多功能集成介孔材料的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔二氧化硅材料由于具有高比表面,规则孔结构,可调孔径,易修饰,光学透明,化学稳定性和生物相容性等优点,在吸附、分离、催化、识别、可控释放等方面有潜在的应用前景。但随着科技的发展,人类对介孔材料的研究不再局限于传统的单一功能,而是期望同时赋予介孔材料光、电、磁等多种功能。本论文主要围绕着多功能集成介孔材料的合成和应用展开了一系列的研究,主要研究成果如下:
     1.以氯化铁作为铁源,采用溶剂热技术制备了Fe304磁性纳米粒子。通过溶胶-凝胶技术、表面活性剂模板法制备出具有核壳结构的磁性介孔材料,并将巯基硅烷锚接到介孔层中,实现了磁性材料的易分离性与介孔材料的高吸附性的有效结合,可用于分步移除环境中酚类物质及重金属离子。采用X-射线衍射、扫描电子显微镜、透射电子显微镜、氮气吸附等多种表征手段对巯基功能化磁性介孔材料(Thiol-MMM)进行结构和性质方面的研究。对实验中吸附剂用量,吸附溶液pH值、吸附时间、离子强度及有机(无机)干扰物等进行了系统的研究,优化了Thiol-MMM对有害酚类物质及重金属离子的吸附性能。实验结果表明:吸附的最佳pH值为3-5;Thiol-MMM对污染物的吸附速度较快,30min内就可以达到吸附平衡;吸附量随初始浓度的增大而升高,随离子强度的增加而降低,干扰物对吸附效果几乎没有影响。吸附过程通过Langmuir和Freundlich拟合,Thiol-MMM对4-甲基-2,6-二硝基苯酚的最大吸附量可达144.78mg g-1。利用硝酸铵离子交换法处理Thiol-MMM后,对Hg2+和Pb2+的最大吸附量分别达到185.19mg g-1和114.7mg g-1。在外加磁场作用下,Thiol-MMM可以在1min内实现快速移除的功能。
     2.通过表面修饰技术将罗丹明荧光探针固载到具有核壳结构的磁性介孔材料表面,制备出一种新型的对Hg2+同时具有检测、吸附、移除三重功能的"all-in-one"材料。通过控制罗丹明中内酰胺螺环结构的开关来实现对Hg2+的快速检测、高效吸附和移除。罗丹明功能化磁性介孔材料(RhB-MMM)在常见的金属离子(Cu2+、Pb2+、Ag+、Co2+、 Zn2+,Ni2+、Mn2+、 Cd2+、Mg2+、Na+)中能够选择性识别Hg2+,荧光强度增强了16倍;且具有很高的灵敏度,检出限可达10ppb。RhB-MMM对Hg2+的吸附过程符合Langmuir等温吸附模型,5min即可到吸附平衡,最大吸附量可以达到21.5mg g-1。在外加磁场作用下,吸附Hg2+的RhB-MMM可以在1min内快速移除,溶液中残存的Hg2+浓度低至0.05ppm。
     3.通过表面修饰技术将多种功能基团固载到具有核壳结构的磁性介孔硅材料表面,制备了一种具有pH刺激-响应的药物载体(MN-FA-Fc),考察了其对乳腺癌细胞(MCF-7)的特异性识别和抗癌药物阿霉素(DOX)的可控释放。MN-FA-Fc可同时实现靶向运输、促进细胞内吞和可控释放三重功能。Fe3O4内核赋予材料磁性功能,可用于磁靶向定位,介孔外壳可用来吸附DOX。“锚定”二茂铁席夫碱化合物在介孔材料孔道口,可利用席夫碱键在中性生理pH环境下稳定存在、在酸性条件下结构发生分解这一特点,作为DOX的可控释放“开关”。在癌细胞的脂质体酸性环境中能够打开二茂铁分子塞子,将吸附在介孔孔道中的DOX释放出来,起到令癌细胞凋亡的目的。选择与常见癌细胞能产生较强相互作用的生物活性小分子叶酸(FA)作为特异性识别基团,提高了微球的靶向能力,促进了细胞对MN-FA-Fc的内吞,增强了药效。为了评价MN-FA-Fc在生物医学领域应用的可行性,采用激光扫描共聚焦显微镜、透射电子显微镜、流式细胞仪等表征手段研究DOX/MN-FA-Fc的细胞内定位、细胞内吞作用和细胞毒性。实验结果表明:MN-FA-Fc是一种具有低细胞毒性的药物载体,保持了与FA受体结合的活性,可以在MCF-7处富集;同时内在的pH刺激-响应控制DOX/MN-FA-Fc原位释放DOX,对MCF-7有很强的杀伤效果。
     4.合成了三种含有二茂铁基团的金属有机表面活性剂:FcC11Me3Br、FcC11Et3Br和FcC11PyBr。这类表面活性剂可以作为结构导向剂和铁源,与无机硅源组装成为介孔硅材料;经简单氧化后得到具有大比表面、窄孔径分布的磁性介孔硅材料(MMS)。氧化温度对MMS饱和磁化强度具有明显影响,实验证实300℃为最佳氧化温度,生成的Fe2O3均匀分散在材料的孔道中。在可见光照射下,MMS-300表现出极高的光催化活性,可以对多种染料分子进行快速降解。罗丹明B的去除率可达99%,亚甲基蓝的去除率则高达100%,且催化剂MMS-300经过多次循环并没有失去活性。MMS成功地将吸附、光催化降解、磁性移除和重复使用等功能进行了集成。
     5.合成了一种基于喹啉衍生物的表面活性剂:QAC12Et3Br。表面活性剂作为结构导向剂与无机硅源组装生成介孔硅结构。通过硅孔道中受限的配位组装,表面活性剂与金属离子形成荧光介孔材料(FMM)。FMM中喹啉基团与Al3+配位给出了明亮的蓝绿色荧光。同时,保护配位组装体的介孔氧化硅对聚甲基丙烯酸甲酯具有很好的兼容性,可制备形状各异(如膜状和棒状)的透明荧光聚合物。此外,FMM荧光能被焦磷酸根阴离子(PPi)选择性淬灭,可作为PPi传感材料。实验结果表明:FMM水溶液的荧光光谱有很强的发射峰,加入PPi后,破坏了FMM中的金属配体电荷转移作用,从而表现为荧光的明显淬灭。生物体内的其他物种,如ATP、Cl-、Br-、I-、NO3-、N02-、SO42-、 HSO3-、S2O32-、ClO4-、SCN-、ClO3均没有明显的响应。
Due to the advantages of high surface area, well-defined pore structure, tunable pore sizes, easy modification, optical transparency, chemical stability and biocompatibility, mesoporous silicas have a potential application in the adsorption, separation, catalysis, recognition and drug-controlled release. But with the development of technology, research of mesoporous materials is no longer confined to the traditional single-function, and is expected to integrate multiple functions in a single system, such as optics, electricity, magnetism and so on. This thesis launched a series of studies which focused on the synthesis and application of multifunctional mesoporous materials. The main results are as follows:
