新型超导故障限流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网的扩容,电力设备的短路容量和短路电流不断增大,在电气设备上产生巨大的电动力和严重的发热,使电气设备的尺寸、重量和费用显著增加,过高的短路电流会严重威胁设备和人身安全。为了使短路电流值限于开关设备的额定范围内,最近几年,出现了许多限制电网故障电流的技术设备,较理想的是超导故障电流限制器(SCFCL),系统正常运行时,SCFCL对其无影响,若发生短路故障,则SCFCL的阻抗迅速增大以限制短路电流和短路容量。SCFCL集检测、触发和限流于一体,具有自恢复功能,若能将其实用化,不仅可提高现存电网输送容量,还能提高系统的安全可靠性和供电质量。
     本文首先综述了超导的基本特性和电性机理、寻找具有高临界温度、高临界磁场和高临界电流密度的超导体的探索历程,概述超导体在各个领域的应用技术,指出超导电力技术发展的方向。通过分析SCFCL的现状及各种样机结构,了解它们各自的特点和工作原理,基于电力系统对SCFCL的要求,从可靠性和降低系统绝缘水平等方面论述SCFCL的优越性。随后,重点研究和改进了磁屏蔽感应型、混合型和桥路型三类SCFCL。
     1.磁屏蔽感应型高温超导故障电流限制器(HTSCFCL)
     磁屏蔽感应型HTSCFCL,由一次铜绕组、二次超导圆柱形屏蔽筒、铁芯和液氮冷冻箱组成,其工作原理是利用超导筒从超导态转变到正常态时,其阻抗的快速上升而限流。根据样机结构,得出数学模型,算出仿真电路的相关参数,利用MATLAB进行了仿真研究。
     在磁屏蔽感应型HTSCFCL原理的基础上,提出并分析了一种改进的磁屏蔽感应型HTSCFCL,该限流器在原有磁屏蔽感应型HTSCFCL的结构上,增加了一个控制故障电流的铜环和一个在第二腿铁芯上的空气隙。铜环可限制故障电流,减少超导体的失超恢复时间,空气隙在大电流时,能有效地避免出现限制阻抗急剧下降。
     另外,还提出了一种新型磁屏蔽感应型HTSCFCL,它由一次超导绕组、二次超导圆柱形屏蔽筒、铁芯和液氮冷冻箱组成,利用超导绕组和超导筒,从超导态转变到正常态时,其阻抗的快速上升而限流。并对应用于三相系统的新型磁屏蔽感应型HTSCFCL进行了仿真研究。
     仿真结果表明三种磁屏蔽感应型HTSCFCL,均能显著地减少暂态及稳态的故障电流,有效地提高系统的稳定性,对改善电网动态性能和提高电网电能质量,有十分重要的意义。
     2.在研究混合型HTSCFCL和失超型桥式整流HTSCFCL原理的基础上,介绍了混合型HTSCFCL的概念。提出了一种新型单相混合型HTSCFCL,该限流器利用IGBT快速动作来控制保护电阻,IGBT在故障发生后的100μs内动作,并投入保护电阻。利用MATLAB进行仿真分析,研究结果表明该限流器设计参数准确,限流效果明显。
     3.研究应用于三相电力系统中的偏流切换桥路型HTSCFCL(B-HTSCFCL)实验室样机。正常工作时,在电桥上引入直流偏置电流,不出现限流;发生短路故障时,整流桥中的直流偏流影响限流效果,将直流偏置电压源切换到限流电阻,使故障电流限制到预定的范围。研究了该限流器的工作原理,分析了限流参数的变化对限流特性的影响。实验和仿真表明,该限流器有很好的限流和重合闸能力,能显著减少暂态及稳态的故障电流,有效提高系统的动态稳定性和电网的电能质量。
     最后对SCFCL的电流引线技术、降低功率损耗和限流器保护等方面进行了深入的研究,结合模型机,介绍低温绝缘和实验技术。以上所有工作不仅从理论和实验两方面论证了SCFCL的可行性和优越性,而且为SCFCL的产品开发奠定了基础。
Development of electrical power systems is accompanied by a constant increase in short circuit breaking capacity and fault currents, these impose enhanced electrodynamical and thermal stability requirements to be met by electrotechnical device components. This in turn leads to a significant increase in size, weight and cost of electrical power equipment. As a consequence, exorbitant short current would pose threat to the power equipments and their operators. In order to cut the short-current to the lower level when the control equipment of power system can break, during the last few years, a number of programs have been sponsored to investigate various techniques and devices applicable to limit fault currents in power systems. One method for fault current reduction is the application of fault current limiting devices having nonlinear characteristics: low impedance in normal operating conditions. the most ideal one of such devices is the superconducting fault current limiting devices. In a normal work condition, it is a good conductor with no influence on power system. However, in the case of short-circuiting, its impedance abruptly increase to limit short current and short circuit breaking capacity. It works naturally and is self-examination, self-triggered, self-operation and self-restore. If we can make its products more applicable, it can not only upgrade the capability of the existing electrical transmission system, but also can exalt the safey and dependability of the power system and power supply quantity.
