乳腺癌细胞GLUT1分子成像实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、检测并比较乳腺癌MDA-MB-231、MCF-7细胞葡萄糖转运蛋白1(Glut1)表达情况,揭示乳腺癌Glut1表达与恶性程度的关系,选择Glut1过表达最显著的细胞株作为实验模型。
     2、评价荧光物质标记的2-脱氧-D-葡萄糖(2-DG)即2-NBDG被高表达Glut1乳腺癌细胞靶向摄取的可行性,以此证实2-DG分子能被Glut1高表达肿瘤细胞靶向摄取。
     3、探索用2-DG标记USPIO构建靶向分子磁共振成像探针2-脱氧葡萄糖-超小超顺磁性氧化铁(2-DG-USPIO)可行性。
     4、探索分子磁共振成像探针2-DG-USPIO靶向Glut1高表达乳腺癌细胞的效果。
     材料和方法:
     1、RT-PCR及免疫组化检测乳腺癌MDA-MB-231细胞Glut1 mRNA和蛋白表达,Westernblot比较乳腺癌MDA-MB-231及MCF-7细胞Glut1蛋白表达量。
     2、2-NBDG孵育接种在六孔板里的人乳腺癌MDA-MB-231细胞,并用D葡萄糖进行竞争抑制对照,荧光显微镜及流式细胞仪观察、分析2-NBDG摄取结果。流式细胞仪检测比较MDA-MB-231及MCF-7细胞吸收2-NBDG量的差异。
     3、采用化学交联法制备分子磁共振成像探针2-DG-USPIO,电镜观察形态、测量粒径及近红外光谱分析表征。
     4、分别用2-DG-USPIO、单纯USPIO孵育人乳腺癌MDA-MB-231细胞10分钟至2小时后普鲁士蓝染色及体外磁共振成像检测人乳腺癌细胞(MDA-MB-231)吸收情况,电镜观察细胞内吸收铁的分布。
     结果:
     1、乳腺癌MDA-MB-231细胞和MCF-7细胞均有明显Glut1mRNA和蛋白过表达Westernblot测得MDA-MB-231细胞表达Glut1蛋白表达量为(0.946±0.007),高于MCF-7细胞Glut1蛋白表达量(0.833±0.010)。
     2、荧光成像及流式细胞仪分析显示MDA-MB-231能快速摄取2-NBDG,且50 mM D型葡萄糖竞争抑制后,摄取2-NBDG的荧光强度降低46%。2-NBDG孵育乳腺癌细胞20分钟后流式细胞仪分析结果显示MDA-MB-231荧光强度(25.10±0.57)明显高于MCF-7(10.12±0.62)
     3、电镜观察2-DG-USPIO纳米粒子成球形,平均粒径为10nm,近红外光谱分析证明2-DG-USPIO纳米粒子表面存在2-DG结构。
     4、2-DG-USPIO孵育MDA-MB-231细胞10分钟后普鲁士蓝染色即显示胞浆内大量蓝色颗粒,单纯USPIO未见明显蓝色颗粒。临床1.5T磁共振T2加权成像显示2-DG-USPIO孵育MDA-MB-231组较单纯USPIO孵育MDA-MB-231组信号明显下降。
     结论:
     1、乳腺癌细胞Glut1表达程度与细胞的恶性程度密切相关,细胞恶性程度越高,Glut1蛋白表达量越大;高度恶性的乳腺癌MDA-MB-231细胞可作为高代谢的肿瘤细胞实验模型。
     2、2-NBDG能迅速被高表达Glut1的乳腺癌细胞靶向吸收,可作为葡萄糖代谢的光学标记物来检测高代谢的恶性肿瘤,并说明2-DG分子能被过表达Glut1的肿瘤细胞靶向吸收。
     3、2-DG成功标记到包覆有DMSA的USPIO表面,且2-DG-USPIO能被过表达Glut1的乳腺癌MDA-MB-231细胞靶向吸收。
Objective:
     1、To compare Glucose transporter 1 (Glut1) mRNA and protein expressed in breast cancer MDA-MB-231 and MCF-7 cells for revealing the relationship between grade malignancy and Glutl expression in breast cancer,and select the most significant cell line of Glutl overexpression in breast cancer as an experimental model.
     2、To assess the feasibility of fluorescent 2-deoxyglucose analog,2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl) amino]-2-deoxyglucose (2-NBDG) was targetedly taken up by breast cancer cells that overexpress Glutl, which confirmed that 2-DG molecule could target tumor cell with Glut1 expression.
     3、To explore the feasibility of USPIO labeled with 2-DG construction for preparation tumor targeted molecular magnetic resonance imaging probe 2-deoxyglucose-ultra-small super-paramagnetic iron oxide (2-DG-USPIO).
     4、To explore the effect of the molecular magnetic resonance imaging probe 2-DG-USPIO targeting breast cancer cells with Glut1 overexpression.
     Methods:
     1、Firstly, mRNA and protein expression of Glutl in breast cancer MDA-MB-231 cells were detected via RT-PCR and immunohistochemistry respectively,then protein expression of Glutl between breast cancer MDA-MB-231 cells and MCF-7 cells were compared via Western blot.
