超磁致伸缩换能器滞回非线性模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在磁致伸缩效应及逆磁致伸缩效应下,超磁致伸缩换能器的输入与输出均存在着显著的磁机耦合和滞回非线性行为。为了设计及使用器件,必须建立其准确的数学模型。本文对换能器的滞回非线性模型进行了深入研究,取得了以下成果:
     1.基于二次畴转磁致伸缩模型和无滞回磁化强度模型,将线性压磁方程扩展为一个非线性本构模型I。利用此本构模型I和一种利用热力学关系建立的非线性本构模型II对超磁致伸缩材料的磁机耦合实验非线性行为进行了模拟,比较分析了它们的性能,为建立换能器的磁机耦合滞回非线性模型提供了理论依据。
     2.为了得到基于Jiles-Atherton的超磁致伸缩换能器滞回模型的最佳参数,提出了梯度算法与混合编码遗传算法相结合的四个混合遗传算法,即GATR1、GALM1、GATR2和GALM2。仿真与实验结果表明GATR1能自动准确地辨识滞回模型在不同频率下的参数,从而可将该滞回模型扩展为一个能在广阔频率范围内准确描述换能器外加磁场和输出应变之间关系的动态滞回模型。
     3.基于非线性本构模型II、Weiss铁磁理论、Jiles-Atherton模型、Bertotti损耗统计物理理论和换能器结构动力学原理建立了超磁致伸缩换能器在外加磁场作用下的磁机耦合动态滞回非线性模型。模型计算结果与实验结果对比,验证了所建模型能在广阔工作条件(不同偏置磁场、不同驱动频率和不同预应力)下,描述换能器的外加磁场与输出磁化强度、应变的磁机耦合动态滞回特性,对换能器的性能估计和控制器设计具有重要的指导意义。
     4.推出在各种输入变化情况下,Preisach模型记忆曲线顶点矩阵的更新算式,建立了以记忆曲线顶点坐标矩阵为基础的Preisach类神经网络超磁致伸缩换能器滞回模型。仿真结果表明,该模型消除了传统Preisach模型对输入信号的限制条件,能预测换能器在复杂外加磁场下,输出磁化强度和位移的滞回特性。
     5.基于Jiles-Atherton模型、磁机械效应方法定律和磁路定律,建立了一个超磁致伸缩磁力控制器的滞回模型。模型计算结果与实验结果对比,表明该模型能较好地描述在变化应力和恒定偏置磁场作用下,磁力控制器输入应力与输出磁化强度及磁力的滞回关系,并可以预测偏置磁场对器件输出性能的影响,从而对基于逆磁致伸缩效应的磁致伸缩换能器的设计与分析具有重要的指导意义。
The relationships between the inputs and the outputs of giant magnetostrictive transducers exhibit dominant magneto-mechanical coupling and hysteresis nonlinear behaviors under the magnetostrictive effect and the inverse magnetostrictive effect. To design and use the devices, it is necessary to establish an accurate model of the devices. In this dissertation, hysteresis nonlinear models for giant magnetostrictive transducers are studied systematically and deeply, the main research contents and contributions are given as follows.
     1. The linear piezomagnetic equation is extended to a nonlinear constitutive model (called the Model I in this paper) based on a quadratic moment domain rotation magnetostriciton model and an anhysteretic magnetization model. A nonlinear constitutive model (called the Model II in this paper), which is founded by thermodynamic relations, is presented. The magneto-mechanical coupling nonlinear experimental behaviors for giant magnetostrictive materials are simulated using the two constitutive models. The performances of the two models are compared and analyzed, which provides a theory basis for modeling a magneto-mechanical coupling hysteresis nonlinear model of giant magnetostrictive transducers.
     2. A hysteresis model of giant magnetostrictive transducers is presented. The hysteresis model is based on the Jiles-Atherton model. To obtain optimal parameters of the hysteresis model, four hybrid genetic algorithms, namely GATR1, GALM1, GATR2 and GALM2, are proposed by combining the gradient-based algorithms with a hybrid coded genetic algorithm. The simulation and experimental results show that GATR1 can automatically and accurately identify the parameters of the hysteresis model at different frequencies, thus can extend the hysteresis model to a dynamic hysteresis model, which can accurately describe the relationship between the input magnetic field and the output strain for the transducers in a wide frequency range.