     This paper introduced superconductor's basic characteristic and its theory, discussed its application. Then it reviewed the development of the superconducting fault current 1imiter, mainly about their principles, configurations and characteristics of SCFCL. The system requirements for the current 1imiting devices have been proposed and potential installation locations and benefits for user resulting from the effective fault current 1imiter have been shown. Analyzed quantitatively the economic benefit of SCFCL, and expatiated the technique benefits of HTSCFCL from the dependable with lower system insulate 1evel. Later, the magnetic-shield inductive HTSCFCL, the hybrid HTSCFCL and the rectifier bridge type HTSCFCL are studied and improved.
     firstly, our aim is to analyze the magnetic shielding type high temperature superconducting fault current limiter(HTSCFCL) in this context, the magnetic shielding type HTSCFCL, the improved magnetic shielding type HTSCFCL and the novel magnetic shielding type HTSCFCL are discussed as following:
     The magnetic shielding type HTSCFCL mainly consists of a primary copper coil, a high-Tc superconducting cylinder ring as the secondary winding, an iron core and a sub-cooled nitrogen cryostat with a cryocooler, the principle of the device’s operation is based on a rapid rise of the device’s impedance at the transition of the ring from the superconducting to the normal state. The operating theory of the fault current limiter is discussed deeply. The effect of parameters variety of the magnetic shielding type HTSCFCL is analyzed for limiting fault current.
     An improved magnetic shielding type HTSCFCL with a control ring and an air gap is developed and analysized, it can effectively avoid the reduction of a limiting impedance in the HTSCFCL under the higher current with an effective air gap and shorten recovery time by using a copper ring.
     A novel magnetic shielding type HTSCFCL is proposed for three-phase power system. The model of an inductive current-limiting device consists of a primary high-Tc superconducting coil, a high-Tc superconducting cylinder ring as the secondary winding, an iron core and a sub-cooled nitrogen cryostat with a cryocooler. The principle of the device’s operation is based on a rapid rise of the device’s impedance at the transition of the winding and the ring from the superconducting to the normal state.
     The results of simulation demonstrate that the three type magnetic shielding type HTSCFCL can reduce both the transient and the steady-state fault current significantly, the devices are of great benefit in improving transient stability and enhancing the electrical energy quality of power system.
     Secondly, based on studying of the working principle of hybrid type dc high temperature superconducting fault current limiter and dc S/N transition rectifier bridge type high temperature superconducting fault current limiter, the concept of a hybrid fault current limiter is introduced. A novel single-phase hybrid type dc high temperature superconducting fault current limiter is proposed, which is based on a novel fast-acting IGBT to control the protection resistor within 100μs after fault detection. The new design method by MATLAB simulation that we put forward in this paper is an effective approach for the accurate design parameters and its promise limiting-current results.