     2、MDA-MB-231 cells were grown in 6-well plates for analysis of 2-NBDG uptake via fluorescence microscopy imaging and flow cytometer. And the control was addion D glucose in the medium of 2-NBDG for competitive inhibition.The amount differences of absorption of 2-NBDG between MDA-MB-231 and MCF-7 cells were compared by flow cytometry.
     3、The molecular magnetic resonance imaging probe was prepared through 2-DG conjugated to USPIO using chemical method. The agent were tested by transmission electron microscope and infra-red spectrum.
     4、Human breast cancer cells (MDA-MB-231) were incubated with 2-DG-USPIO or USPIO for 10 minute to 2 hour respectively. Accumulation in the cells was evaluated using Prussian blue staining and magnetic resonance (MR) imaging, further intracellular iron absorption observed by electron microscopy.
     Results:
     1、MDA-MB-231 cells and MCF-7 cells overexpress Glut1 mRNA and protein.MDA-MB-231 cells express Glutl protein(0.946±0.007) higher than MCF-7 cells express (0.833±0.010).
     2、Fluorescence microscopy imaging and flow cytometer analysis displayed MDA-MB-231 cells could uptake 2-NBDG. Addition of 50 mM D-glucose to the media reduced 2-NBDG uptake by 46%. Furthermore, fluorescence intensity of MDA-MB-231 cells (25.10±0.57) is higher than MCF-7 cells'(10.12±0.62) when incubated by 2-NBDG for 20 minute.
     3、The result of transmission electron microscope displayed 2-DG-USPIO nanoparticles were spherical. The diameters of particles were 10 nm. The result of infra-red spectrum proved that 2-DG was conjugated to the surfaces of USPIO.
     4、After 10 mins, a large number of blue granules was observed in the cytoplasm of MDA-MB-231 incubated by 2-DG-USPIO, whereas there was no significant blue granules in cells incubated by USPIO.The signal of MDA-MB-231 cells after 10-mins incubation with 2-DG-USPIO was clearly lower than the signal of MDA-MB-231 cells incubated with plain USPIO in clinical 1.5-T MR T2-weighted image.
     Conclusion:
     1、Glutl expression is closely related to malignant grade in breast cancer cells, the higher cells malignant grade was,the higher Glutl protein expressed,so highly malignant breast cancer MDA-MB-231 cells was chosed as the tumor cells with high metabolic experimental model.
     2、The preliminary data clearly demonstrate 2-NBDG was taken up and accumulated in breast cancer cells with overexpressing Glutl,and may as a optic probe for glucose uptake in hypermetabolism malignant cells, And indicate the 2-DG molecule can be targetedly uptaken by tumor cells with Glutl overexpression.
     3、2-DG was labelled to the surface of USPIO coated with DMSA successfully. The molecular probe 2-DG-USPIO could be targetedly uptaken by breast cancer MDA-MB-231 cells with Glutl overexpression.
引文
1. Szentirmay Z.Effect of learning about the human genome on the development of pathology. Orv Hetil, 2003 ,144:2499-2508.
    