     1. Ferric chloride was chosen as an iron source. Fe3O4magnetic nanoparticles were prepared using a solvothermal reaction. Magnetic core-shell mesoporous materials were fabricated by using a sol-gel technology and surfactant template method. Thiol-functionalized magnetic mesoporous materials (Thiol-MMM) can sequentially adsorb toxic phenolic compounds and heavy metal ions, which effectively combine the high transmission performance of magnetic materials with high adsorption properties of mesoporous materials. The structural properties of Thiol-MMM were characterized by XRD, SEM, TEM, BET and so on. A systematic study was carried out on adsorbent dosages, solution pH, contact time, ionic strength and interfering organic and inorganic pollutants in order to optimize the adsorption behaviors of phenolic compounds and heavy metal ions on Thiol-MMM. Experimental results showed that optimum adsorption pH was3-5. The adsorption equilibrations for the pollutants can achieve within30minutes. Adsorption capacity increased with increasing of initial concentration, but decreased with increasing of ionic strength. Interfering pollutants had little impact on the adsorption effect. The adsorption process was well described by the Langmuir and Freundlich equation. The maximum adsorption amount of4-Me-2,6-DNP on Thiol-MMM was144.78mg g-1. After Thiol-MMM was treated with a fast ion-exchange method using NH4NO3, the maximum adsorption capacity was185.19mg g-1for Hg2+and114.7mg g-1for Pb2+. The Thiol-MMM could be easily removed from solution within1minute.
     2. A novel "all-in-one" material was synthesized by immobilization of a Rhodamine fluorescent probe in the surface of magnetic core-shell mesoporous materials by using surface modification technology. The transformation of spiro and open-loop structure in Rhodamine was used to achieve the rapid detection, high-efficient adsorption and removal of toxic Hg2+RhB-functionalized magnetic mesoporous materials (RhB-MMM) showed excellent fluorescence sensitivity and selectivity towards Hg2+over other metal ions (Cu2+, Pb2+, Ag+, Co2+, Zn2+, Ni2+, Mn2+, Cd2+, Mg2+, Na+). Upon the addition of Hg2+, an overall emission change of16-fold was observed, and the detection limit of Hg2+was as low as10ppb. The adsorption process of Hg2+on the RhB-MMM was well described by the Langmuir equation. The equilibrium could be established within5minutes and the adsorption capacity was21.05mg g-1. Hg2+adsorbed RhB-MMM could be easily separated from the solution within1minute by adding an external magnetic field, and the concentration of Hg2+ions in the solution could be reduced to less than0.05ppm.