     Then a novel rectifier type high temperature super conducting fault current limiter for a three-phase power system is developed. When normal operating, no current limiting mode occurs through the application of DC bias current to the bridge, and at the time of fault, the fault current limiting capability decrease due to the bias DC current. An idea is to put a resistor in series with the superconducting coil for absorbing the incoming energy into the coil, and turn the switch on and off to disconnect the DC bias voltage source from the rectifier in order to control the fault current in a pre-set region. The operating theory of the new fault current limiter is discussed, and the effect of parameters variety of HTSCFCL is analyzed on limiting fault current. The simulation and experimental results show that the device is of good limiting and re-closing capability, and demonstrates that the device can reduce both the transient and the steady-state fault current significantly. The device is of great benefit in improving transient stability and enhancing the electrical energy quality of power system.
     Finally, in this paper, current lead, power loss, stability and protection method, low temperature insulation of SCFCL and winding superconductor technique are studied. All works above not only in terms of theory and experiment demonstrate the feasibilities and advantages of SCFCL, but also make fundamental effort for following exploration of the products baed on SCFCL.
引文
[1]肖立业,林良真,超导限流器——超导技术产业化的领头产品。科技导报,1999,(7):1-4.
    [2]杨杰,陈希英,邵建雄。三峡水电站短路电流水平及限制措施。电网技术,1997,21(7):17-20.
    [3] Salim K M,Hoshino T,Nishikawa M,et al. Preliminary experiments on saturated DC reactor type fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2002,12(1):872-875
    [4] S.Fischer, H.Schmitt, R.R.Volkmar, et al. System requirements and test of superconducting fault current limiters. CIGRE, Paris, 2000.
    [5] E.Baltzer, H.Schmitt, W.Schultz, et al. Operation of superconducting current limiters in electrical networks. CIRED,97.
    [6] M.Noe, B.R.Oswald. Technical and economical benefits of superconducting current limiters in power system. IEEE Transactions on Applied Superconductivity, 1999,9(2):1347-1350.
    [7] Istvan Vajda, Sandor Semperger, Tamas Porjesz, et al. Three phase inductive HTS fault current limiter for the protection of a 12KVA synchronous generator. IEEE Transactions on Applied Superconductivity, 2001,11(1):2515-2518.
    [8] J.L.里格斯著.工程经济学.第一版。北京:中国财政出版社,1989.
    [9] M?rten Sj?str?m, Diego Politano. Technical and impacts on a power system by introducing an HTS FCL. IEEE Transactions on Applied Superconductivity, 2001,11(1):2042-2045.
    [10] W.paul, M.chen, M.Laker, et al. Superconducting fault current limiter applications, technical and economical benefits, simulations and test results. CIGRE, Paris,2000.
    [11] D.W.A .Willen and J.R.Cave .Short Circuit Test Performance of Inductive High Tc Superconducting Fault Current Limiters. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995,5(2):1047-1050.
    [12] Hoshino T,Salim K M,Kawasaki A,et al. Design of 6.6kV,100A saturated DC reactor type superconducting fault current limiter[J]. IEEE Transactions on AppliedSuperconductivity, 2003,13(2):2012-2015.
    [13] Ise T, Nguyen N H and Kumagai S. Reduction of inductance and current rating of the coil and enhancement of fault current limiting capability of a rectifier type superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2001,11(1):1932-1935.
    [14]余江,段献忠,唐跃进等.不失超型SFCL特性仿真分析[J].电力自动化设备,2002,22(3):19-22.
    [15]林玉宝,林良真.桥路型超导故障电流限制器及其超导线圈的优化设计方法[J].低温与超导,1998,26(3):58-63.
    [16] Urata M, Kuriyama T, Yazawa T et al,A 6T refrigerator-cooled NbTi superconducting magnet with 180 mm room temperature bore[J], IEEE Transactions on Applied Superconductivity,1995,5(2): 169 - 172
    [17] Yazawa T, Yoneda E, Matsuzaki J, et al. Design and test results of 6.6 kV high-Tc superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity,2001,11(1):2511-2514.