    2. Cheang MC, van de Rijn M, Nielsen TO.Gene expression profiling of breast cancer. Annu Rev Pathol, 2008,3:67-97.
    
    3. Tan DS, Marchio C, Reis-Filho JS. Hereditary breast cancer: from molecular pathology to tailored therapies. J Clin Pathol, 2008,61 :1073-1082.
    
    4. Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999 21:2:609-614.
    
    5. Bradbury M, Hricak H.Molecular MR imaging in oncology. Magn Reson Imaging Clin N Am, 2005,13,:225-240.
    
    6. Weissleder R, Mahmood U.Molecular imaging. Radiology, 2001 ,219,:316-333.
    
    7. Ono M. Molecular imaging by PET/SPECT Yakugaku Zasshi, 2009 ,129:279-287.
    
    8. Czernin J, Weber WA, Herschman HR.Molecular imaging in the development of cancer therapeutics. Annu Rev Med, 2006,57:99-118.
    
    9. Kang JH, Chung JK. Molecular-genetic imaging based on reporter gene expression. J Nucl Med, 2008 ,49 Suppl 2:164S-179S.
    
    10. Tanaka S, Kizaka-Kondoh S. Development of fluorescent in vivo imaging probes for cancers. Gan To Kagaku Ryoho, 2008 ,35,:1272-1276.
    
    11. Herschman HR.Molecular imaging:looking at problems,seeing solutions. J Science,2003,302(5645):605-608.
    
    12. Massoud TF,Gambhir SS. Molecular imaging in living subjects:seeing fundamental biological p rocesses in a new light, j Genes Dev,2003,17.:545-580.
    
    13. Sullivan DC,Kelloff G. Seeing into cells:the p romise of in vivo molecular imaging in oncology. J EMBO Rep,2005,6(4):292-296.
    
    14. Younes M ,Brown RW,Stephenson M ,et al . Glut1 expression in transitional cell carcinoma of the urinary bladder is associated wit h poor patient survival . J Anticancer Res ,2001 ,21 :575-578.
    
    15. Mendez L E ,Manci N ,Cantuaria G,et al . Expression of glucose transporter 1 in cervical cancer and its precursors. Gynecol.Oncol,2002,86:138-143
    
    16. Macheda ML, Rogers S, Best JD.Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.J Cell Physiol, 2005 ,202(3):654-662.
    
    17. Alo PL ,Visca P ,Botti C , et al . Immunohistochemical expression of human erythrocyte glucosetransporter and fatty acid synthase in infiltrating breast carcinomas andadjacent typical Patypical hyperplastic or normal breast tissue . Am J Clin Pathol,2001 ,116(1) : 129-134.
    
    18. Kim YM, Park YK, Yan JY, et al . Expression of the Glut1 glucose transportering all bladder carcinomas . J Gastroenterol Hepatol ,2002 , 49(46) :907-911.
    
    19. Mori Y, Tsukinoki K, Yasuda M, et al. Glucose transporter type 1 expression are associated with poor prognosis in patients with salivary gland tumors. Oral Oncol, 2007,43(6):563-569.
    
    20. Amann T, Hellerbrand C. GLUT1 as a therapeutic target in hepatocellular carcinoma.Expert Opin Ther Targets, 2009,13(12): 1411-1427.
    
    21. Fenske W, Volker HU, Adam P,et al. Glucose transporter GLUT1 expression is an stage-independent predictor of clinical outcome in adrenocortical carcinoma. Endocr Relat Cancer, 2009 ,16(3):919-928.
    
    22. Weissleder R,Moore A,Mahmood U,et al. In vivo magnetic resonance imaging of transgene expression. J Nat med,2000,6(3):351-355.
    
    23. Daldrup-Link,HE,Rudelius M,Piontek G,et al.Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model:In 1.5T MR imaging equipment.Radiology,2005,234( 1): 197-205.
    
