小麦//蚕豆的根系分泌物特征及其对蚕豆枯萎病菌的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦蚕豆间作是一项传统的种植模式,广泛分布于我国西南地区。生产实践和田间试验均表明,小麦蚕豆间作具有显著的增产、控病优势。现有研究已从地上部的养分、水分吸收利用、碳氮代谢特点、地下部的土壤养分动态特征和根际微生物多样性等方面进行了较多研究,一定程度地揭示了小麦蚕豆间作优势形成的机制。但是,有关间作体系中的根-土-微生物互作的关键物质—根系分泌物,却鲜有报道。在小麦蚕豆间作系统中,根际土壤养分活化、根际微生物和土传病害的发生均与间作措施密切相关,但其具体作用机制并不清楚。因此,本研究通过盆栽(土培)试验和水培试验,收集根系分泌物,采用化学分析结合高效液相色谱,分析测定了小麦蚕豆间作条件下不同生育期作物的养分吸收和根系分泌物中有机酸、酚酸、氨基酸和糖;同时,通过接种试验,比较了单间作蚕豆根系有机酸分泌对蚕豆枯萎病病原菌响应的差异。主要研究结果如下:
     (1)小麦蚕豆间作具有显著的生物量优势,土培和水培条件下,间作生物量土地当量比(LER)分别为1.12和1.04。与单作相比,间作提高了蚕豆根冠比、提高了小麦和蚕豆的根系活力及生殖生长阶段蚕豆的生物量。在小麦蚕豆成熟期前后,间作有提高小麦蚕豆氮磷养分吸收累积的趋势。间作显著促进了氮素养分向蚕豆籽粒及茎叶中转移、促进了磷素养分向蚕豆籽粒中转移。
     (2)小麦蚕豆间作提高了根系有机酸的分泌量。土培结果表明,在小麦分蘖期、孕穗期、灌浆期,间作分别提高了小麦根系有机酸分泌量155%、35.6%和92.6%;在蚕豆分枝期、籽粒膨大期,间作提高蚕豆根系有机酸分泌量87.4%和38.7%。水培结果表明,在蚕豆开花期,间作根系有机酸分泌量是单作蚕豆的1.5倍。
     (3)小麦蚕豆间作改变了根系分泌物中有机酸的种类。土培结果表明,在小麦分蘖期及拔节期,间作小麦根系分泌物中增加了柠檬酸和乳酸,减少了乙酸;在蚕豆分枝期,间作蚕豆根系分泌物中增加了乙酸,减少了乳酸;在籽粒膨大期,间作蚕豆根系分泌物中增加了乳酸,减少了富马酸。水培结果表明,在小麦孕穗期,间作根系分泌物中增加了富马酸;在蚕豆分枝期,间作根系分泌物中减少了草酸;在蚕豆开花期,间作根系分泌物中增加了草酸、酒石酸、柠檬酸和富马酸;在蚕豆结荚期,间作根系分泌物中增加了酒石酸。
     (4)小麦蚕豆间作提高了小麦根系分泌物中不同种类有机酸的分泌速率。土培结果表明,在小麦孕穗期,间作小麦柠檬酸和富马酸的分泌速率是单作的179倍和184倍;在小麦灌浆期,间作小麦乳酸的分泌速率是单作的2.53倍。水培结果表明,在拔节期,间作小麦柠檬酸和富马酸的分泌速率是单作的4.6倍和3.2倍。
     (5)小麦蚕豆间作降低了根系分泌物中酚酸的总量和分泌速率、减少了酚酸的种类。与单作小麦相比,在小麦分蘖期、拔节期、孕穗期,间作根系酚酸分泌量分别下降64.6%、70.01%和39.0%;间作降低了对羟基苯甲酸、香草酸和丁香酸的分泌速率。与单作蚕豆相比,在蚕豆分枝期、开花期,间作根系酚酸分泌量分别下降37.6%和57.8%。在分枝期和开花期,间作抑制了香草酸和对羟基苯甲酸的分泌。同时小麦蚕豆间作减少了小麦根际土中酚酸的累积,改变了蚕豆根际土中酚酸的种类。
     (6)小麦蚕豆间作提高了氨基酸的分泌量。全生育期,间作提高蚕豆根系氨基酸分泌量19.6%~75.9%。间作蚕豆根际土中氨基酸含量是单作的1.9~7.6倍,同时间作显著提高了拔节期、孕穗期小麦根际土中氨基酸的含量。
     (7)小麦蚕豆间作提高了根系糖的分泌量。土培结果表明,在拔节期、孕穗期、灌浆期,间作提高小麦根系总糖分泌量126.9%,34.9%和59.8%,其中间作小麦蔗糖分泌量是单作的2.37倍,1.41倍和2.0倍。水培结果表明,在蚕豆分枝期、开花期、结荚期,间作根系总糖分泌量是单作蚕豆的3.16倍,2.78倍和3.92倍;其中间作根系还原糖、蔗糖的分泌量分别是单作蚕豆的2.58倍、3.68倍、3.31倍和3.42倍、2.45倍、4.57倍。
     (8)尖孢镰刀菌侵染蚕豆后,小麦蚕豆间作降低了蚕豆枯萎病发病率及病情指数,降低了蚕豆根系及根际土中有机酸的总量。间作通过显著降低根际土中柠檬酸和苹果酸的含量来降低枯萎病的发病率及病情指数。
Wheat and faba bean intercropping is a traditional agricultural practice which is widelyadopted by farmers in southwest China. Results from agriculture production and numerous fieldtrials showed that wheat and faba bean intercropping could significantly improve crop yields anddecrease diseases incidence. Characteristics of nutrients uptake, water absorption, carbon andnitrogen metabolisms, dynamic changes of rhizosphere available nutrients and rhizospheremicrobe flora and yield advantages in wheat and fababean intercropping have been stated in manypublications. However, little about the characteristics of root exudates in this intercropping areknown. Root exudates play an important role in rhizhosphere micro-ecological environment andagro ecosystem. In wheat and