Halbach阵列永磁球形电动机三维磁场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人等高新技术的发展,能够实现三自由度运动的永磁球形电动机成为了研究热点。但是,该类电机特有的球形结构,无法照搬传统电机的研究方法与经验,其研究具有开拓性和前沿性。目前,永磁球形电动机还处于理论探索阶段,主要研究内容局限为电磁模型、运动学模型及动力学模型的理论推导与计算。从当前的研究结果来看,电机的力能指标不高,矩角特性需要改进。
     本论文提出了一种Halbach阵列永磁球形电动机,给出了其基本结构和工作原理。应用球谐函数理论,对Halbach阵列永磁球形电动机磁场的基波和谐波分量进行了分析,得到了磁场解析模型。研究了Halbach阵列永磁球形电动机转子磁体厚度、磁体纬度角及磁化方式对气隙磁场的影响。并与平行充磁磁体结构产生的磁场进行了比较分析,研究结果表明Halbach阵列永磁球形电动机可以明显改善球形电动机的性能。
     作为对解析法的一个验证及补充,本论文基于有限元法对永磁球形电动机不同转子磁体结构产生的磁场进行了分析,有限元法得到的结果与解析法得到的结果是一致的。分析了不同磁体结构转子磁体厚度、转子芯磁导率及定子芯磁导率对气隙磁场的影响,并对不同转子磁体结构产生的磁场谐波含量进行了比较。采用解析法得到了Halbach阵列永磁球形电动机的反电动势模型和转矩模型。对不同转子磁体结构永磁球形电动机产生的转矩进行了比较分析,并将有限元法与解析法得到的转矩结果进行了对比。最后就球面Halbach阵列磁极的实现方法进行了讨论。
     根据球面转子磁极的空间分布特点,提出了几种球面多层Halbach阵列转子磁体结构。对球面多层Halbach阵列转子磁体结构的充磁方案及其磁化规律进行了详细的讨论。采用有限元法对各种球面多层Halbach阵列转子磁体结构产生的磁场分布进行了比较,并讨论了磁体结构参数对磁场分布的影响。
     基于磁场解析模型,研究了Halbach阵列永磁球形电动机转子的位置检测问题。采用三维磁感应强度传感器测量气隙磁场的三个分量,根据电机的磁场模型和旋转变换关系,建立了磁场三维测量值与电机转子旋转角度的关系,进而辨识出电机转子的位置信息。
Widespread application of the robot and manipulator has necessitated the development of the motors which are capable of making multi-DOF motion. The PM spherical motor becomes a new research direction of the PM motor. It is not suitable to copy indiscriminately the research method and experience of the traditional PM motor for the PM spherical motor. The research on the PM spherical motor, a pioneering study and advanced subject, is in theory exploration stage at present. The main research contents are limited on magnetic model, kinematics and dynamics analysis. The current research results indicate that lower energy index and poor torque-angle characteristic are disadvantages of the PM spherical motor.
     Halbach array can be applied into the PM spherical motor in order to improve the motor performance. A design concept of a Halbach array PM spherical motor is proposed. The fundamental principle of the Halbach array PM spherical motor is demonstrated. By using the Laplace equation and correct boundary conditions, the magnetic field is formulated. Harmonic components of magnetic field alongφandθdirection are studied. A study is made on the variations of air gap magnetic field with parallel magnetization directions along different spatial positions in each magnet segment. Magnetization angles and arrangement mode of magnetic poles are also studied, which lay a foundation for optimum design of the Halbach array PM spherical motor. A comparison is made between the Halbach array PM spherical motor and the conventional parallel magnet array spherical motor in terms of spherical harmonic components and amplitude of air gap flux density, which shows that, compared with the latter, the Halbach array PM spherical motor is more effective in improving air gap magnetic field distribution.
     In order to validate the analytical method, magnetic field analysis with FEM is offered. The effects of magnet thickness, the permeability of rotor core and stator core on air gap magnetic field are also studied. A comparison is made among different magnet structures in terms of spherical harmonic components. The results produced by analytical method and finite element method are basically in agreement.