    24. Kircher MF,Allport JR,Graves EE,et al.In vivo high resolution three-dimensional imaging of anti-specific cytotoxic T-lymphpcyte trafficking to tumors.Cancer Res.2003,63(15):6838-6846.
    
    25. Hogemann D,Josephson L,Weissleder R,et al.Improvement of MRI probes to allow efficient detection of gene expression.Bioconjug Chem,2000,11(6):941-946.
    
    26. Ciampi R, Vivaldi A, Romei C, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors.Mol Cell Endocrinol, 2008 ,291:57-62.
    
    27. Lund EL,Hog A,Olsen MW,et al. Differential regulation of VEGF,HIF1 alpha and angiopoietin-1 ,-2 and-4 by hypoxia and ionizing radiation in human glioblastoma.Int J Cancer 2004,108:833-838.
    
    28. Cooper R,Sarioglu S,Sokmen S,et al. Glucose transporter-1 (GLUT1):a potential marker of prognosis in rectal carcinoma?Br J Cancer 2003,89:870-876.
    
    29. Kang SS, Chun YK, Hur MH,et al.Clinical significance of glucose transporter 1 (GLUTl) expression in human breast carcinoma.Jpn J Cancer Res, 2002,93(10):1123-1128.
    
    30. Ravazoula P, Batistatou A, Aletra C,et al.Immunohistochemical expression of glucose transporter Glut1 and cyclin Dl in breast carcinomas with negative lymph nodes.Eur J Gynaecol Oncol, 2003,24(6):544-546.
    
    31. Mendez L E ,Manci N ,Cantuaria G,et al . Expression of glucose transporter 1 in cervical cancer and it s precursors. Gynecol Oncol ,2002 ,86 :138-143.
    
    32. Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy, 2007,53 :233-256.
    
    33. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol, 2005 ,202:654-662.
    
    34. Kim YW, Do IG, Park YK.Expression of the GLUTl glucose transporter, p63 and p53 in thyroid carcinomas.Pathol Res Pract, 2006,(202):759-765.
    
    35. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, et al.HIF-lalpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms.Mini Rev Med Chem, 2009 ,9:1084-1101.
    
    36. Kang SS,Chun YK,Hur MH,et al. Clinical significance of glucose transporter 1(GLUT1) expression in human breast carcinoma.Jpn J Cancer Res 2002,93:1123-1128.
    
    37. Schwartzenberg-Bar-Yoseph F ,Armoni M, Karnieli E. The tumor suppressor p53 down regulates glucose transporters Glutl and Glut 4gene expression . Cancer Res ,2004 ,64 (7) :2627-2633,
    
    38. Fogt F, Wellmann A, Urbanski SJ, et al. Glut-1 expression in dysplastic and regenerative lesions of the colon.Int J Mol Med, 2001 J,7(6):615-619.
    
    39. Reisser C, Eichhorn K, Herold-Mende C, et al. Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck.Int J Cancer, 1999 ,80(2): 194-198.
    
    40. Wei B, Chen L, Li J. Expression of glucose transporter 1 in gastric carcinoma and metastatic lymph nodes and its association with prognosis. Zhonghua Wei Chang Wai Ke Za Zhi, 2009 ,12(3):277-280.
    
    41. Furudoi A, Tanaka S, Haruma K, et al.Clinical significance of human erythrocyte glucose transporter 1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology, 2001,60(2):162-169.
    
    42. Tohma T, Okazumi S, Makino H, et al.Overexpression of glucose transporter 1 in esophageal squamous cell carcinomas: a marker for poor prognosis. Dis Esophagus, 2005,18(3): 185-189.
    
    43. Laudariski P, Swiatecka J, Kovalchuk O,et al. Expression of GLUT1 gene in breast cancer cell lines MCF-7 and MDA-MB-231. Pol. 2003 ,74 :782-785.
    
    44. Sieger S, Jiang S, Kleinschmidt J,et al.Tumor-specific gene expression using regulatory elements of the glucose transporter isoform 1 gene. Cancer Gene Ther, 2004,11(1):41-51.
    