faba bean intercropping, there are close correlations betweenintercropping and soil nutrients mobilization, growth of rhizosphere microorganisms and soil borndiseases. But the reasons are still unclear. In this studies pot trials and hydroponic cultures ofwheat and faba bean intercropping were carried out, exudates from the roots were collected andexamined by HPLC and chemical analysis to investigate the types and amounts of organic acids,phenolic acids, ammonia acids and sugar during crop different growth stages. Meanwhile,responses of organic acids in root and rhizosphere to fusarium oxysporum infection inintercropping were analyzed. The main results are as follows:
     (1)Wheat and faba bean intercropping(W//F)were of significantly yield (biomass)advantages. The land equivalent ratio (LER) was1.12and1.04in pot and hydropoinc culturerespectively. W//F increased root/shoot ratio of faba bean in comparison with that of monocropedfaba bean(MF), and both root activity of wheat and faba bean increased in intercropping.Meanwhile, there was increase trend of N and P uptake and accumulation in intercropping duringharvest stage in comparison with that of monocropping. Intercropping also increased N and Ptranslocation from roots to seeds of faba bean.
     (2) W//F increased total amount of organic acids (OA) in root exudates (RE) in comparisonwith that of monocropping. In pot culture, the total amount of OA in RE of intercroppingwheat(IW) was increased by155%、35.6%and92.6%at tilering, booting and filling stagerespectively in comparison with mono cropping wheat (MW). And total amount of OA in RE ofintercropping faba bean (IF) was increased by87.4%and38.7%at branching and filling stagerespectively in comparison with mono cropping faba bean (MF). In hydroponic culture, the totalamount of organic acids in RE of W//F was1.5times higher than that of MF at flowering stage.
     (3) W//F changed types of OA in RE in comparison with that of monocropping. In pot culture,lactic and citric acid was detected in RE of IW at tilering and jointing stage of wheat, but that wasnot detected in that of MW. At branching stage of faba bean, acetic acid was detected in RE of IF,wherea lactic acid was detected in RE of MF.At filling stage of faba bean, lactic, acetic and citic acid was detected in RE of IF, whereas acetic, citic and fumaric acidbut was detected in that ofMF.In hydroponic culture, fumaric acid was detected in RE of W//F at booting stages, but that wasnot detected in that of MW. And oxalic, tartaric, citric and fumaric acid was detected in RE ofW//F, but not detected in MF at flowering stage.