     3. A magneto-mechanical coupling dynamic hysteresis nonlinear model for giant magnetostrictive transducers under applied magnetic field is founded according to the nonlinear constitutive Model II, the Weiss ferromagnetic theory, the Jiles-Atherton model, the Bertotti loss statistical physical theory and the transducer structural dynamics principle. Comparisons between the experimental and the calculated results show the proposed model can describe the magneto-mechanical coupling dynamic hysteresis characteristics of the input magnetic field, the output magnetization and strain for the transducers in a wide operating conditions (such as different bias magnetic field, different drive frequency and different pre-stress), thus has important significance for performance estimation and controller design of the transducers.
     4. The updated expressions of the memory curve vertex coordinate matrix for Preisach model are derived under all kinds of input sequences. Based on the memory curve vertex coordinate matrix, a Preisach-type neural network hysteresis model of giant magnetostrictive transducers is founded. Simulation results show that the proposed model can eliminate the constraint in input sequences when using the traditional Preisach model, and can predict the output magnetization and displacement hysteresis characteristics under the complicated applied magnetic field.
     5. Based on the Jiles-Atherton model, the law of approach for the magnetomechanical effect and the magnetic circuit law, a hysteresis model of a giant magnetostrictive device for magnetic force control is founded. Comparisons between the experimental and the calculated results show that the proposed model can better describe the hysteresis relationship among the input stress, the output magnetization and magnetic force for the device under varying stress and constant bias magnetic field. Moreover, the proposed model can predict the effect of the bias magnetic field on the output performance of the device. Thus, the model has important significance for design and analysis of the magnetostrictive transducers based on the inverse magnetostrictive effect.
引文
[1] Joule J P. On a new class of magnetic forces. Ann.Electr Magn Chem.1842, 8: 219-224
    [2] Clark A E, Bozorth R M, Desavage B F. Anomalous thermal expansion and magnetostriction of single crystals of dysprosium. PhysiealLetter,1963, 5(2): 100-102
    [3] Clark A E, Belson H S.Giant room-temperature magnetostriction in TbFe2 and DyFe2
    [4] Clark A E. Magnetic and magnetoelastic properties of highly magnetostrictive rare earth-iron laves phase compounds. Proc.AIP Conf., 1974, 18:1015-1029 . Phys.Rev.B.,1972, 5:3642-3644
    [5] Clark A E. Magnetostrictive rare earth-Fe2
    [6]林河成,国内稀土合金材料的生产及应用,金属材料研究,2000,(3):23-25 compounds. Edited by E.P. Wohlfarth. New York: North-Holland Pubishing Company, 1980
    [7]李扩社,徐静,张深根,稀土超磁致伸缩材料进展,金属功能材料,2003,10(6):30-33
    [8]王博文,超磁致伸缩材料制备与器件设计,北京:冶金工业出版社,2003
    [9]邬义杰,超磁致伸缩材料发展及其应用现状研究,机电工程,2004,21(4):55-59
    [10]朱厚卿,稀土超磁致伸缩材料的应用,应用声学,1998,17(5):3-10
    [11]贺西平,稀土超磁致伸缩换能器,北京:科学出版社,2006
    [12]莫喜平,第三讲让声纳系统耳目一新:新型水声换能器与换能器新技术,声纳技术及其应用专题,2006,35(5):414-419
    [13] Weisensel G N, Hansen T T, Hrbek W D. High power ultrasonic Terfenol-D transducers enable commercial application. Proceedings of SPIE, 1998, 3326: 450-458
    [14]刘文静,周利生,夏铁坚等,稀土超声换能器特性研究,声学与电子工程,2005,80(4):28-31