     3. A pH-responsive drug carrier (MN-FA-Fc) was fabricated by immobilization of multiple functions in the surface of magnetic core-shell mesoporous silica materials by using surface modification technology, which simultaneously realized induced target delivery, promoted cellular uptake and controlled drug release. The inner Fe3O4core endowed the material with magnetic properties, which can be used in magnetic induced target delivery, and the outer mesoporous shell could adsorb and store DOX in its mesopores. Ferrocene Schiff base linker was linked to the orifices of the mesopores to implement pH-dependent self-release. The linkers remained intact at neutral pH, however, the Schiff base bond breaked by hydrolysis at acidic pH. Because the cancer cells have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and releases the trapped DOX to kill the cancer cells. Bioactive small molecule FA was chosen as specific recognition group because some tumors expressed a high affinity to it, which could improve the target capability, promote the uptake of MN-FA-Fc by cancer cells, and further heighten the curative effect. In order to evaluate the feasibility of MN-FA-Fc in the biomedicine field, intracellular localization, endocytosis and cytotoxicity test were demonstrated by LSCM, TEM and flow cytometry. Experimental results showed that Drug carrier MN-FA-Fc exhibited almost no cytotoxicity towards MCF-7cells. Binding activity of MN-FA-Fc is consistent with FA receptor, which could be enriched at the position of cancerous lesion. Simultaneous internal pH stimulus induced DOX self-release from MN-FA-Fc, which shows an effective cell-killing effect.
     4. Three metallorganic surfactant FcC11Me3Br, FcC11Et3Br and FcC11PyBr were synthesized. The surfactant contained a terminal ferrocene moiety was used as a structure-directing agent and iron precursor to fabricate mesoporous silica material by using the hybrid organic-inorganic self-assembly approach. After simple oxidation, the obtained magnetic mesoporous silica material (MMS) had a high surface area and a narrow pore distribution. The saturation magnetization of the MMS was affected by the oxidation temperature. Experimental results showed that a mid-range temperature (300℃) was considered to be the optimum reaction condition. The generated Fe2O3was dispersed evenly inside the channels of the mesoporous host. MMS-300was found to have an ideal catalytic ability to quickly degrade several dyes from water under visible light irradiation. The removal rate of the dyes reached99%(Rhodamine B) and100%(Methylene Blue), and the catalyst MMS-300could be recycled many times without the loss of activity. MMS successfully integrates adsorption, photocatalytic degradation, magnetic removal and reuse.
     5. A quinoline derivative-based surfactant QAC12Et3Br was synthesized. The surfactant was used as a structure-directing agent to fabricate mesoporous silica material by using the hybrid organic-inorganic self-assembly approach. The fluorescent mesoporous material (FMM) was prepared via confining coordinate complex assembly in porous silicate channels. The quinoline moiety coordinated with Al3+in the FMM to give a bright blue-green fluorescence. Meanwhile, the silica nanochannels, which protect the included coordination complex assemblies, have an excellent compatibility with PMMA. Transparent fluorescent polymer bulks with various shapes (film and rod-like) were successfully fabricated. Furthermore, the fluorescence of FMM could be selectively quenched by PPi, so FMM could be used as a high performance sensing material. Experimental results showed that the fluorescence spectrum of FMM solution had a strong emission peak. While the fluorescence of FMM was gradually quenched by titrating PPi, due to metal-to-ligand charge transfer was destroyed. Other biologically relevant species such as Cl-, Br-, I-, NO3-, NO2-, ClO3-, HSO3-, ClO4-, SCN-, SO42-, S2O32-and ATP did not give any observable response.
引文
[1]Everett D H. In IUPAC manual of symbols and terminology [J]. Pure Appl. Chem.,1972, 31:578-638.
    [2]Chiola V, Ritsko J E, Vanderpool C D. US Patent 3 556 725, Process for producing low-bulk density silica,1971.
    [3]DiRenzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica [J]. Microporous Mater.,1997,10:283-286.
    [4]Kresge C T, Leonowicz M E, Roth W J, et al. Order mesoporous molecular-sieves synthesis by a liquid-crystal mechanism [J]. Nature,1992,359:710-712.
    [5]Yanagisawa T, Shimizu T, Kuroda K, et al. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials [J]. Bull. Chem. Soc. Jpn.,1990, 63:988-992.
    [6]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates [J]. J. Am. Chem. Soc.,1992,114:10834-10843.
    [7]Vartuli J C, Kresge C T, Leonowicz M E, et al. Synthesis of mesoporous materials: liquid-crystal templating versus intercalation of layered silicates [J]. Chem. Mater.,1994, 6:2070-2077.
    [8]Chao Z, Ruckenstein E. Effect of the nature of the templating surfactant on the synthesis and structure of mesoporous V-Mg-O [J]. Langmuir,2002,18:734-743.
    [9]Attard G S, Glyde J C, Goltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature,1995,378:366-368.
    [10]Leontidis E. Hofmeister anion effects on surfactant sel-assembly and the formation of mesoporous solids [J]. Curr. Opin. Colloid Interface Sci.,2002,7:553-564.
    [11]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120:6024-6036.
    [12]Huo Q S, Margolese D I, Stusky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem. Mater.,1996,8:1147-1160.
    [13]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular-sieves [J]. Science, 1995,267:865-867.