     (4)W//F increased root exudation rate of organic acids in comparison with that of monocropping. In pot culture, exudation rate of citric and fumaric acid of IW was179times and184times higher than that of MW at booting stage respectively. And exudation rate of lactic acid ofIW was2.53times higher than that of MW at filling stage. In hydroponic culture, exudation rateof citric and fumaric acid of IW was4.6times and3.2times higher than that of MW at jointingstage respectively.
     (5)In comparison with monocropping, W//F decreased total amount and types of phenolicacids (PA) in RE, and declined exudation rate of PA. W//F decreased total amount of phenolicacids(PA) in RE by64.6%、70.01%and39.0%at tilering, jointing and booting stage respectivelyin comparison with that of MW. And W//F decreased total amount of PA in RE by37.5%and57.79%at branching and flowering stage respectively in comparison with that of MF. Exudationrate ofρ-hydrobenzoic,vanillic and syringic acid was decreased in intercropping during thewhole growth stages in comparison with that of MW. Vanillic and ρ-hydrobenzoic acid wasdetected in RE of MF at branching and flowering stage of faba bean, but that was not detected inthat of W//F.PA content of IW rihzosphere decreased in comparison with that of MW, andintercropping changed types of PA in rhizsophere in comoparison with that of MF.
     (6)Intercropping improved total amount of amino acids (AA) in RE in comparison with thatof monocropping.Total amount of AA in RE of IF was increased by19.6%~75.9%during thewhole growth stages in comparison with that of MF, and total amount of AA in rhizosphere of IFwas1.9times~7.6times higher than that of MF. Meanwhile, W//F significantly increased totalamount of AA in rihzosphere of IW at jointing and booting stages, compared to MW.
     (7) In comparison with monocropping, W//F increased total amount of sugar in RE. In potculture, total amount of sugar in RE of IW was increased by126.9%,34.9%and59.8%atjointing, booting and filling stage respectively compared to MW. At the same time, sucrosecontent in RE of IW was2.37times,1.41times and2.0times higher than that of MW respectively.In hydropoinc culture, total amount of sugar in RE of W//F was3.16times,2.78times and3.92times higher than that of MF at branching, flowering and booting stage respectively.Meanwhile, both reduce sugar and sucrose content in RE of W//F was higher than that of MF.