    [18] Boenig H J, Paice D A. Fault current limiter using a superconducting coil[J]. IEEE Transactions on Magnetics, 1983,19(3):1051-1053.
    [19] Raju B P, Parton K C, Bartram T C. Accurrent limiting device using superconducting DC bias applications and prospects. IEEE Transactions on Apparatus and System. 1982, 101(9):3173-3177.
    [20]余江,段献忠,何仰赞.不同结构超导故障限流器在电力系统中的应用.电力系统自动化,2001,25(12):42-44.
    [21] Keilin V, Kovalev I, et al. Model of HTS three-phase saturated core fault current limiter. IEEE Transactions on for power system application. IEEE Transactions on Applied superconductivity, 2000,10(1):836-839.
    [22] Matsumura T, Shimizu H and Yokomizu Y. Design guideline of flux-lock type HTS fault current limiter for power system application. IEEE Transactions On Superconductivity, 2001,11(1):1956-1959.
    [23] R.F.Giese and M.Runde. Assessment Study of Superconducting Fault-Current Limiters Operating at 77K. IEEE Transactions on Power Delivery. 1992,8(3):1138-1147.
    [24] Hoshino T, Muta I. Load test on superconducting transformer and fault current limiting devices for electric power system. IEEE Transactions On Magnetics, 1994,30(4):2018-2021.
    [25] Thuries E, Pham V D, Laumond Y, et al. Towards the superconducting fault current limiter. IEEE Tansactions on Power Delivery, 1991,6(2):801-808.
    [26]叶林,林良真.超导故障限流器的电力应用研究进展.电力系统自动化,1999,23(7):53-57.
    [27] Tixador P, Experimental results on an hybrid superconducting current limiter. IEEE Transactions on Appried Superconductivity, 1995 5(2):1055-1058.
    [28] Steurer M,Brechna H,Frohlich K.A nitrogen gas cooled,hybrid, high temperature superconducting fault current limiter[J] . IEEE Transactions on Applied Superconductivity,2000,10(1):840-844.
    [29] J.Nakatsugawa, S.Noguchi, A.Ishiyama. Magnetic characteristic of a high-Tc superconducting cylinder for magnetic shielding type superconducting fault current limiter. IEEE Transactions on Applied Superconductivity, 1999,9(2):1373-1376.
    [30] Sokolovsky V, Meerovich V, et al. AC losses in BSCCO cylinders operating in inductive current limiter. IEEE Transactions on Applied Superconductivity, 1999,9(2):1361-1364.
    [31] Michiharu Ichikawa, Massayuki Okazaki. A magnetic shielding type superconducting on Applied Superconductivity, 1995,5(2):1067-1070.
    [32] W Paul, M Lakner, J Rhyner, et al, Test of 1.2 MVA high-Tc Superconducting Fault Current Limiter, Supercond. Sci. Technol. 1997,10:914-918.
    [33] Takashi Yazawa, Triko Yoneda, et al. Design and test results of 6.6KV high-Tc superconducting fault current limiter. IEEE Transactions on Applied superconducting fault current limiter. IEEE Transactions on Applied superconductivity, 2001,11(1):2511-2514.
    [34] Tsutomu Hoshimo, Khosro Mohammad Salim. Massanori Nisikawa, et al. DC reactor effect on bridge type superconducting fault current limiter during load increasing. IEEE Trans. on Applied superconductivity, 2001,11(1):1944-1947.
    [35] Shimizu S, Kado H, et at, Single-line-to-ground fault test of a 3-phase superconducting fault current limiting reactor. IEEE Transactions on Magnetics, 1992,28(1):442-445.
    [36] K.Usui, T.Nomura, T.Satoh, et al. A single dc reactor type fault current limiting interrupter for three-phase power system. IEEE Transactions on Applied superconductivity, 2001,11(1):2126-2129.