    [14]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants [J]. Science,1995,269:1242-1244.
    [15]Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieves with branched mesoporous channel network [J]. J. Phys. Chem.,1996,100:17718-17721.
    [16]Yu C Z, Yu Y H, Zhao D Y. Highly ordered large caged cubic mesoporous silica structure template by triblock PEO-PBO-PEO copoly [J]. Chem. Commun.,2000:575-576.
    [17]El-Safty S A, Evans J. Formation of highly ordered mesoporous silicas materials adopting lyotropic liquid crystal mesophases [J]. Chem. Mater.,2002,12:117-123.
    [18]Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure [J]. Nat. Mater.,2003,2:801-805.
    [19]Zhang L X, Zhang W H, Shi J L, et al. A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+ adsorbent [J]. Chem. Commun.,2003:210-211.
    [20]高峰,赵建伟,张松等.中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离r中的应用.高等学校化学学报,2002,23:1494-1497.
    [21]Wight A P, Davis M E. Design and preparation of organic-inorganic hybrid catalysts [J]. Chem. Rev.,2002,102:3589-3613.
    [22]Scott B J, Wirnsberger G, Stucky G D. Mesoporous and mesostructured materials for optical applications [J]. Chem. Mater.,2001,13:3140-3150.
    [23]李晓芬,何静,马润宇等.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究.化学学报,2000,58:167-171.
    [24]Chen C Y, Li H X, Davis M E. Studies on mesoporous materials. I. Synthesis and characterization of MCM-41 [J]. Microporos Mater.,1994,6:1176-1191.
    [25]Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science,1995,267:1138-1143.
    [26]Monnier A, Schuth F, Huo Q et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J]. Science,1993,261:1299-1303.
    [27]Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic-molecular with inorganic molecular-species into nanocomposite biphase arrays [J]. Chem. Mater.,1994,6:1167-1191.
    [28]lnagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J. Chem. Soc. Chem. Commun.,1993:680-682.
    [29]Bae Y K, Han O H. Removal of copolymer template from SBA-15 studied by:HMAS NMR [J]. Micropor. Mesopor. Mater.,2007,106:304-307.
    [30]Ganesan V, Walcarius A. Surfactant templated sulfonic acid functionalized silica microspheres as new efficient ion exchangers and electrode modifiers [J]. Langmuir,2004,20:3632-3640.
    [31]Huang L, Kawi S, Poh C, et al. Extraction of cationic surfactant templates from mesoporous materials by CH3OH-modified CO2 supercritical fluid [J]. Talanta,2005, 66:943-951.
    [32]Soler-Illia G J D, Sanchez C, Lebeau B, et al. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev.,2002,102:4093-4138.
    [33]Huo Q S, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic Surfactant inorganic composite-materials [J]. Nature,1994,368:317-321.
    [34]Anwander R. SOMC@PMS:Surface organometallic chemistry at periodic mesoporous silica [J]. Chem. Mater.,2001,13:4419-4438.
    [35]Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports [J]. Science,1997,276:923-926.
    [36]De Juan F, Ruiz-Hitzky E. Selective functionalization of mesoporous silica [J]. Adv. Mater.,2000,12:430-432.
    [37]Corma A, Navarro M T, Pariente J P. Synthesis of ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons [J]. Chem. Commun.,1994:147-148.
    [38]禹剑,施剑林,王连洲等Pd/PdO在MCM-41介孔材料孔表面的溶液移植.化学学报,2000,58:157-161.
    [39]Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host [J]. Science,1994,264:1757-1759.
    [40]Wen J, Wilkes G L. Organic/Inorganic hybrid network materials by the sol-gel approach [J]. Chem. Mater.,1996,8:1667-1681.
    [41]Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganie-organic mesoporous silica by co-condensation of siloxane and organosiloxane Preeursors [J]. Chem. Commun., 1996:1367-1368.
    [42]Anwander R, Nagl I, Widenmeyer M, et al. Surface characterization and functionalization of MCM-41 silicas via silazane silylation [J]. J Phys. Chem. B,2000,104:3532-3544.
    [43]Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41silicas by bonding organosilancs [J]. J. Phys. Chem. B,1998,102:5503-5510.
    [44]Melde B J, Holland B T, Blanford C F, et al, Mesoporous sieves with unified hybrid inorganic/organic frarneworks [J]. Chem. Mater.,1999,11:3302-3308.
    [45]Asefa T, Maclaehlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic inside the channel Walls [J]. Nature,1999,402:867-871.
    [46]Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks [J]. J. Am. Chem. Soc.,1999,121:9611-9614.
    [47]Lu Y F, Yang Y, Sellinger A, et al. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites [J]. Nature,2001,410:913-917.
    [48]Aida T, Tajima K. Photoluminescent silicate microsticks containing aligned nanodomains of conjugated polymers by sol-gel-based in situ polymerization [J]. Angew. Chem. Int. Ed.,2001, 4:3803-3806.