     (8) Fababean fusarium wilt incidence and severity index were decreased in intercropping incomparison with that of monocropping, and total amount of AA in faba bean root and rhizospherewere decreased too in intercropping after Fusarium oxysporum injection. In comparison with MF,intercropping significantly decreased content of citric and malic acid in rhizosphere and resulted in decreasing of fusarium wilt incidence and severity.
引文
[1] Marshner.曹一平等译.高等植物的矿质营养[M].北京:中国农业大学出版社,1996
    [2]布斯C.陈其焕译.镰刀属[M].北京:农业出版社,1988:31-37
    [3]鲍士旦.土壤农化分析(第二版)[M].中国农业出版社,2000
    [4]陈佰岩,郑毅,汤利.磷胁迫条件下小麦、蚕豆根系分泌物对红壤磷的活化[J].云南农业大学学报,2009,24(6):869-875
    [5]柴强,冯福学.玉米根系分泌物的分离鉴定及典型分泌物的化感效应[J].甘肃农业大学学报,2007,5:43-48
    [6]董艳,汤利,郑毅,等.施氮对间作蚕豆根际微生物区系和枯萎病发生的影响[J].生态学报,2010,30(7):1797-1805
    [7]董艳,汤利,郑毅,等.小麦蚕豆间作条件下氮肥施用量对根际微生物区系的影响[J].应用生态学报,2008,19(7):1559-1566
    [8]董艳,杨智仙,董坤,等.施氮水平对蚕豆枯萎病和根际微生物代谢功能多样性的影响[J].应用生态学报,2013,24(4):1101-1108
    [9]甘林,陈福如,杨秀娟,等.木霉菌及其代谢产物对香蕉枯萎病菌的离体抑制作用研究[J].福建农业学报,2010,25(4):462~467
    [10]高子勤,张淑香.连作障碍与根际微生态研究, Ⅰ:根系分泌物及其生态效应[J].应用生态学报,1998,9(5):549-554
    [11]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报,2006,26(5):528-535
    [12]龚松贵,王兴详,张桃林,等.低分子量有机酸对红壤无机磷活化的作用[J].土壤学报,2010,47(4):692-697
    [13]郝艳茹,劳秀荣,孙伟红,等.小麦/玉米间作作物根系与根际微环境的交互作用[J].农村生态环境,2003,19(4):18-22
    [14]郝文雅,冉炜,沈其荣,等.西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响[J].中国农业科学,2010,43(12):2443-2452
    [15]郝晓娟,刘波,谢关林.植物枯萎病生物防治研究进展[J].中国农学通报,2005,21(7):319-322
    [16]何春娥,赵秀芬,刘学军,等.燕麦/小麦间作对小麦生长和锰营养的影响[J].生态学报,2006,26(2):357-363
    [17]韩雪,潘凯,吴凤芝.不同抗性黄瓜品种根系分泌物对枯萎病病原菌的影响[J].中国蔬菜,2006(5):13-15
    [18]韩丽梅,鞠会艳,杨振明.两种基因型大豆根分泌物对大豆根腐病菌的化感作用[J].应用生态学报,2005,16(1):137-141
    [19]何欣,郝文雅,杨兴明,等.生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J].植物营养与肥料学报,2010,16(4):978-985
    [20]胡红青,廖丽霞,王兴林.低分子量有机酸对红壤无机磷转化及酸度的影响[J].应用生态学报,2002,13(7):867-870
    [21]胡元森,李翠香,杜国营,等.黄瓜根分泌物中化感物质的鉴定及其他感效应[J].生态环境,2007,16(3):954-957
    [22]胡小加,余常兵,李银冰,等.枯草芽孢杆菌Tu-100对油菜根系分泌物所害氨基酸的趋化性研究[J].土壤通报,2010,47(6):1243-1248
    [23]黄奔立,许云东,张顺琦,等.根系分泌物影响黄瓜枯萎病抗性的机理研究[J].扬州大学学报:农业与生命科学版,2009,28(3):77-81
    [24]黄高宝,张恩和.禾本科.豆科作物间套种植对根系活力影响的研究[J].草业学报,1998,2:18-22
    [25]金扬秀,谢关林.瓜类枯萎病防治研究进展[J].植物保护,2002,28(6):43-45
    [26]金扬秀,谢关林,孙详良,等.大蒜轮作与瓜类枯萎病发病的关系[J].上海交通大学学报(农业科学版),2003,21(1):9-12
    [27]姜卉,赵平,汤利,等.云南省不同试验区小麦蚕豆间作的产量优势分析与评价[J].云南农业大学学报,2012,27(5):646-653
    [28]孔垂华,徐效华,梁文举,等.水稻华感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报,2004,24(7):1317-1322