    [37]叶林,林良真.超导故障限流器在电力系统中的应用研究。中国电机工程学报,2000,20(7):1-8.
    [38] Leung E M,Rodringuez A,Ahned S,etal.High temperature superconductivity fault current limiter development.IEEE Transactions on Applied Superconductivity,1997,7(2):985-988.
    [39] Leung E M,Burley B ,Haldar P, et al.Design and development of a 15KV,20KA HTS fault current limiter.IDDD Transactions on Applied Superconductivity,2000,10(1):832-835.
    [40] Kado H, Ichikawa M. Performance of a high-Tc superconducting fault current limiter—Design of a fault current limiter .IEEE Transactions on Applied Superconductivity ,1997, 7(2):993-996.
    [41] Noudem J, B arbut J M, Tixador P, et al. Current limitation at 1080A under 1100V with bulk Bi2213..IEEE Transactions on Applied Superconductivity ,1999,9(2):664-667.
    [42] paul W, Lakner M, Widenhorn L, et al. Test of 1.2MVA high-Tc superconducting fault current limiter. Superconductivity Sciences and Technology, 1997,10(12):914-918.
    [43]唐跃进,李敬示,叶妙元等,未来电力系统中的超导技术,电力系统自动化,2001,25(2):70-75.
    [44]林良真,张金龙,李传义等,超导电性及其应用,第一版,北京:北京工业大学出版社,1998
    [45] (美)M.廷哈姆.邵惠民,宁宇宏,张其瑞译,超导电性导论。北京:科学技术出版社,1995
    [46]章立源,超导体,第一版,北京:科学技术出版社,1997
    [47]刘兵,章立源,超导物理学发展史。第一版,陕西科学技术出版社出版发行,1988.
    [48] J.Bardeen. Zero point vibrations and superconductivity. Phys. Rev.1950, (79):167
    [49] J.Bardeen. Zero point vibrations and superconductivity. Phys. Rev.1950, (80):567
    [50] J.Bardeen, L.N.Cooper and J.R.Schrieffer. Microscopic theory of superconductivity. Phys. Rev. 1957, (106):162
    [51] T.c.Keeley. Experiments on superconductors .Nature, 1934, (134):773.
    [52] W.J.de Haas. Penetration of magnetic field into superconductive alloys. Nature, 1935, (135),30
    [53]郭柏灵,黄海洋,蒋慕容著。金兹宝—朗道方程。第一版。北京:科学出版社出版,2002
    [54]朱经武,探索高临界温度超导体的漫长道路。物理通讯。1980,(1):53-57
    [55]章立源等,超导物理学。北京,电子工业出版社,1995.
    [56] Paul W, Baumann T, Rhyner J. Tests of 100KW high-Tc superconducting fault current limiter. IEEE Transactions On Applied superconductivity, 1995,5(2):1059∽1062.
    [57] M.Majoros and L.Zannella .Transient Analysis of HTS Inductive Fault Current Limiter .IEEE Transactons on Applied Superconductivity, 1997,17(2):989∽992.
    [58] Fleishman L S ,Bashkirov Y A ,et al. Design Considerations for an Inductive high Tc Superconducting Fault Current Limiter. IEEE Transactions On Applied superconductivity ,1993,3(1):570∽573.
    [59] Michiharu Ichikawa and Masayuki Okazaki .A Magnetic Shielding Type Superconducting Fault Current Limiter using a Bi2212 Thick Film Cylinder. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1995,5(2):1067∽1070.
    [60] Minseok Joo, Student Member, IEEE, and Tae Kuk Ko, Member, IEEE. Novel Design and Operational Characteristics of Inductive High-Tc Superconducting Fault Current Limiter. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY ,1997,7(2): 1005∽1008.
    [61] Kazuhiro Kajikawa, Katsuki Kaiho, Noriharu Tamada. Design and current-limiting simulation of magnetic-shield type superconducting fault current limiter with high Tc superconductors. IEEE Transactions on Magnetics, 1996,32(4):2667-2670.