     Three-dimensional (3-D) torque model and back-EMF model of the Halbach array PM spherical motor are given in order to study the motor characteristics furthermore. The torque models produced by different magnet structures are compared and the results are validated by FEM. In the end, two manufacturing methods of Halbach array magnets are also discussed.
     According to the structural characteristics of the spherical magnetic poles, some kinds of Halbach array spherical magnets with multi-layer poles which can be applied to the PM spherical motor are proposed. The magnetization mechanisms of the Halbach array spherical magnets with multi-layer poles are studied. The magnetic fields produced by different Halbach array spherical magnets with multi-layer poles are analyzed using FEM. The effects of magnetization directions of some magnets and the magnet thickness on the magnetic field are also discussed, which can lay a theoretical foundation for the optimization design of magnets.
     Based on the magnetic field model and 3-D magnetic field measurement, a position identification method is presented. The analysis results of the positioning process show that the rotor position can be determined by the rotation angles of the motor, which revolve around three reference axis of the stator. Furthermore, the coordinates of the point, where the magnetic field are measured, are obtained from the rotation angles. According to the magnetic field model and the rotation transformation theory, the nonlinear relationship between the measured value of magnetic flux density and the rotation angles is obtained. So by solving the nonlinear equation, the rotation angles are obtained and the rotor position is identified. The validity is verified through the simulation.
引文
[1]邵忍平.机械系统动力学[M].北京:机械工业出版社, 2005.
    [2]李争,王群京.永磁多维球形电动机的研究与发展现状[J].微特电机, 2006, 34(10): 7-11.
    [3]邹继明,崔淑红,程树康.多自由度电动机的发展[J].高技术通讯, 2000, 10: 103-105.
    [4]黄声华.三维电动机及其控制技术[M].武汉:华中理工大学出版社, 1998.
    [5] Vachtsevanos GJ, Davey K, Lee K-M. Development of a novel intelligent robotic manipulator[J]. Control Systems Magazine, 1987, (6): 9-15.
    [6] Lee KM, Vachtsevanos GJ, Kwan CK. Development of a spherical wrist stepper motor[C]. IEEE International Conference on Robotics and Automation, 1988, 4: 267-272.
    [7] Lee KM, Kwan CK. Design concept development of a spherical stepper for robotic applications[J]. IEEE Transactions on Robots and Automation, 1991, 7(1): 175-180.
    [8] Lee KM, Pei J. Kinematic Analysis of a Three Degrees of Freedom Spherical Wrist Actuator[C]. The Fifth International Conference on Advanced Robotics, 1991: 72-77.
    [9] Dan E. Ezenekwe, Kok-Meng Lee. Design of air Bearing System for Fine Motion Application of Multi-DOF Spherical Actuators[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999, 812-818.
    [10] Kok-Meng Lee, Dan E. Ezenekwe, Tian He. Design and control of a spherical air-bearing system for multi-d.o.f. ball-joint-like actuators[J]. Mechatronics.13, 2003, 175-194.
    [11] Sosseh RA, Lee K-M. Finite Element Torque Modeling for the Design of a Spherical Motor[C]. The Seventh International Conference on Control, Automation, Robotics and Vision, 2002, 12: 390-395.
    [12] J. Wang, G. W. Jewell, D. Howe. Modeling of a Novel Spherical Permanent Magnet Actuator[C]. IEEE International Conference on Robotics and Automation, 1997, 1190-1195.
    [13] Wang J, Jewell G. W, Howe D. Analysis, design and control of a novel spherical permanent-magnet actuator[J]. IEE Proceedings of Electric Power Applications, 1998, 145 (1): 61-71.
    [14] Jiabin Wang, Weiya Wang, Geraint W. A novel spherical permanent actuator with three degrees-of-freedom[J]. IEEE Transactions on magnetics, 1998, 34(4): 2078-2080.
    [15] J. Wang, K. Mitchell, G. W. Jewell and D. Howe. Multi-Degree-of-Freedom Spherical Permanent Magnet Motors[J]. IEEE International Conference on Robotics and Automation, 2001, 5: 1798-1805.
    [16] Klemens Kahlen. Torque control of a spherical machine with variable pole pitch[J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1628-1634.