    [15] Claeyssen F, Lhermet N, Leletty R. Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 1997, 258: 61-73
    [16]贾振元,杨兴,武丹等,超磁致伸缩执行器及其在流体控制元件中的应用,机床与液压,2000,2:3-4
    [17]郭东明,杨兴,贾振元等,超磁致伸缩执行器在机电工程应用研究现状,中国机械工程,2001,12(6):724-727
    [18]王传礼,方平,丁凡,GMM在机械电子工程中的应用研究现状,电子机械工程,2002,18(4):l-4
    [19]邬义杰,项占琴,基于超磁致伸缩材料在活塞异形销孔加工原理研究,浙江大学学报,2004,38(9):1185-1189
    [20]吕福在,项占琴,稀土超磁致伸缩材料高速强力电磁阀的研究,内燃机学报,2000,18(2):199-202
    [21] Cao S Y, Zheng J J, Wang B L, et al. A micro-position system of a giant magnetostrictive actuator. The Eighth International Conference on Electrical Machines and Systems (ICEMS’2005), Nanjing, P. R. China, 2005, 2316-2319
    [22]贾振元,杨兴,具有位移感知功能的超磁致伸缩微位移执行器的研究,应用科学学报,2002,20(4):354-359
    [23]贾振元,王福吉,张菊等,超磁致伸缩执行器磁滞非线性建模与控制,机械工程学报,2005,41(7):131-135
    [24]顾仲权,朱金才,彭福军等,磁致伸缩材料作动器在振动主动控制中的应用研究,振动工程学报,1998,11 (4):381-388
    [25]欧阳光耀,施引,磁致伸缩材料及其作动器设计,海军工程学院学报,1998,1:44-47
    [26] Chung R, Weber R, Jiles D C. A Terfenol based magnetostrictive diode laser magnetometer. IEEE Trans. Magn.,1991,27(6):5358-5360
    [27]胡明哲,李强,李银祥等,磁致伸缩材料的特性及应用研究(II) ,稀有金属材料与工程,2001,30(1):l-4
    [28] Satpathi D, Moore J A, Ennis MG. Terfenol-D based optical current transducer. Proceedings of IEEE on Sensors, 2003, 1:403-408
    [29] Reily D, Willshire A J, Fusiek G, et al. A fibre bragg grating based sensor for simultaneous AC current and temperature measurement. Proceedings of IEEE on Sensors, 2004, 3:1426-1429
    [30]熊燕玲,赵洪,张剑等,基于超磁致伸缩材料的光纤光栅交流电流传感系统,电工技术学报,2006,21(4):16-19
    [31]文西芹,宁晓明,张永忠等,磁致伸缩传感器技术应用的发展,传感器技术,2003,22(2):1-4
    [32] Ashley S. Magentostrictive actuator. Mechanical Engineering, 1998, 6:69-70
    [33] Hiroyuki Wakiwaka, Muneo Mitamura. New magnetostrictive type torque sensor for sterring shaft. Sensors and Actuators A, 2001,91:103-106
    [34] Pratt J R, Flatau A B. Development and analysis of a self-sensing magnetostrict ive actuator design. J. Intelligent. Mater. Syst. & Stru., 1995,6(5): 639-648
    [35] Fenn R, Gerver M. Passive damping and velocity-sensing using magnetostrictiv e transduction. Proceedings of SPIE, Smart Structures and Materials, 1994, 2190: 216-227
    [36] Kuhnen K, Janocha H, Schommer M. Exploitation of inherent sensor effects in magnetostrictive actuators. Actuator 2004, Proc.9th International Conference on New Actuators, Bremen, 2004, 367-370
    [37]唐志峰,吕福在,项占琴,影响超磁致伸缩执行器中逆效应性能的主要因素,机械工程学报,2007,43(12):133-136
    [38]鲍芳,李继容,王春茹,磁致伸缩器件及其应用研究,传感器技术,2001,20(8):1-3
    [39] Clark A E, Crowder D N. High temperature magnetostriction of TbFe2 and Tb0.27 Dy0.73F2
    [40] Clark A E, Teter J P, McMasters O D. Magnetostriction“jumps”in twinned Tb. IEEE Trans. Magn., 1985,21(5):1945-1947 0.3Dy0.7F1.9
    [41] Butler J L. Application manual for the design of Etrema Terfenol-D magnetostri ctive transducers. Ames, IA: Etrema Products Inc., 1988 . J.Appl.phys.,1988,63(8):3910-3912
    [42] Moffet M B, Clark A E, Wun-Fogle M, et al. Characterization of Terfenol-D for magnetostrictive transducers. J.Acoust.Soc.Am.,1991,89(3):1448-1455
    [43] Benbouzid M E H, Reyne G, Meunier G. Nonlinear finite element modelling of giant magnetostriction. IEEE Trans. Magn., 1993,29(6):2467-2469
    [44] Benbouzid M E H, Reyne G, Meunier G. Dynamic modelling of giant magnetos triction in Terfenol-D rods by the finite element method. IEEE Trans. Magn., 1995,31(3):1821-1824
    [45] Benbouzid M E H. Artificial neural network for finite element modeling of giant magnetostrictive devices. IEEE Trans.Magn.,1998,34(6):3853-3856