    [49]Ikegame M, Tajima K, Aida T. Template synthesis of polypyrrole nanofibers insulated within one-dimensional silicate channels:hexagonal versus lamellar for recombination of polarons into bipolarons [J]. Angew. Chem. Int. Ed.,2003,42:2154-2157.
    [50]Okabe A, Fukushima T, Ariga K, et al. Color-tunable transparent mesoporous silica films: immobilization of one-dimensional columnar charge-transfer assemblies in aligned silicate nanochannels [J]. Angew. Chem. Int. Ed.,2002,41:3414-3417.
    [51]Zhang Q M, Ariga K, Okabe A, et al. A condensable amphiphile with a cleavable tail as a "lizard" template for the sol-gel synthesis of functionalized mesoporous silica [J]. J. Am. Chem. Soc.,2004,126:988-989.
    [52]Otani W, Kinbara K, Zhang Q M, et al. Catalysis of a peptidic micellar assembly covalently immobilized within mesoporous silica channels:importance of amphiphilic spatial design [J]. Chem. Eur. J.,2007,13:1731-1736.
    [53]Lintang H O, Kinbara K, Tananka K, et al. Self-repair of a one-dimensional molecular assembly in mesoporous silica by a nanoscopic template effect [J]. Angew. Chem. Int. Ed.,2010, 49:4241-4245.
    [54]Li G T, Bhosale S, Wang T Y, et al. Gram-scale synthesis of submicrometer-long polythiophene wires in mesoporous silica matrices [J]. Angew. Chem. Int. Ed.,2003,42:3818-3821.
    [55]Yang Z, Kou X S, Ni W H, et al. Fluorescent mesostructured polythiophene-silica composite particles synthesized by in situ polymerization of structure-directing monomers [J]. Chem. Mater., 2007,19:6222-6229.
    [56]Zhang W X, Cui J C, Lin C X, et al. Pyrrole containing ionic liquid as tecton for construction of ordered mesoporous silica with aligned polypyrrole nanowires in channels [J]. J. Mater. Chem., 2009,19:3962-3970.
    [57]Zhang W X, Cui J C, Tao C A, et al. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach [J]. Angew. Chem. Int. Ed.,2009,48:5864-5868.
    [58]Lin C X, Zhu W, Yang H W, et al. Facile fabrication of stimuli-responsive polymer capsules with gated pores and tunable shell thickness and composite [J]. Angew. Chem. Int. Ed.,2011, 50:4947-4951.
    [59]Anbia M, Lashgari M. Synthesis of amino-modified order mesoporous silica as a new nano sorbent for the removal of chlorophenols from aqueous media [J]. Chem. Eng. J.,2009, 150:555-560.
    [60]Yoshitake H. Design of functionalization and structural analysis of organically-modified siliceous oxides with periodic structures for the development of sorbents for hazardous substances [J], J. Mater. Chem.,2010,20:4537-4550.
    [61]Zhuang X, Zhao Q F, Wan Y. Multi-constituent co-assembling ordered mesoporous thiol-functionalized hybrid materials:synthesis and adsorption properties [J]. J. Mater. Chem., 2010,20:4715-4724.
    [62]Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports [J]. Seienee,1997,276:923-926.
    [63]Yang H, Xu R, Xue X M, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal [J]. J. Hazard. Mater.,2008, 152:690-698.
    [64]Jiang Y J, Gao Q M, Yu H G, et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid mate-rials [J]. Micropor. Mesopor. Mater.,2007,103:316-324.
    [65]Li J, Qi T, Wang L, et al. Synthesis and characterization of imidazole-functionalized SBA-15 as an adsorbent of hexavalent chromium [J]. Mater. Lett.,2007,61:3197-3200.
    [66]Yan Z, Li G T, Mu L, et al. Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestulTs [J]. J. Maler. Chem.,2006,16:1717-1725.
    [67]Yan Z, Tao S Y. Yin J X, et al. Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs [J].J. Mater. Chem.. 2006,16:2347-2353.
    [68]Napolsky K S, Eliseev A A, Knotko A V, et al. Preparation of ordered magnetic iron nanowires in the mesoporous silica matrix [J]. Mater. Sci. Eng. C,2003,23:151-154.
    [69]Arruebo M, Galan M, Navascues N, et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications [J]. Chem. Mater.,2006, 18:1911-1919.
    [70]Ohmori M, Matijevic E. Preparation and properties of uniform coated colloidal particles.VII.Silica on hematite [J]. J. colloid Interface Sci.,1992,150:594-598.
    [71]Zhao W R, Gu J L, Zhang L X, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure [J]. J. Am. Chem. Soc.,2005, 127:8916-8917.
    [72]Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J]. J. Am. Chem. Soc.,2006,128:688-689.
    [73]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. J. Am. Chem. Soc.,2008,130:28-29.
    [74]Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites [J]. Chem. Mater.,2006,18:614-619.