    [17] Klemens Kahlen. Control of multi-dimensional drives with variable pole pitch[C]. IEEE Conference on Industry Applications, 2002, 2366-2370.
    [18] Gregory S Chirikjian, David Stein. Kinematic design and commutation of a spherical stepper motor[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(4): 342-353.
    [19] David Stein, Gregory S Chirikjian. Mathematical models of binary spherical-motion encoders[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(2): 234-244.
    [20] David Stein, Gregory S Chirikjian. Experiments in the Commutation and Motor Planning of a Spherical Stepper Motor[C]. ASME International Conference on Design Engineering Technical Conferences and Computers Information in Engineering Conference, 2000, 9: 1-7.
    [21] Liang Yan, Chee Kian Lim, I-Ming Chen, Guilin Yang, and Wei Lin. A hybrid approach for magnetic field analysis[C]. IEEE International Conference on Robotics, Automation and Mechatronics, 2004, 530-535.
    [22] Chee Kian Lim, Liang Yan, I-Ming Chen, Guilin Yang, and Wei Lin. Mechanical Design & Numerical Electromagnetic Analysis of a DC Spherical Actuator[C]. IEEE International Conference on Robotics, Automation and Mechatronics, 2004, 536-541.
    [23] Liang Yan, I-Ming Chen, Chee Kian Lim, Guilin Yang, Wei Lin, and K-M. Lee. Torque Modeling of a Spherical Actuator Based on Lorentz Force Law[C]. IEEE International Conference on Robotics and Automation, 2005, 3646-3651.
    [24] Liang Yan, I-Ming Chen, Chee Kian Lim, Guilin Yang, Wei Lin, and K-M. Lee. Experimental Investigation on the Magnetic Field of a Permanent Magnet Spherical Actuator[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005, 347-352.
    [25] Liang Yan, I-Ming Chen, Chee Kian Lim, Guilin Yang, Wei Lin, and K-M. Lee. Design and analysis of a permanent magnet spherical actuator. IEEE/RSI International Conference on Intelligent Robots and System, 2005, 2607-2612.
    [26] Liang Yan, I-Ming Chen, Guilin Yang, and K-M. Lee. Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator. IEEE/ASME Transactions on Mechatronics, 2006, 11 (4): 409-419.
    [27] Liang Yan, I-Ming Chen, Chee Kian Lim, Guilin Yang, Wei Lin, and K-M. Lee.. Torque modeling of spherical actuators with double-layer poles. IEEE/RSI International Conference on Intelligent Robots and System, 2006, 5447-5452.
    [28] Foggia A, Rulliere E. Position control of an induction type actuator moving along three axis[C]. International Conference on Electrical Machines, Pisa, Italy, 1988, 495-498.
    [29] A. Foggia, E. Olivier, F. Chappuis, J. C. Sabonnadiere. A new three degrees of freedom electro-magnetic actuator[C]. IEEE International Conference on Industry Applications, 1988, 137-141.
    [30]苏仲飞,刘昌旭,韦平顺等.机器人关节用三自由度球形直流伺服电机[J].高技术通讯. 1994, 8: 16-18.
    [31]黄声华,陶醒世.三维电动机的电磁模型[J].电工技术学报, 1994, 4: 17-20, 40.
    [32]黄声华,陶醒世.三维电动机力学模型及解耦控制[J].电工技术学报, 1996, 11(1): 12-16.
    [33]黄声华,陶醒世.三维电动机的矢量控制[J].电工技术学报, 1995, 4: 20-24.
    [34]黄声华,陶醒世.三自由度电动机自适应控制[J].电工技术学报, 1998, 2(1): 10-12.
    [35]万山明,黄声华.空间坐标系中的三维电动机[J].中国电机工程学报, 1998, 18(5): 305-309.
    [36]黄声华,万山明.三自由度电动机自适应控制[J].电工技术学报, 1998, 13(1): 1-4, 9.
    [37]黄声华,万山明.三维电动机的能量回馈控制[J].电力电子技术, 1998, 32(1): 37-39.
    [38]阮江军,黄声华.球形电动机磁场和电磁转矩计算[J].武汉水利电力大学学报, 1998, 31(6): 43-46, 63.