    [62] Inho Song, Changho Choi, Moohyun Cho, Quench protection system for the superconducting coil of the KSTAR Tokamak[J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2007,17(1):1-6.
    [63] Andrew V.Gavrilin,Victor E.Keilin,Ivan A.konalev,et al. Optimized HTS current leads[J]. Transactions on applied superconductivity, 1999,9(20):531-534.
    [64] Yang Suntao, John M Pfotenhauer. Optimization of the intercept temperature for hightemperature superconducting current lead[J]. Advances in Cryogenic Engineering,1996,41:567-572.
    [65] Takahashi M, Hakamada R, Yamamoto K et al. A 7.7T NbTi superconducting magnet system cooled by a 4K G—M refrigerator[J]. Advances in Cryogenic engineering,1994,39:343-350
    [66] J.Cave, D.Wllèn, R.Nadi, et al. Development of inductive current limiters up to 100KVA class using bulk HTS materials. IEEE Transactions on Applied Superconductivity, 1999, 9(2):1335-1338.
    [67] Kuriyama T,Ohtani Y, Takahashi M et al. A 4K G—M refrigerator for direct cooling of a 6T NbTi superconducting magnet system[J]. Cryocoolers,1995,785-793.
    [68] T.Satoh, M.Yamaguchi, S.Fukui, K.Morikoshi, K.Kaiho, T.Matsumura, H.Shimizu and N.Murayama . Three-phase Fault Current Limiter with One dc S/N Transition Element[J].IEEE Transactons on Applied Superconductivity, 2001,11(1):2398-2401
    [69] P.TTXADOR,Y.BRUNET,J.LEVEQUE V.D. PHAM Hybrid Superconducting a.c fault current limiter Principle and previous studies[J]IEEE TRANSACTIONS ON MAGNETICW.VOL.28,NO.1 JANUARY 1992:446-449.
    [70] M.Steurer, H.Brechna and K.Frohlich . A Nitrogen Gas Cooled, Hybrid, High Temperature Superconducting Fault Current Limiter[J] . IEEE Transactions on Applied Superconductivity,2000,10(1),840-844.
    [71] Usui K,Nomura T,Satoh T,et al.A single dc reactor type fault current limiting interrupter for three-phase power system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1):2126-2129.
    [72]朱青,朱英浩,周有庆,周腊吾.改进的双桥混合式桥路型高温超导故障限流器[J].电工技术学报,2007,22(2):39-44.
    [73] Paul W,Baumann T,Rhyner J.Tests of 100kW high-Tc superconducting fault current Limiter[J].IEEE Transactions on Applied superconductivity,1995,5(2):1059-1062.
    [74]王金星编.超导磁体.第一版,北京:原子能出版社出版,1985
    [75]张志鹏,朱玉群编著.超导磁体.第一版,武汉:华中理工大学出版社出版,1989
    [76] Vladimir Sokolovsky, Victor Meerovich, Shaul Goren et al, Study of the quench conditions in superconducting current limiters. IEEE Transactions on AppliedSuperconductivity, 2001, 11(1):2110-2113
    [77]宋乃浩,林良真用于高温超导体电流引线的绝缘和导热结构.低温与超导,1998,26(1):26-31
    [78] I.V.Bogdanov, S.Skozub,K.P.Myznikov,P.I.Slabodchikov,et al. Design and test of a high temperature. Superconductor current lead[J]. Transactions on Applied superconductivity,2000,10(1):1485-1488
    [79] Hull J R, Unal A, Chyu M C. Analysis of self-cooled binary current leads containing high temperature superconductors[J]. Cryogenics,1992,32(9):822-828