    [75]Alvaro M, Aprile C, Garcia H, et al. Synthesis of a hydrothermally stable, periodic mesoporous material containing magnetite nanoparticles, and the preparation of oriented films [J]. Adv. Funct. Mater.,2006,16:1543-1548.
    [76]Lee M H, Lee S J, Jung J H, et al. Luminophore-immobilized mesoporous silica for selective Hg2+ sensing [J]. Tetrahedron,2007,63:12087-12092.
    [77]Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor [J]. J. Mater. Chem.,2006,16:4521-4528.
    [78]Han W S, Lee H Y, Jung S H, et al. Silica-based chromogenic and fluorogenic hybrid chemosensor materials [J]. Chem. Soc. Rev.,2009,38:1904-1915.
    [79]Lee H Y, Bae D R, Park J C, et al. A Selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles:removal of Pb2+ from human blood [J]. Angew. Chem. Int. Ed., 2009,48:1-6.
    [80]Meng Q T, Zhang X L, He C, et al. Multifunctional mesoporous silica material used for detection and adsorption of Cu2+ in aqueous solution and biological applications in vitro and in vivo [J]. Adv. Funct. Mater.,2010,20:1-7.
    [81]Liu J L, Li C Y, Li F Y. Fluorescence turn-on chemodosimeter-functionalized mesoporous silica nanoparticles and their application in cell imaging [J]. J. Mater. Chem.,2011,21:7175-7181.
    [82]Yang Q, Wang S C, Fan P W, et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery [J]. Chem. Mater.,2005, 17:5999-6003.
    [83]Park C, Oh K, Lee S C, et al. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif [J]. Angew. Chem. Int. Ed.,2007, 46:1455-1457.
    [84]Nguyen T D, Leung K C-F, Liong M, et al. Construction of a pH-driven supramolecular nanovalve [J]. Org. Lett.,2006,8:3363-3366.
    [85]Angelos S, Yang Y-W, Patel K, et al. pH-Responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes [J]. Angew. Chem. Int. Ed.,2008,47:2222-2226.
    [86]Angelos S, Khashab N M, Yang Y-W, et al. pH clock-operated mechanized nanoparticles [J]. J. Am. Chem. Soc.,2009,131:12912-12914.
    [87]Wang B D, Xu C J, Xie J, et al. pH controlled release of chromone from chromone-Fe3O4 nanoparticles [J]. J. Am. Chem. Soc.,2008,130:14436-14437.
    [88]Liu R, Zhang Y, Zhao X, et al. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker [J]. J. Am. Chem. Soc.,2010, 132:1500-1501.
    [89]Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin modified mesoporous silica [J]. Nature,2003,421:350-353.
    [90]Angelos S, Choi E, Vogtle F, et al. Photo-driven expulsion of molecules from mesostructured silica nanoparticles [J]. J. Phys. Chem. C,2007,111:6589-6592.
    [91]Ferris D P, Zhao Y-L, Khashab N M, et al. Light-Operated Mechanized Nanoparticles [J]. J. Am. Chem. Soc.,2009,131:1686-1688.
    [92]Vivero-Escoto J L, Slowing I I, Wu C-W, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere [J]. J. Am. Chem. Soc., 2009,131:3462-3463.
    [93]Lai C-Y, Trewyn B G, Jeftinija D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc.,2003,125:4451-4459.
    [94]Giri S, Trewyn B G, Stellmaker M P, et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:5038-5044.
    [95]Nguyen T D, Liu Y, Saha S, et al. Design and Optimization of Molecular Nanovalves Based on Redox-Switchable Bistable Rotaxanes [J]. J. Am. Chem. Soc.,2007,129:626-634.
    [96]Liu R, Zhao X, Wu T, et al. Tunable redox-responsive hybrid nanogated ensembles [J]. J. Am. Chem. Soc.,2008,130:14418-14419.
    [97]Patel K, Angelos S, Dichtel W R, et al. Enzyme-responsive snap-top covered silica nanocontainers [J]. J. Am. Chem. Soc.,2008,130:2382-2383.
    [98]Park Chiyoung, Kim Hyehyeon, Kim Saehee, et al. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests [J]. J. Am. Chem. Soc.,2009, 131:16614-16615.
    [99]Climent E, Bernardos A, Martinez-Manez R, et al. Controlled delivery systems using antibody-capped mesoporous nanocontainers [J]. J. Am. Chem. Soc.,2009,131:14075-14080.
    [100]Zhao Y, Trewyn B G, Slowing I I, et al. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP [J]. J. Am. Chem. Soc.,2009,131:8398-8400.
    [101]Aznar El, Casasus R, Garcia-Acosta B, et al. Photochemical and chemical two-channel control of functional nanogated hybrid architectures [J]. Adv. Mater.,2007,19:2228-2231.
    [102]Khashab N M, Trabolsi A, Lau Y A, et al. Redox-and pH-controlled mechanized nanoparticles [J]. Eur. J. Org. Chem.,2009:1669-1673.
    [103]Liu J S, Du X Z. pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release [J]. J. Mater. Chem.,2010, 20:3642-3649.