    45. Lamkin DM, Spitz DR, Shahzad MM, et al.Glucose as a prognostic factor in ovarian carcinoma. Cancer, 2009 ,115(5): 1021-1027.
    
    46. Ozcan A, Shen SS, Zhai QJet al.Expression of GLUT1 in primary renal tumors: morphologic and biologic implications.Am J Clin Pathol, 2007,128(2):245-254.
    
    47. Kim SJ, Lee HW, Kim DC, et al. Significance of GLUT1 expression in adenocarcinoma and adenoma of the ampulla of Vater.Pathol Int, 2008 ,58(4):233-238.
    
    48. Riedl CC, Akhurst T, Larson S, et al. 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases.J Nucl Med, 2007 ,48(5):771-775.
    49. Palomar Munoz A, Garcia Vicente AM, Talavera Rubio MP, wt al. Diagnostic and therapeutic impact of (18)F-FDG-PET/CT in patients with suspected breast cancer recurrence.Rev Esp Med Nucl, 2010 Apr 12. [Epub ahead of print]
    
    50. Shimmura T, Nemoto M, Ino S, Kurami M. Metabolism of 18F-FDG (2-fluoro-2-deoxy-D-glucose) in tumor cells.Kaku Igaku,2003 ,40(1):31-38.
    
    51. Kostenich G, Livnah N, Bonasera TA, et al.Targeting small-cell lung cancer with novel fluorescent analogs of somatostatin.Lung Cancer, 2005 50:319-328.
    
    52. Hama Y, Urano Y, Koyama Y, et al.In vivo spectral fluorescence imaging of submillimeter peritoneal cancer implants using a lectin-targeted optical agent. Neoplasia, 2006 ,Jul8:607-612.
    
    53. Gunn AJ, Hama Y, Koyama Y, et al.Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore.Cancer Sci, 2007 98:1727-1733.
    
    54. Chen K, Li ZB, Wang H, et al.Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots.Eur J Nucl Med Mol Imaging, 2008 ,35:2235-2244.
    
    55. Longmire M, Kosaka N, Ogawa M,et al. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer.Cancer Sci, 2009 ,100:1099-1104.
    
    56. Kim HL.Optical imaging in oncology. Urol Oncol, 2009 ,27:298-300.
    
    57. Baeten J, Haller J, Shih H, Ntziachristos V. In vivo investigation of breast cancer progression by use of an internal control. Neoplasia, 2009 ,11 :220-227.
    
    58. Marten K, Bremer C, Khazaie K, et al. etection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in ice.Gastroenterology, 2002,122:406-414.
    
    59. Hucker WJ, Nikolski VP, Efimov IR.Optical mapping of the atrioventricular junction. J Electrocardiol, 2005,38(4 Suppl):121-125.
    
    60. Patwardhan S, Bloch S, Achilefu S, et al. Time dependent whole-body fluorescence tomography of probe bio-distributions in mice. Opt Express,2005 ,3 2564-2577.
    
    61. Cheng Z, Levi J, Xiong Z, et al. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug Chem,2006 ,7 662-669.
    
    62. Cheng Z, Levi J, Xiong Z, Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug Chem, 2006,17:662-669.
    
    63. Kovar JL, Volcheck W, Sevick-Muraca E,et al.Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem, 2009, 384:254-262.
    
    64. O'Neil RG, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol, 2005,7:388-392.
    
    65. Yoshioka K., Saito M., Oh K.B et al. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem, 1996,60: 1899-1901
    
    66. Nitin N, Carlson AL, Muldoon T, et al. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int J Cancer, 2009, 124:2634-2642.
    
    67. Millon SR, Ostrander JH, Brown JQ,et al.Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat, 2010 Apr 14. [Epub ahead of print]
    
    68. Gambhir SS,Barrio JR,Herschman HR,et al.Imaging gene expression: principles and assays.J Nucl Cardiol,1999;V6:219-233.
    