    [46] Carman G P, Mitrovic M. Nonlinear constitutive relations for magnetostrictive materials with application to 1-D Problems. J. Intelligent. Mater. Syst. & Stru., 1995, (6): 673-684
    [47]万永平,方岱宁,黄克智,磁致伸缩材料的非线性本构关系,力学学报,2001,33(6):749-797
    [48] Wan Y P, Fang D N, Hwang K C. Non-linear constitutive relations for magneto strictive materials. Inter. J. Non-linear Mechanics, 2003, 38(7): 1053 - 1065
    [49] Duenas T, Hsu L, Carman G P. Magnetostrictive composite material systems analytical and experimental. Materials Research Society Symposium, Advances in Materials for Smart Systems-Fundamentals and Applications, Boston, 1996
    [50] Zheng X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods. J.Appl. Phys.,2005, 97:053901
    [51] Calkins F T. Design, analysis, and modeling of giant magneostrictive transduc ers. Ph.D.dissertation, Iowa State University, Ames, 1997
    [52] Kellogg R A. The Delta-E effect in Terfenol-D and its application in a tunable mechanical resonator. Master’s thesis, Iowa State University, Ames, 2000
    [53] Engdahl G, Svensson L. Simulation of the magnetostrictive performance of Terfenol-D in mechanical devices. J.Appl.Phys., 1988,63(8): 3924-3926
    [54] Kvarnsj? L, Bergqvist A, Engdahl G. A method of measuring eddy current impedances in giant magnetostrictive materials. IEEE Trans. Magn.,1990,26(5): 2574-2576
    [55]贺西平,李斌,孙进才,Terfenol棒的磁致伸缩等效电路,西北工业大学学报,1999,17 (1):82-86
    [56] Besbes M, Ren Z, Razek A. Finite element analysis of magneto-mechanical coupled phenomenon in magnetostrictive materials. IEEE Trans. Magn.,1996, 32(3): 1058-1061
    [57] Gros L, Reyne G, Body C, et al. Strong coupling magneto-mechanical methods applied to model heavy magnetostrictive actuator. IEEE Trans. Magn., 1998, 34: 3150-3153
    [58] Greenough R D, Wharton A D. Methods and techniques to characterize Terfenol -D. Journal of Alloys and Compounds, 1997, 258(3):114-117
    [59] Ackerman A E, Liang C, Rogers C A. Dynamic transduction characterization of magnetostrictive actuators. Smart Materials and Structures, 1996, 5(2):115-120
    [60] Wakiwaka H, Iio M, Nagumo M,et al. Impedance analysis of acoustic vibration element using giant magnetostrictive materials. IEEE Trans. Magn., 1992,28(5): 2208-2210
    [61] Hall D L, Flatau A B. One-dimensional analytical constant parameter linear electro magnetic-magnetomechanical models of a cylindrical magnetostrictive (Terfenol-D) Transducer. J. Intelligent. Mater. Syst. & Stru., 1995,6(3): 315-328
    [62] Hunt F V. Electroacoustics: The analysis of transduction, and its historical background. American Institute of Physics for the Acoustical Society of America, 1982
    [63]张琪昌,王洪礼,竺致文等,分岔与混沌理论及应用,天津:天津大学出版社,2005
    [64]王洪礼,张琪昌,郭树起等,非线性动力学理论及应用,天津:天津大学出版社,2002
    [65]严宗达,王洪礼,热应力,北京:高等教育出版社,1993
    [66]王洪礼,竺致文,孙景,用形状记忆合金控制转子振动的非线性动力学研究,振动工程学报,2001,14(3): 309-313
    [67]王洪礼,许佳,葛根,机翼颤振的随机Hopf分岔研究,机械强度,2008,30(3): 369-370
    [68] Doong T, Mayergoyz I D.On numerical implementation of hysteresis models. IEEE Trans. Magn., 1985, 21(5):1853-1855
    [69] Mayergoyz I D. Mathematical models of hysteresis (invited). IEEE Trans. Magn., 1986, 22(5):603-608
    [70] Mayergoyz I D. Vector Preisach hysteresis models (invited). J.Appl.Phys.,1988, 63 (8):2995-3000
    [71] Mayergoyz I D, Frienman G. Generalized Preisach model of hysteresis (invited). IEEE Trans. Magn., 1988, 24(1):212-217