    [104]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis [J]. Micropor. Mesopor. Mater., 2005,77:1-45.
    [105]Szegedi A, Konya Z, Mehn D. Spherical mesoporous MCM-41 materials containing transition metals:synthesis and characterization [J]. Appl. Catal. A:Gen.,2004,272:257-266.
    [106]Lang N, Tuel A. Alkati-containing mesoporous (alumino) silicate materials with very high metal loading [J]. Micropor. Mesopor. Mater.,2005,77:147-157.
    [107]Melero J A, Calleja G, Martinez F, et al. Nanocomposite Fe2O3/SBA-15:An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions [J]. Chem. Eng. J.,2007, 131:245-256.
    [108]Zhang L X, Shi J L, Yu J, et al. A new in-situ reduction route for the synthesis of Pt nanoclusters in the channels of mesoporous silica SBA-15 [J]. Adv. Mater.,2002,14:1510-1513.
    [109]Subba P, Brunei D. Preparation of MCM-41 type silica-bound manganese(III) Schif-base complexes [J]. Chem. Commun.,1996:2485-2486.
    [110]Lim C W, Lee I S. Magnetically recyclable nanocatalyst systems for the organic reactions [J]. Nano Today,2010,5:412-434.
    [111]Inumaru K, Ishihara T, Kamiya Y, et al. Water-tolerant, highly active solid acid catalysts composed of the keggin-type polyoxometalate H3PW12O40 immobilized in hydrophobic nanospaces of organomodified mesoporous silica [J]. Angew. Chem. Int. Ed.,2007, 46:7625-7628.
    [112]Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angew. Chem. Int. Ed.,2006,45:3216-3251.
    [113]Linares N, Serrano E, Rico M, et al. Incorporation of chemical functionalities in the framework of mesoporous silica [J]. Chem. Commun.,2011,47:9024-9035.
    [114]Cooper C, Burch R. Mesoporous materials for water treatment processes [J]. Water Res.,1999, 33:3689-3694.
    [115]Zhao Y X, Ding M Y, Chen D P. Adsorption properties of mesoporous silicas for organic pollutants in water [J]. Anal. Chim. Acta,2005,542:193-198.
    [116]Mangrulkar P A, Kamble S P, Meshram J, et al. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41 [J]. J. Hazard. Mater.,2008,160:414-421.
    [117]Xu X Q, Deng C H, Gao M X. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J]. Adv. Mater.,2006,18:3289-3293.
    [118]Zhou L, Gao C, Xu W J. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs [J]. ACS Appl. Mater. Interfaces,2010,2:1483-1491.
    [119]Langmuir I. The Adsorption of gases on plane surfaces of glass, mice and platinum [J]. J. Am. Chem. Soc.,1918,40:1361-1403.
    [120]Redlich O, Peterson D L. A useful adsorption isotherm [J]. J. Phys. Chem.,1959,63:1024.
    [121]Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations [J]. Environ. Res.,1998,77:68-72.
    [122]Butler O T, Cook J M, Harrington C F, et al. Atomies Spectrometry update. Environmental analysis [J]. J. Anal. At. Spectrom.,2006,21:217-243.
    [123]Li Y F, Chen C Y, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS [J]. J. Anal. At. Spectrom.,2006,21:94-96.
    [124]陈国珍,黄贤智,许金钩.荧光分析法(第二版).北京:科学出版社.1990.
    [125]Kim H N, Lee M H, Kim H J, et al. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions [J]. Chem. Soc. Rev.,2008,37:1465-1472.
    [126]吕国军.基于罗丹明衍生物的 Hg2+离子识别变色荧光探针的研究[D].博士学位论文,大连理工大学,大连,2007.
    [127]Melde B J, Johnson B J, Charles P T. Mesoporous silicate materials in sensing [J]. Sensor,2008, 8:5202-5228.
    [128]Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ) ion in water [J]. J. Am. Chem. Soc.,1997,119:7386-7387.
    [129]Vallet-Regi M, Ramila A, del Real R P, et al. A new property of MCM-41:drug delivery system [J]. Chem. Mater.,2001,13:308-311.
    [130]Zhu Y F, Fang Y, Kaskel S. Folate-conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery [J]. J. Phys. Chem. C,2010,114:16382-16388.
    [131]Morelli C, Maris P, Sisci D, et al. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells [J]. Nanoscale,2011,3:3198-3207.
    [132]Slowing I I, Vivero-Escoto J L, Wu C-W, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Adv. Drug Deliv. Rev.,2008, 60:1278-1288.
    [133]Du J Z, Sun T M, Song W J, et al. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery [J]. Angew. Chem. Int. Ed., 2010,49:3621-3626.
    [134]Zhao W R, Chen H R, Li Y S, et al. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J]. Adv. Funct. Mater.,2008, 18:2780-2788.
    [135]Yang H, Zhuang Y M, Hu H, et al. Silica-coated manganese oxide nanoparticles as a platform for targeted magnetic resonance and fluorescence imaging of cancer cells [J]. Adv. Funet. Mater., 2010,20:1733-1741.