    [39]王群京,李争.新型永磁球形步进电动机结构参数及转矩特性的计算与分析[J].中国电机工程学报, 2006, 26(10): 158-165.
    [40] Qunjing Wang, Zheng Li et al. Calculation of Torque in a Permanent Magnet Spherical Stepper Motor Using Maxwell Stress tensor method. The 15th Conference on the Computation of Electromagnetic Fields, 2005, 108-109.
    [41] Qunjing Wang, Zheng Li et al. 3D Magnetic Fieldllllll Analysis and Torque Calculation of a PM Spherical Motor[C]. The Eighth International Conference on Electrical Machines and Systems, 2005, 2116-2120.
    [42]陈丽霞.稀土永磁球形步进电机的控制方式研究: [硕士学位论文].合肥:合肥工业大学, 2005.
    [43]王群京,陈丽霞.基于加权无向图的永磁球形步进电机运动控制[J].中国电机工程学报, 2005, 25(9): 130-134.
    [44]王群京,陈丽霞,李争等.基于光电传感器编码的永磁球形步进电机运动控制[J].中国电机工程学报, 2005, 25(13): 113-117.
    [45] Qunjing Wang, Zheng Li, Lixia Chen, et al. The Motion Control Algorithm and Orientation Detection Methodology of a Spherical Stepper Motor[C], IEEE International Conference on Information Acquisition. 2005. 65-71.
    [46]王群京,李争.一种永磁球形步进电动机的运动分析与仿真[J].系统仿真学报, 2005, 17(9): 2260-2264.
    [47] Qunjing Wang, Kun Xia. Switching Control Algorithm for the Permanent Magnet Spherical Stepper Motor[J].电工技术学报, 2008, 23(2):11-19.
    [48]王群京,雍爱霞,张胜虎.永磁球形步进电机转子位置检测的全局优化[J].中国电机工程学报, 2007, 27(33): 11-16.
    [49]诸静.球形电机及其运动轨迹控制[J].中国电机工程学报, 1993, 13 (5): 50-56.
    [50]诸静.机器人球关节电机及其控制器研究[J].中国电机工程学报, 1994, 14 (5): 27-32.
    [51]程树康,蔡鹤.新型电驱动控制系统及其相关技术[M].北京:机械工业出版社, 2005.
    [52]邹继明.多自由度电动机及其运动控制的基础研究: [博士学位论文].哈尔滨:哈尔滨工业大学, 2000.
    [53]邹继明,崔淑梅.非球形正交圆柱结构两自由度电动机[J].高技术通讯, 2000, 10(5): 63-64.
    [54]邹继明,崔淑梅.双气隙共磁钢两自由度电动机及其运动学分析[J].微电机, 2000, 32(2): 3-5, 37.
    [55]程树康,崔淑红,刘保廷等.正交圆柱结构双气隙共磁钢三自由度电动机初探[J].微特电机, 1999, 6: 26-28.
    [56]崔淑红,柴风,程树康.正交圆柱结构三维电动机磁系统分析[J].中国电机工程学报, 1997, 17 (5): 295-298.
    [57] Hongfeng Li, Changliang Xia, Peng Song. Magnetic Field Analysis of A Halbach Array PM Spherical Motor[C]. IEEE International Conference on Automation and Logistics, Shandong, 2007, 2019-2023.
    [58] Hongfeng Li, Changliang Xia, Tingna Shi. Spherical Harmonic Analysis of a Novel Halbach Array PM Spherical Motor[C]. IEEE International Conference on Robotics and Biomimetics, Hainan, 2007, 2085-2089.
    [59]夏长亮,李洪凤,宋鹏.基于Halbach阵列的永磁球形电动机磁场研究[J].电工技术学报, 2007, 22(7): 126-130.
    [60] Peng Song, Changliang Xia, Tingna Shi. Torque Characteristic Investigation of a Permanent Magnet Spherical Motor[C]. IEEE international Conference on Robotics and Biomimetics, Hainan, 2007, 2101-2105.