    [29]康萍芝,白小军,沈瑞清,等.不同作物根系分泌物对小麦全蚀病菌的影响[J].内蒙古农业科技,2006,4:37-38
    [30]李进一,井印,雷琛琛.食用茵废料(茵糠)木霉发酵物对黄瓜土传病害防治及促生作用的初步研究[J].食用菌,2010,4:67-68
    [31]李廷轩,马国瑞,张锡洲,等.籽粒苋富钾基因型根系分泌物中有机酸和氨基酸的变化特点[J].植物营养与肥料学报,2005,11(5):647-653
    [32]李隆,杨思存,孙建好,等.小麦/大豆间作中作物种间的竞争作用和促进作用[J].应用生态学报,1999,10(2):197-200
    [33]李隆,李晓林,张福锁.小麦-大豆间作中小麦对大豆磷吸收的促进作用[J].生态学报,2000,20(4):629-633
    [34]李春俭,马玮,张福锁.根际对话及其对植物生长的影响[J].植物营养与肥料学报,2008,14(1):178-183
    [35]李勇杰,陈远学,汤利,等.地下部分隔对间作小麦养分吸收和白粉病发生的影响[J].植物营养与肥料学报,2007,13(5):929-934
    [36]李淑敏,李隆,张福锁.玉米/鹰嘴豆间作对有机磷利用差异的研究[J].中国农业科技导报,2004,6:45-49
    [37]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006
    [38]梁建根,王建明.辣椒枯萎病病原菌的初步研究[J].山西农业大学学报,2002,22(1):29-30
    [39]吕佩柯.中国蔬菜病虫害原色图谱[M].北京:农业出版社,1992.5-6
    [40]刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品,2007,9(3):63-65
    [41]刘晓燕,何萍,金继运.氯化钾对玉米根系糖和酚酸分泌的影响及其与茎腐病菌生长的关系[J].植物营养与肥料学报,2008,14(5):929—934
    [42]刘素慧,刘世琦,张自坤,等.大蒜根系分泌物对同属作物的抑制作用[J].中国农业科学,2011,44(12):2625-2632
    [43]刘素萍,王汝贤,张荣,等.根系分泌物中糖和氨基酸对棉花枯萎病的影响[J].西北农业大学学报,1998,26(6):30-35
    [44]刘洪升,宋秋华,李凤民.根分泌物对根际矿物营养及根际微生物的效应[J].西北植物学报,2002,22(3):693-702
    [45]刘鹏,金婷婷,黄朝表,等.短期铝胁迫下大豆根系分泌物的初始分泌特征[J].浙江农业学报,2008,20(4):219-224
    [46]刘丽,赵奎华,刘长远,等.已糖和有机酸对葡萄炭疽病菌生长发育的影响[J].沈阳农业大学学报,2010(001):86-89
    [47]鲁莽.植物根系及其分泌物对微生物生长及活性的影响[J].化学与生物工程,2012,29(3):18-21
    [48]骆世明.农业生态学研究的主要应用方向进展[J]. Chinese Journal of Eco-Agriculture,2005,1(13):1-6
    [49]陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用[J].应用生态学报,1999,10(3):379-382
    [50]罗娅婷,汤利,郑毅,等.不同施氮水平下小麦蚕豆间作对作物产量和根际镰刀菌的影响[J].土壤通报,2012,42(4):826-831
    [51]罗永清,赵学勇,李美霞.植物根系分泌物生态效应及其影响因素研究综述[J].应用生态学报,2012,23(12):3496-3504
    [52]孟祥波,彭殿林.瓜类枯萎病防治研究进展[J].上海蔬菜,2009(6):10-12
    [53]莫良玉,吴良欢,陶勤南.高等植物对有机氮吸收与利用研究进展[J].生态学报,2002,22(1):118-124
    [54]苗锐,张福锁,李隆.玉米、小麦和大麦与蚕豆间作体系不同根系分隔方式对蚕豆结瘤的影响[J].植物学报,2009,44(2):197-201
    [55]乜兰春,冯振中,周镇.苯甲酸和对-羟基苯甲酸对西瓜种子发芽及幼苗生长的影响[J].中国农学通报,2007,23(1):237-239
    [56]马艳,李艳霞,常志州,等.有机液肥的生物学特性及对黄瓜和草莓土传病害的防治效果[J].中国土壤与肥料,2010,(005):71-76
    [57]潘凯,吴凤芝.枯萎病不同抗性黄瓜(Cucumis sativus L.)根系分泌物氨基酸组分与抗病的相关性[J].生态学报,2007,27(5):1945-1950
    [58]庞荣丽,介晓磊,方金豹,等.有机酸对不同磷源施入石灰性潮土后无机磷形态转化的影响[J].植物营养与肥料学报,2007,13(1):39-43
    [59]乔鹏,汤利,郑毅,等.不同抗性小麦品种与蚕豆间作条件下的养分吸收与白粉病发生特征[J].植物营养与肥料学报,2010,16(5):1086-1093
    [60]苏海鹏,汤利,刘自红,等.小麦蚕豆间作系统中小麦的氮同化物动态变化[J].麦类作物学报,2006,26(6):140-144
    [61]苏世鸣,任丽轩,杨兴明,等.西瓜专化型尖孢镰刀菌的分离鉴定及水稻根系分泌物对其生长的影响[J].南京农业大学学报,2008,31(1):57-62.