    [72] Mayergoyz I D. Dynamic Preisach model of hysteresis. IEEE Trans. Magn., 1988, 24(6):2925-2927
    [73] Bergqvist A, Engdahl G. A stress-dependent magnetic Preisach hysteresis model. IEEE Trans. Magn.,1991,27(6):4796-4798
    [74] Natale C, Velardi F, and Visone C. Modeling and compensation of hysteresis for magnetostrictive actuators. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, 2001,Como, Italy, 744-749
    [75]唐志峰,吕福在,项占琴,超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法,机械工程学报,2007,43(6):55-61
    [76] Tan X B, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators. Automatica, 2004, 40:1469-1480
    [77] Restorff J B, Savage H T, Clark A E, et al. Preisach modeling of hysteresis in Terfenol-D. J.Appl.Phys.,1990,67(9):5016-5018
    [78] Hughes D, Wen J T. Preisach modeling and compensation for smart material hysteresis. SPIE, Active Materials Smart Struct.,1994, 2427:50-64
    [79] Adly A A, Mayergoyz I D. Magnetostriction simulation using anisotropic vector Preisach-type models. IEEE Trans. Magn., 1996,32(5): 4473-4475
    [80] Basso V, Bertotti G. Hysteresis models for the description of domain wall moti on. IEEE Trans. Magn., 1996,32(5):4210-4212
    [81] Smith R C. Hysteresis modeling in magnetostrictive materials via Preisach opera tors. Inst. Comput. Applicat. Sci.Eng., NASA Langley Res. Center, Hampton, VA, Tech. Rep., 1997,97-23
    [82] Gorbet R B, Morris K A, Wang D W. Preisach model identification of a two-wire SMA actuator. In Proc.1998 IEEE Int. Conf. Robt. Automat.,1998, 3: 2161-2167
    [83] Ge P, Jouaneh M. Modeling hysteresis in piezoceramic actuators. Precision Eng., 1995,17:211-221
    [84] Jiles D C, Atherton D L. Ferromagnetic hysteresis. IEEE Trans. Magn.,1983, 19 (5): 2183-2185
    [85] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater., 1986,61: 48-60
    [86] Philips D A, DupréL R, Melkebeek J A. Comparison of Jiles and Preisach hysteresis models in magnetodynamics. IEEE Trans.Magn., 1995,31(6):3551 -3553
    [87] Smith R C, Hom C L. A domain wall theory for ferroelectic hysteresis. J. Intelligent. Mater. Syst. & Stru., 1999, 10(3): 195-213
    [88] Smith R C, Ounaies Z. A domain wall model for hysteresis in piezoelectric materials. J. Intelligent. Mater. Syst. & Stru., 2000,11 (1): 62-79
    [89] Massad J E, Smith R C. A domain wall model for hysteresis in ferroelastic materials. J. Intelligent. Mater. Syst. & Stru., 2003,14 (7): 455-571
    [90] Smith R C, Massad J E. A unified methodology for modeling hysteresis in ferroelectric, ferromagnetic and ferroelastic Materials, Proceedings of DETC’01 the ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, 2001,6: 1389-1398
    [91] Jiles D C, Thoelke J B, Devine M K. Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans. Magn., 1992,28(1):27-35
    [92] Jiles D C. Modeling the effects of eddy current losses on frequency dependent hysteresis in electrically conducting media. IEEE Trans. Magn.,1994,30(6): 4326-4328
    [93] Sablik M J, Wun H K, Burkhardt G L, et al. Model for the effect of tensile and compressive stress on ferromagnetic hysteresis. J.Appl.Phys.,1987,61(8):3799 -3801
    [94] Sablik M J, Wun H K, Burkhardt G L, et al. A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials. J. Appl. Phys., 1988,63(8): 3930-3932
    [95] Sablik M J, Jiles D C. A model for magnetostriction hysteresis. J. Appl. Phys., 1988,64(10): 5402-5404