    69. Saji H.Development of radiopharmaceuticals for molecular imaging.International congress series,2004,1264:139-147.
    
    70. Lattuada L, Demattio S, Vincenzi V, et al. Magnetic resonance imaging of tumor cells by targeting the amino acid transport system. Bioorg Med Chem Lett, 2006,16(15):4111-4114.
    
    71. Mulder WJ, Strijkers GJ, Habets JW, et al. MR molecular imaging fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J, 2005 ,19(14):2008-2010.
    
    72. Swanson SD, Kukowska-Latallo JF, Patri AK, et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine, 2008, 3(2):201-210.
    
    73. Mornet S,Vasseur S,Grasset F,et al.Magnetic nanoparticle design for medical diagnosis and therapy.[J]J Mater Chem,2004;14:2161-2175.
    
    74. Bruce IJ, Sen T. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 2005;21:7029-7035.
    
    75. Taupitz M, Schnorr J, Abramjuk C, et al. New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOPs) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Mag Reson Imaging , 2000;12:905-911.
    
    76. Valois CR, Nunes ES, Jaeger RG, et al. Expression patterns of cell adhesion molecules in mice's lung after administration of meso-2,3-dimercaptosuccinic acid-coated maghemite nanoparticles.J Nanosci Nanotechnol, 2009 ,9(5):2846-2855.
    
    77. Corot C,Robert P,Idee JM,et al.Recent advances in iron oxide nanocrystal technology for medical imaging.[J]Adv Drug Deliv Rev,2006;58(14):1471-1504.
    
    78. Auffan M, Decome L, Rose J, et al. In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: A physicochemical and cyto-genotoxical study. Environ Sci Technol, 2006,40:4367-4373.
    
    79. Dutton AH , Tokuyasu KT , Siner SJ . Iron dextran antibody conjugates : several method for simultaneous staining of two components in high resolution immuno -electron microscopy. Proc Natl Acad Sci USA, 1997, 76 (3 ): 3392 - 3397.
    
    80. Cerdan S, Lotscherh R, Kunnfcke B, et al. Monoconal antibody - coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. MagnResonMed, 1989, 12(2): 151-163.
    
    81. Luciani A, Olivier JC, Clement O,et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology, 2004,231:135-142.
    82.姜树红,戈延茹,单秀红,等.葡萄糖受体靶向的钆喷酸葡胺长循环脂质体的肿瘤细胞靶向研究.中国医院药学杂志,2008,22:1916-1918.
    83. Toma A, Otsuji E, Kuriu Y, et al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br J Cancer,2005,93(1):131-136.
    84. Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res,2007,67(4):1555-1562.
    85. Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A,2006,78(3):550-557.
    86. Chen TJ, Cheng TH, Hung YC, et al.Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A,2008 87(1):165-175.
    87. Yang L, Peng XH, Wang YA, et al.Receptor-targeted nanoparticles for in vivo imaging of breast cancer.Clin Cancer Res.2009 Jul 15;15(14):4722-32.
    88. Wunderbaldinger P, Josephson L, Weissleder R.Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles.Bioconjug Chem. 2002,13(2):264-268.
    89. Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res,2007,67:1555-1562
    90. Leuschner C, Kumar CS, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat, 2006,99:163-176.
    91. Yoo MK, Kim IY, Kim EM, et al. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. Biomed Biotechnol,2007,10:94740-94749.
    92. CHOI H, CHOI S R, ZHOU&et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic radiology,2004, 11(9): 996—1004.
    1. Mulder WJ, Strijkers GJ, Habets JW, et al. MR molecular imaging fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J, 2005 ,19(14):2008-2010.
    
    2. Ke T, Jeong EK, Wang X , et al. RGD targeted poly(L-Glutamic acid)-cystamine-(Gd-DO3A) conjugate for detecting angiogenesis biomarker alpha(v)beta3 integrin with MRT, mapping. Int J Nanomedicine, 2007,2(2):191-199.
    