    [61] Chen Guo, Changliang Xia. A dynamic decoupling control algorithm for Halbach array permanent magnet spherical motor based on computed torque method[C]. IEEE International Conference on Robotics and Biomimetics, Hainan, 2007, 2090-2094.
    [62] Bin Li, Changliang Xia, Hongfeng Li. Study on the Position Identification of a Halbach Array Permanent Magnet Spherical Motor[C]. IEEE International Conference on Robotics and Biomimetics, Hainan, 2007, 2080-2084.
    [63] Changliang Xia, Chen Guo, Tingna Shi. A new algorithm for dynamic decoupling control of HPMSM using fuzzy controllers[C]. IEEE International Conference on Industrial Electronics and Application, Singapore, 2008, 1031-1035.
    [64] Changliang Xia, Hongfeng Li, Tingna Shi. 3-D Magnetic Field Analysis of a Novel Halbach Array PM Spherical Motor[J]. IEEE Transaction on Magnetics, accepted.
    [65] Hongfeng Li, Changliang Xia. Halbach Array Magnet and its Application to PM Spherical Motor[C]. International Conference on Electrical Machines and Systems, Hubei, 2008, accepted.
    [66] K.Halbach. Design of permanent Multipole Magnets with Oriented Rare Earth Cobalt Material[J]. Nuclear Instruments and Methods, 1981, 169, 1-10.
    [67] Moon G. Lee, Sung Q. Lee, Dae-Gab Gweon. Analysis of Halbach magnet array and its application to linear motor[J]. Mechatronics, 2004, 14115-128.
    [68] Seok-Myeong Jang, Sung-Ho Lee, and In-Ki Yoon. Design Criteria for Detent Force Reduction of Permanent-Magnet Linear Synchronous[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3261-3263.
    [69] Seok-Myeong Jang, Sang-Sub Jeong, and Sang-Do Cha. The Application of Linear Halbach Array to Eddy Current Rail Brake System[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2627-2629.
    [70]李春生,杜玉梅,夏平畴等.磁浮列车工程中的Halbach永久磁体结构的优化[J].工程设计学报, 2007, 14(4): 334-337.
    [71] DAVEY K. Optimization shows Halbach arrays to be Non-ideal for induction devices[J]. IEEE Transactions on Magnetics, 2000, 34(4): 1035-1038.
    [72] Han Q, Ham C, Phillips R. Four-and-eight-piece Halbach array analysis and geometry optimization for Maglev[J]. IEE Proceeding of Electrical Power Application, 2005, 152(3): 535-542.
    [73] C.Ham, W.Ko, and Q.Han. Analysis and optimization of a Maglev system based on the Halbach magnet arrays[J]. Journal of Applied Physics, 2006, 99: 08P510-1-08P510-3.
    [74] Seok-Myeong Jang, Jang-Young Choi1, Han-Wook Cho. Thrust Analysis and Measurements of Tubular Linear Actuator With Cylindrical Halbach Array[J]. IEEE Transactions on Magnetics, 2005, 41(5): 2028-2031.
    [75] David L.Trumper, Plaistow, Won-jong Kim. Magnetic arrays. United States Patent, patent number: 5631618, 1997.
    [76]傅萌,黄学良,周赣. Halbach永磁平面阵列制造方法的研究[J].微特电机, 2007, 8, 1-3, 9.
    [77] Seok-Myeong Jang, Sang-Sub Jeong, Dong-Wan Ryu. Design and Analysis of High Speed Slotless PM Machine with Halbach Array[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2827-2830.
    [78] Seok-Myeong Jang, Sung-Ho Lee, Han-Wook Cho. Analysis of Unbalanced Force for High-Speed Slotless Permanent Magnet Machine With Halbach Array[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3265-3267.
    [79] Seok-Myeong Jang, Han-Wook Cho, Sung-Ho Lee. The Influence of Magnetization Pattern on the Rotor Losses of Permanent Magnet High-Speed Machines[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2062-2064.
    [80] Z. P. Xia, Z. Q. Zhu, and D. Howe. Analytical Magnetic Field Analysis of Halbach Magnetized Permanent-Magnet Machines[J]. IEEE Transactions on Magnetics, 2004, 40(4): 1864-1872.