    [96] Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans. Magn., 1993,29(3):2113-2123
    [97] Jiles D C. Introduction to magnetism and magnetic materials. New York: Chapman and Hall, 1991
    [98]王博文,李淑英,闫荣格等,巨磁致伸缩材料Terfenol-D的磁致伸缩计算,河北工业大学学报,2001,30(1):5-8
    [99] Calkins F T, Smith R C, Flatau A B. Energy-based hysteresis model for magnetostrictive transducers. IEEE Trans. Magn., 2000,36(2): 429-439
    [100]曹淑瑛,王博文,闫荣格等,超磁致伸缩致动器的磁滞非线性动态模型,中国电机工程学报,2003,23(11):145-149
    [101] Szewczyk R, Bieńkowski A. Magnetoelastic Villari effect in high-permeability Mn-Zn ferrites and modeling of this effect. J. Magn. Magn. Mater., 2003, 254 -255 : 284-286
    [102] Pitman K C. The influence of stress on ferromagnetic hysteresis. IEEE Trans. Magn.,1990, 26(5) : 1978-1980
    [103] Jiles D C. Theory of the magnetomechanical effect. J. Phys. D:Phys., 1995, 28: 1537-1546
    [104] Sablik M J, Chen Y, Jiles D C, Modified law of approach for the magneto- mechanical model. Rev. Progr. Quant. Nondestruct. Eval., 2000,19: 1565-1572
    [105] Li L, Jiles D C. Modified law of approach for the magnetomechanical model: Application of the Rayleigh law to stress. IEEE Trans. Magn., 2003, 39 (5): 3037-3039
    [106] Li L, Jiles D C. Modeling of the magnetomechanical effect: Application of the Rayleigh law to the stress domain. J. Appl. Phys., 2003,93 (10): 8480-8482
    [107] Smith R C, Dapino M J, Seelecke S. Free energy model for hysteresis in magnetostrictive transducers. J. Appl. Phys., 2003, 93(1):458-466
    [108]田春,汪鸿振,超磁致伸缩执行器的自由能磁滞模型的数值实现,机械科学与技术,2005,24(6):650-652
    [109] Tian Chun, Wang Hongzhen. Dynamic free energy hysteresis model in magneto strictive actuators. Chinese Journal of Mechanical Engineering, 2006,19(1): 85 -88
    [110] Adly A A, Abd-El-Hafiz S K. Using neural networks in the identification of Preisach-type hysteresis models. IEEE Trans. Magn., 1998, 34(3): 629-635
    [111] Serpico C, Vison C.Magnetic hysteresis modeling via feed-forward neural networks. IEEE Trans. Magn.,1998,34(3):623-628
    [112] Cincotti S, Daneri I. Neural network identification of a nonlinear circuit model of hysteresis. Electronics Letters, 1997, 33(13): 1154-1156
    [113] Xu J H. Neural network control of a piezo tool positioner. Electrical and Computer Engineering, Canadian Conference, 1993, 14-17
    [114]党选举,谭永红,在Preisach模型框架下的似对角动态神经网络压电陶瓷迟滞模型的研究,机械工程学报,2005,41(4):7-12
    [115] Clark A E, Savage H T. Giant magnetically induced changes in the elastic moduli in Tb0.3Dy0.7Fe2. IEEE Trans. Sonics and Ultrasonics, 1975,22(1):50-52
    [116] Kaminski D A, Jiles D C, Biner S B, et al. Angular dependence of the magnetic properties of polycrystalline iron under the action of uniaxial stress. J.Magn. Magn.Mater.104: 382-384
    [117] Wilson P R, Neil Ross J, Brown A D. Simulation of magnetic component models in electric circuits including dynamic thermal effects. IEEE Trans. Power Electronics, 2002,17(1): 55-65
    [118] Leite J V, Avila S L, Batistela N J, et al. Real coded genetic algorithm for Jiles–Atherton model parameters identification. IEEE Trans. Magn.,2004, 40 (2): 888-891
    [119] Almeida L A L, Deep G S, Lima A M N, et al. Modeling a magnetostrictive transducer using genetic algorithm. J. Magn. Magn. Mater.,2001,266-230:1262 -1264
    [120] Lin W, Delgado-Frias J G. Hybrid Newton-Raphson genetic algorithm for traveling salesman problem. Cybernetics and Systems, 1995, 26 (5): 387-412