    3. Boswell CA, Eck PK, Regino CA, et al .Synthesis, characterization, and biological evaluation of integrin alphavbeta3-targeted PAMAM dendrimers. Mol Pharm, 2008 ,5(4):527-539.
    
    4. Montet X, Montet-Abou K, Reynolds F, et al. Naoparticle imaging of intergrins on tumor cells. Neoplasia, 2006,8(3): 214-222.
    
    5. Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res, 2007, 67(4): 1555-1562.
    
    6. Persigehl T, Matuszewski L, Kessler T, et al. Prediction of antiangiogenic treatment efficacy by ironoxide enhanced parametric magnetic resonance imaging. Invest Radiol, 2007,42(12):791-796.
    
    7. Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MR1-ultrasensitive drug delivery systems. Nano Lett, 2006, 6(11):2427-2430.
    
    8. Hayama A, Yamamoto T, Yokoyama M, et al. Polymeric micelles modified by folate-PEG-lipid for targeted drug delivery to cancer cells in vitro. J Nanotechnol, 2008 ,8(6):3085-3090.
    
    9. Swanson SD, Kukowska-Latallo JF, Patri AK, et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine, 2008, 3(2):201-210.
    
    10. Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules, 2006,7(2):572-579.
    11. Yuan Z, Liu SY, Xiao XS, et al.Folate-poly-L-lysine-Gd-DTPA as MR contrast agent for tumor imaging via folate receptor-targeted delivery. Zhonghua Yi Xue Za Zhi, 2007, 87(10):673-678.
    
    12. Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol, 2004,11(9):996-1004.
    
    13. Sun C, Sze R, Zhang M. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A , 2006, 78(3):550-557.
    
    14. Chen TJ, Cheng TH, Hung YC, et al.Targeted folic acid-PEG nanoparticles for noninvasive imaging of folate receptor by MRI. J Biomed Mater Res A, 2008 , 87(1):165-175.
    
    15. Kevin J. Landmark, Stassi DiMaggio, et al. Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic acid-conjugated dendrimers. ACS Nano, 2008,2(4):773-783.
    
    16. Wang ZJ, Boddington S, Wendland M, et al. MR imaging of ovarian tumors using folate-receptor-targeted contrast agents. Pediatr Radiol, 2008, 38(5):529-537.
    
    17. Hong G, Yuan R, Liang B, et al. Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices, 2008,10(5):693-700.
    
    18. Li H, Gray BD, Corbin I, et al. MR and fluorescent imaging of low-density lipoprotein receptors. Acad Radiol, 2004 ,11(11): 1251-1259.
    
    19. Corbin IR, Li H, Chen J,et al.Low-density lipoprotem nanoparticles as magnetic resonance imaging contrast agents. Neoplasia, 2006 , 8(6):488-498.
    
    20. Crich SG, Lanzardo S, Alberti D,et al. Magnetic resonance imaging detection of tumor cells by targeting low-density lipoprotein receptors with Gd-loaded low-density lipoprotein particles. Neoplasia, 2007,9(12): 1046-1056.
    
    21. Glickson JD, Lund-Katz S, Zhou R, et al. Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol Imaging, 2008 ,7(2): 101-110.
    
    22. Chen Y, Xiong Q, Yang X, et al. Noninvasive scintigraphic detection of tumor with 99mTc-DTPA-deoxyglucose: an experimental study. Cancer Biother Radiopharm, 2007 ,22(3):403-405.
    
    23. Luciani A, Olivier JC, Clement O,et al. Glucose-receptor MR imaging of tumors: study in mice with PEGylated paramagnetic niosomes. Radiology, 2004 ,231(1):135-142.
    
    24. Geninatti Crich S, Cabella C, Barge A , et al. In vitro and in vivo magnetic resonance detection of tumor cells by targeting Glutamine transporters with Gd-based probes. J Med Chem, 2006,49(16):4926-4936.
    
    25. Lattuada L, Demattio S, Vincenzi V, et al. Magnetic resonance imaging of tumor cells by targeting the amino acid transport system. Bioorg Med Chem Lett, 2006,16(15):4111-4114.