    [81] Z. P. Xia, Z. Q. Zhu, G. W. Jewell. Comparison of Halbach magnetized brushless motors equipped with air-cored and iron-cored rotors[J]. Journal of Applied Physics, 2003, 93(10): 8692-8694.
    [82] K. Atallah and D. Howe. The Application of Halbach Cylinders to Brushless AC Servo Motors[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2060-2062.
    [83] Z. Q. Zhu, Z. P. Xia, and D. Howe. Comparison of Halbach Magnetized Brushless Machines Based on Discrete Magnet Segments or a Single Ring Magnet[J]. IEEE Transactions on Magnetics, 2002, 2997-2999.
    [84] Z. Q. Zhu, Z. P. Xia, Y. F. Shi. Performance of Halbach Magnetized Brushless AC Motors[J]. IEEE Transactions on Magnetics, 2003, 39(5): 2992-2994.
    [85] Housheng Wang, Ying Ye, Qiuliang Wang. Analysis for Ring Arranged Axial Field Halbach Permanent Magnets[J]. IEEE Transactions on applied superconductivity, 2006, 16(2): 1562-1565.
    [86] Seok-Myeong Jang, Jung-Chul Seo, Jang-Young Choi. Experiment and Characteristic Analysis of Disk Type PMLSM With Halbach Array[J]. IEEE Transactions on Magnetics, 2005, 41(10): 3817-3819.
    [87]王晓远,闫杰,刘艳等.基于HALBACH阵列的永磁同步盘式无铁心电机磁钢设计[J].设计与研究
    [88]王晓远,唐任远,杜静娟等.基于Halbach阵列盘式无铁永磁同步电机优化设计-楔形气隙结构电机[J].电工技术学报, 2007, 22(3): 2-5.
    [89]王晓远,丁亚明,刘艳等.无铁心H ALBACH阵列对盘式永磁同步电机控制性能的影响[J].微电机, 2005, 38(3): 10-12.
    [90]王晓远,赵方,杜静娟等.基于Halbach阵列的多盘式无铁心永磁同步电机设计研究[J].微电机, 2007, 40(2), 26-28.
    [91]胡嗣柱,倪光炯.数学物理方法[M].北京:高等教育出版社, 2004.
    [92]彭芳麟.数学物理方程的MATLAB解法与可视化[M].北京:清华大学出版社, 2004.
    [93]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社, 2006.
    [94]张好明. Halbach永磁电动机的计算机辅助设计: [硕士学位论文].南京:南京航空航天大学, 2004.
    [95]姚春远. Halbach电机的基本原理及其有限元辅助设计[J].微计算机信息, 2004, 20 (6): 33-34.
    [96]冯慈璋.电磁场[M].北京:高等教育出版社, 1998.
    [97]刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社, 2005.
    [98] H. A. Leupold, A. Tilak, E. Potenziani II. Permanent magnet spheres: Design, construction, and application[J]. Journal of Applied Physics, 2000, 87(9): 4730-4734.
    [99] H. A. Leupold, G. F. Mclane. Fabrication of multipolar magnetic field sources[J]. Journal of Applied Physics, 1994, 76(10): 6253-6255.
    [100] Zheng Li, Qunjing Wang, Xiaohua Bao et al. Motion control algorithm and kinematic analysis of a spherical stepper motor[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, 2: 1659-1664.
    [101] Kok-Meng Lee, Debao Zhou. A Real-Time Optical Sensor for Simultaneous Measurement of Three-DOF motions[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 499-507.
    [102] W.Wang, J.Wang, G.W.Jewell, et al. Design and control of a novel spherical permanent magnet actuator with three degrees of freedom[J]. IEEE Transactions on Mechatronics, 2003, 8(4): 457-467.
    [103]陈棣湘,潘孟春,罗飞路.三维磁场精密测量系统的研制[J].测试技术学报, 2005, 19(3): 279-282.
    [104] Piero Malcovati, Franco Maloberti. An Integrated Microsystem for 3-D Magnetic Field Measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49( 2): 341-345.
    [105]谢政,李建平,汤泽滢.非线性最优化[M].长沙:国防科技大学出版社, 2003.