
    84 V.Lashkia. Defect detection inX-ray images using fuzzy reasoning. Image and Vision Computing. 2001,19(5):261~269
    85 吴剑锋, 林强. 一种图像边缘检测新算法. 福州大学学报(自然科学版). 2000,28(4):26~28
    86 张凯丽, 刘辉. 边缘检测技术的发展研究. 昆明理工大学学报. 2000, 25(5):36~39
    87 张艳宁, 郑江滨, 王晓红. 一种有效的遥感图像目标识别方法. 信号处理. 2002,18(1):1~4
    88 Luo R C, Scherp R S. Dynamic multi-sensor data fusion system for intelligent robots. IEEE J Robotics and Automation. 1998,4(4):386~396
    89 Valet L, Mauria G, Bolon Ph. A statistical overview of recent literature in information fusion. IEEE Aerospace and Electronic Systems Magazine. 2001,16(3):1~14
    90 Kam M. Rorres C, Chang W, Zhu X. Performance and geometric interpretation for decision fusion with memory. IEEE Transactions on systems, Man, and Cybernetic 2 Part A: Systems and Humans. 1999,29(1):52~62
    91 Jeon B, Landgrebe D A. Decision fusion approach for multitemporal classification. IEEE Transactions on Geoscience and Remote Sensing ( Special Issue on Data Fusion). 1999,37(3):1227~1233
    92 Pan H, D Mc Michael, Lendjel M. Inference algorithms in Bayesiannetworks and the probanet system. Digital Signal Processing. 1998,8(4):231~243
    93 Dubois D, Prade H. Qualitative possibility theory and its applications to constraint satisfaction and decision under uncertainty. International Journal of Intelligent Systems. 1999,14(1):45~61
    94 Tupin F, Bloch I, Maitre H. A first step toward automatic interpretation of sar images using evidential fusion of several structure detectors. IEEE Transactions on Geoscience and Remote Sensi ng. 1999,37(3):1327~1343
    95 Wan Wei, Zhang Guoping, et al. Medical image segmentation with wavelet transform and information fusion. Proceedings of SPIE-The International Society for Optical Engineering. Beijing, China, 2005:118~126
    96 Xu Lijun, Zhang Jian Qiu, Yan Yong. A wavelet-based multisensor data fusion algorithm. IEEE Transactions on Instrumentation and Measurement. 2004,53(6):1539~1545
    97 曹治国, 邹飞勇, 吴一飞, 张天序. Rough 集-神经网络系统在信息融合目标识别中的应用. 华中科技大学学报(自然科学版). 2004,32(S1):114~116.
    98 李冬辉, 周巍巍. 基于多分辨率小波网络-BP 神经网络 D-S 证据理论信息融合模型的直流系统故障诊断方法. 电网技术. 2004,28(24):16~20.
    99 Bogler P L. Shafer-Dempster reasoning with applications to multisensor target identification system. IEEE Trans on System, Man and Cybernetics. 1987,17(3):968~977
    100 朱大奇,于盛林. 光电雷达电子部件故障的盲诊断方法研究. 控制与决策. 2004,19(7):746~750
    101 赵振江, 杜正伟, 龚克. 电磁波激励下天线的响应特性分析. 电波科学学报. 2005,20(4):418~423
    102 赵凯华, 陈熙谋. 电磁学. 第二版. 高等教育出版社,1990:783~793
    103 郭硕鸿. 电动力学. 第二版. 高等教育出版社,1997:107~113
    104 刘照世, 刘华波. 截面为任意形状的长直螺线管的磁场分析. 海军工程大学学报. 2004,16(4):65~67
    105 Roncaglia Alberto, Elmi Ivan, Dori Leonello, Rudan Massimo. Adaptive K-NN for the Detection of Air Pollutants with a Sensor Array. IEEE Sensors Journal. 2004,4(2):248~256
    106 Pernkopf Franz. Bayesian network classifiers versus selective k-NN classifier.Pattern Recognition. 2005,38(1):1~10
    107 Jia Xiuping, Richards John A. Fast k-NN classification using the cluster-space approach. IEEE Geoscience and Remote Sensing Letters. 2005,2(2):225~228
    108 Thomasian Alexander, Li Yue, Zhang Lijuan. Exact k-NN queries on clustered SVD datasets. Information Processing Letters. 2005,94(6):247~252
    109 Teoh Andrew, Samad S A, Hussain A. Nearest neighbourhood classifiers in a bimodal biometric verification system fusion decision scheme. Journal of Research and Practice in Information Technology. 2004,36(1):47~62
    110 R.Dechter, D. Frost. Back jump-based back tracking for Constraint Satisfaction Problems. Artificial Intelligence. 2002,136(2):147~188
    111 Schmidt Linda C, Shi Hai, Kerkar Sameer. A constraint satisfaction problem approach linking function and grammar-based design generation to assembly. Journal of Mechanical Design, Transactions of the ASME. 2005,127(2):196~200
    112 Choueiry Berthe Y, Xu Lin. An efficient consistency algorithm for the Temporal Constraint Satisfaction Problem. AI Communications. 2004,17(4):213~221
    113 Gupta D K, Gupta N. A new approach to partial constraint satisfaction problems. International Journal of Computer Mathematics. 2004,81(12):1465~1476
    114 Cooper Martin C. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets and Systems. 2003,134(3):311~342
    115 Allace Richard J, Freuder Eugene C. Constraint-based reasoning and privacy/efficiency tradeoffs in multi-agent problem solving. Artificial Intelligence. 2005,161(1-2):209~227
    116 Rokhin Andrei, Jeavons Peter, Jonsson Peter. Constraint satisfaction problems on intervals and lengths. SIAM Journal on Discrete Mathematics. 2004,17(3):453~477
    117 Verfaillie Gerard, Jussien Narendra. Constraint solving in uncertain and dynamic environments: A survey. Constraints. 2005,10(3):253~281
    118 Kuske M, Rubio R, Romain A.C., Nicolas J, Marco S. Fuzzy k-NN applied to moulds detection. Sensors and Actuators, B: Chemical. 2005,106(1):52~60
    119 Suraj Zbigniew, Delimata Pawel. On k-NN method with preprocessing. Fundamenta Informaticae. 2006,69(3):343~358
    120 Hodge Victoria J, Lees Ken J, Austin James L. A high performance k-NN approach using binary neural networks. Neural Networks. 2004,17(3):441~458