    [121] Li D V, Wang M G. An improved hybrid genetic algorithm. Information and Control, 1997, 26 (6): 449-454
    [122] Salvini A, Riganti Fulginei F. Genetic algorithms and neural networks generalizing the Jiles–Atherton model of static hysteresis for dynamic loops. IEEE Trans. Magn., 2002, 38 (2): 873-876
    [123] Faidley L E, Lund B J, Flatau A B, et al. Tefernol-D elasto-magnetic properties under varied operating conditions using hysteresis loop analysis. SPIE Sympo- sium on Smart Structures, 1998, 3329(92)
    [124] Dapino M J, Calkins F T, Flatau A B. On identification and analysis of fundamental issues in Terfenol-D transducer modeling. In Proc. SPIE Smart Structures and Integrated Systems, 1998,3329(23)
    [125] Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 1963,11: 431-441
    [126] MoréJ J. The Levenberg-Marquardt algorithm: implementation and theory, numerical Analysis. Ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, 1977, 105-116
    [127] MoréJ J, Sorensen D C. Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 1983,3: 553-572
    [128] Branch M A, Coleman T F, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing, 1999,21(1):1-23
    [129] Byrd R H, Schnabel R B, Shultz G A. Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Progr amming, 1988, 40: 247-263
    [130] Holland J H. Adaption in natural and artificial systems. Ann Arbor, MI: Univ. Michigan Press, 1975
    [131] Goldberg D. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
    [132] Kristinsson K, Dumont G A. System identification and control using genetic algorithms. IEEE Trans. Syst. Man and Cybernatics, 1992,22 (5): 1033-1047
    [133]郑立平,郝忠孝,遗传算法理论综述,计算机工程及应用,2003,21:50-53
    [134] Bertotti G. Physical interpretation of eddy current losses in ferromagnetic materials. J. Appl. Phys.,1985, 57 (6):2110-2126
    [135] Fiorillo F, Novikov A. Power losses under sinusoidal, trape-zoidal and distorted induction waveform. IEEE Trans. Magn.,1990,26(5):2559-2561
    [136] Barbisio E, Fiorillo F, Ragusac C. Predicting loss in magnetic steels under arbit rary induction waveform and with minor hysteresis loops. IEEE Trans. Magn., 2004,40(4):1810-1819.
    [137] Liorzou F, Phelps B, Atherton D L. Macro-scopic models of magnetization. IEEE Trans. Magn.,2000,36(2):418-428
    [138] Iyer R V, Krishnaprasad P S. On a low- dimensional model for ferromagnetism. Nonlinear Analysis, 2005, 61: 1447-1482
    [139] Dapino M J, Smith R C, Flatau A B, Structural magnetic strain model for magnetostrictive transducers. IEEE Trans. Magn., 2000, 36 (3): 545-556
    [140] Henze O, Rucker W M. Identification procedures of Preisach model. IEEE Trans. Magn., 2002,38(2):833-836
    [141]周开利,康耀红,神经网络模型及其MATLAB仿真程序设计,北京:清华大学出版社,2005
    [142] Hagan M T, M. Menhaj. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993
    [143] Ueno T, Qiu J, Tani J. Magnetic force control based on the inverse magnetostri ctive effect. IEEE Trans. Magn., 2004, 40 (3):1601-1605
    [144] Kim Y Y, Cho S H, Lee H C. Application of magnetomechanical sensors for modal testing. Journal of Sound and Vibration, 2003, 268:799-808
    [145] Cho S H, Kim Y, Kim Y Y. The optimal design and experimental verification of the bias magnet configuration of a magnetostrictive sensor for bending wave measurement. Sensors and Actuators A, 2003, 107:25-232