    [80] Bogdanov I V,Skozub S,Myznikov K P,et al.Design and test of a high temperature. Superconductor current lead[J]. Transactions on Applied Superconductivity,2000,10(1):1485-1488
    [81] (苏)B.A.阿里托夫等著,焦正宽,张其瑞译.超导磁体系统的稳定化.北京:国防工业出版社,1982
    [82]刘正海.超导交流损耗和稳定性.北京:国防工业出版社,1992
    [83] Wilson M N.Superconducting magnets.Oxford, Clarendon Press,1983
    [84] Ten Kate H H J . Practical superconductors . In Turner S . Proceedings Of Superconductivity in Practical Accelerators.Geneva,CERN,1989
    [85] H布雷克纳.超导磁体系统.北京:科学出版社,1986
    [86]张其瑞.高温超导电性.杭州:浙江大学出版社,1992
    [87]何砚发等.Critical currents in superconductors for practical applications.Proceeding Of the international workshop, xian,1997
    [88]胡立发,张平祥,王金星等.高温超导体中的交流损耗.低温与超导,2000,28(4):24-31
    [89] (美)J.P.霍尔曼著,曹黎明,丘海平,侯增祺译.热力学,第一版,北京:科学出版社,1986
    [90] (美)J.R.威尔特,C.E.威克斯,R.E.威尔逊合著,李为正,叶路译。动量、热量、质量传递原理.第一版,北京:国防工业出版社,1984
    [91]章立源.超越自由神奇的超导体[M].第1版,北京:北京科学出版社,2005.
    [92]王晨,董利民,张宝清等.氮化铝的微观结构和性能研究.96年全国材料会议文摘要集,1996
    [93]肖立业.超导电力技术的现状和发展趋势[J].电网技术, 2004,28(9):33-37.
    [94]焦正宽,朱震刚,宁宇宏和张其瑞编译.超导电技术及其应用.北京:国防工业出版社,1975
    [95]张国强,王赞基,胡启凡等.低温绝缘材料的性能和超导磁体绝缘制造技术综述.电工技术杂志,2002,(9):1-3
    [96] F.Caior著,戴念祖译,物理学史。内蒙古:内蒙古人民出版社,1981.
    [97] Mess K H, Schmüser P. Superconducting accelerator magnets, Proceedings of the superconductivity in particle accelerators. Hamburg, CERN89—04,87-144,1988.
    [98] Liu Changze, Guan qiamin, Wang Defeng, et al. Development and tests on a 400~800KVA superconducting generator. Cryogenics, 1990,30(Supplement):724-728.
    [99] Josi C H, Prum C B, Schiferl R F, et al. Demonstration of two synchronous motors using high temperature superconducting field coils. IEEE Transactions on Appied Superconductivity, 1995,5(2):968-970.
    [100] W.D.Jackson. MHD electrical power generation: prospects and issues. The AIAA 9th Fluid and Plasma Dynamics Conference, San Diego, CA, 1976.
    [101] Boom R W, Peterson H A. Superconductive energy storage for power system. IEEE Transactions on Magnetics ,1972,8(3):701-703.
    [102] Buckles W.E, Hassenzahl W V. Superconducting magnetic energy storage .IEEE Power Engineering Review, 2000,20(5):16-20.
    [103]舒泉声主编.超导电工学.北京:机械工业出版社,1989.
    [104]郭航,冯之鑫,韩朔.超导核磁共振成像磁屏蔽技术的进展.电工电能新技术,1994,(1):272-277.
    [105]林玉宝,林良真.超导故障器及其研究现状.电工电能新技术,1996,(3):14-19.
    [106] A.Fevrier, J.P.Tavergnier, Y.Laumond, et.Preliminary tests on a superconducting power transformer .IEEE Transactions on Magnetics, 1988,24(2):1477-1480
    [107] M.Iwakuma, K.Funaki, M,Takeo, et al. quench protection of superconducting transformers. IEEE Transactions on Magnetics, 1991,27(2):2080-2083,
    [108] P Kmmeth, T Schlosser, P Massek, et al. Development and test of a 100KVA superconducting transformer operated at 77K. Supercond. Sci. Technol.2000, (13):503-505