    [136]Hao R, Xing R J, Xu Z C, et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles [J]. Adv. Mater.,2010,22:2729-2742.
    [137]Cho H-S, Dong Z Y, Pauletti G M, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging:a multifunctional nanocarrier system for cancer diagnosis and treatment [J]. ACS Nano,2010,4:5398-5404.
    [138]Yiu H H P, Niu H-J, Biermans E, et al. Designed Multifunctional Nanocomposites for Biomedical Applications [J]. Adv. Funct. Mater.,2010,20:1-11.
    [139]Sudimack J, Lee R J. Targeted drug delivery via the folate receptor [J]. Adv. Drug Deliv. Rev., 2000,41:147-162.
    [140]Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking [J]. Adv. Drug Deliv. Rev., 2004,56:1099-1109.
    [141]Chen D Y, Jiang M J, Li N J, et al. Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery [J]. J. Mater. Chem., 2010,20:6422-6429.
    [142]Abe T, Tachibana Y, Uemastsu T, et al. Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate [J]. J. Chem. Soc. Chem. Commun.,1995:1617-1618.
    [143]Lu A-H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionauzation, and application [J]. Angew. Chem. Int. Ed.,2007,46:1222-1244.
    [144]Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications [J]. Acc. Chem. Res.,2009,42:1097.
    [145]Fenton H J H. Oxidation of tartaric acid in the presence of iron [J]. J. Chem. Soc. Trans,1894, 65:899-910.
    [146]Walling C. Fenton's reagent revisited [J]. Acc. Chem. Res.,1975,8:125-131.
    [147]Zepp R G, Faust B C, Holgne J. Hydroxyl radical formationin aqueous reaetions (pH 3-8) of iron(Ⅱ) with hydrogen peroxide:the Photo-Fenton reaction [J]. Environ. Sci. Technol.,1992, 26:313-319.
    [148]林金清,龙明策,吴宝林等.光助类Fenton降解结晶紫染料废水[J].华侨大学学报(自然科学版).2005,26:299-302.
    [149]何莼,徐科峰,奚红霞等.均相和非均相Fenton型催化剂催化氧化含酚废水[J],华南理工大学学报(子然科学版),2003,31:52-54.
    [150]Lu L R, Ai Z H, Li J P, et al. Synthesis and Characterization of Fe-Fe2O3 Core-Shell Nanowires and Nanonecklaces [J]. Cryst. Growth Des.,2007,7:459-464.
    [151]Sun C Y, Shen C C, Ma W H, et al. Photodegradation of organic pollutants catalyzed by iron species under visible light irradiation [J]. Phys. Chem. Chem. Phys.,2011,13:1957-1969.
    [152]Chang M Y, Wang W H, Chung Y C. The one-step preparation of nanowires using a facile ultrafiltration technique:the case for biomedical chitosan and/or iron oxide nanowires [J]. J. Mater. Chem.,2011,21:4966-4970.
    [153]Hinchey L L, Mills D L. Magnetic properties of superlattices fotiiied from ferromagnetic and antiferromagnetic materials [J]. Phys. Rev. B,1986,33:3329-3343.
    [154]Sakurai S, Namai A, Hashimoto K, et al. First observation of phase transformation of all four Fe2O3 phases (γ→ε→β→α-Phase) [J]. J. Am. Chem. Soc.,2009,131:18299-18304.
    [155]Lim H, Lee J, Jin S, et al. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica [J]. Chem. Commun., 2006:463-465.
    [156]吴红梅.基于丹磺酰胺光敏体的分子探针研究[D].博士学位论文,大连理工大学,大连,2009.
    [157]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987, 51:913-915.
    [158]Kim S K, Lee D H, Hong J-I, et al. Chemosensors for Pyrophosphate [J]. Ace. Chem. Res.,2009, 42:23-31.
    [159]Villamil-Ramos R, Yatsimirsky A K. Selective fluorometric detection of pyrophosphate by interaction with alizarin red S-dimethyltin(IV) complex [J]. Chem. Commun.,2011, 47:2694-2696.
    [160]Das P, Bhattacharya S, Mishra S, et al. Zn(Ⅱ) and Cd(Ⅱ)-based complexes for probing the enzymatic hydrolysis of Na4P2O7 by alkaline phosphatase in physiological conditions [J]. Chem. Commun.,2011,47:8118-8120.
    [161]Zhang J F, Park M, Ren W X, et al. A pellet-type optical nanomaterial of silica-based naphthalimide-DPA-Cu(Ⅱ) complexes: recyclable fluorescence detection of pyrophosphate [J]. Chem. Commun.,2011,47:3568-3570.
    [162]Li S J, Lu J, Liang H, et al. Synthesis, crystal structure and properties of a Zn(Ⅱ) complex with a new N,N,O-tridentate chelate ligand [J]. Inorg. Chem. Commun.,2008,11:662-664.