    [62]申建波,张福锁,毛达如.胁迫下大豆根分泌有机酸的动态变化[J].中国农业大学学报,1998,3(增刊):44-48
    [63]沈宏.根际难溶性磷的活化与特定根分泌物的分离鉴定[D].学位论文,南京:中国科学院南京土壤研究所,1999
    [64]沈宏,严小龙.根分泌物研究现状及其在农业与环境领域的应用[J].农村生态环境,2000,6(3):51-54
    [65]沈宏,严小龙.低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积[J].生态学报,2002,22(3):387-394
    [66]沈阿林,李学沅,吴爱荣.土壤中低分子量有机酸在物质循环中的作用[J].植物营养与肥料学报,1997,3(4):363-371
    [67]孙祥良,谢关林,金扬秀.轮作与甜瓜类枯萎病发病的关系[J].浙江大学学报(农业与生命科学版),2003,29(1):65-66
    [68]谭勇,梁宗锁,王渭玲,等.氮,磷,钾营养对膜荚黄芪幼苗根系活力和游离氨基酸含量的影响[J].西北植物学报,2006,26(3):478-483.
    [69]田中民.根系分泌物在植物磷营养中的作用[J].咸阳师范学院学报,2001,16(6):60-69
    [70]涂起红,石庆华,赵华春.营养胁迫下植物的生理生化反应研究进展[J].江西农业大学学报,2000,22(5):32-34
    [71]凃书新,孙锦荷,郭智芬,等.植物根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67
    [72]王雪,段玉玺,陈立杰,等.大豆根系分泌物中氨基酸组分与抗大豆孢囊线虫的相关性研究[J].沈阳农业大学学报,2008,39(6):677-681
    [73]王志颖,刘鹏,徐艳.抑制剂对铝胁迫下油菜根系代谢有机酸和相关酶活性的影响[J].环境科学学报,2013,33(5):1430-1440
    [74]王平,毕树平.植物根际微生态区域中铝的环境行为研究进展[J].生态毒理学报,2007,2(2):150-157
    [75]王宇蕴.不同抗性小麦品种与蚕豆间作对小麦根际速效养分含量的影响[D].学位论文,昆明:云南农业大学,2010
    [76]王戈.烤烟不同品种根系分泌物与黑胫病抗性关系研究[D].学位论文,昆明:云南农业大学,2012
    [77]王树起,韩晓增,严君,等.低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响[J].生态学杂志,2009,28(8):1550-1554
    [78]王嘉和,王崇德,陆宁.蚕豆枯萎病菌毒素液对蚕豆种子发芽及幼苗生长的影响[J].云南农业大学学报,2002,17(4):395-399
    [79]王清红,李培征.香蕉枯萎病生物防治研究进展[J].安徽农业科学,2010,38(20):10747—10748
    [80]王倩,李晓林.苯甲酸和肉桂酸对西瓜幼苗生长及枯萎病发生的作用[J].中国农业大学学报,2003,8(1):83-86.
    [81]王振中.香蕉枯萎病及其防治研究进展[J].植物检疫,2006,20(3):198-200.
    [82]吴凤芝,黄彩红,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性的影响[J].中国农业科学,2002,357(7):821-825
    [83]吴凤芝,周新刚.不同作物间作对黄瓜病害及土壤微生物群落多样性的影响[J].土壤学报,2009,46(5):899-904
    [84]吴蕾,马凤鸣,刘成,等.大豆与玉米、小麦、高粱根系分泌物的比较分析[J].大豆科学,2009,28(6):1021-1030
    [85]徐新娟,卫秀英. PEPCase在植物有机代谢中的研究进展[J].河南科技学院学报(自然科学版),2010,38(1):10-13
    [86]肖靖秀,周桂夙,汤利,等.小麦蚕豆间作条件下小麦的氮钾营养对小麦白粉病的影响[J].植物营养与肥料学报,2006,12(4):517-522
    [87]叶旭红,林先贵,王一明.尖孢镰刀菌致病相关因子及其分子生物学研究进展[J].应用与环境生物学报,2011,17(5):759-762
    [88]雍太文,陈小容,杨文钰,等.小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究[J].作物学报,2010,3,477-485
    [89]张淑香,高子勤.连作障碍与根际微生态Ⅱ.根系分泌物与酚酸物[J].应用生态学报,2000,11(1):152-156
    [90]张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展[J].生态环境,2003,12(1):76-80
    [91]张志红,赵兰凤,李华兴,等.生物有机肥对香蕉幼苗根系分泌物的影响[J].华南农业大学学报,2011,1,11-14
    [92]张显,王鸣.西瓜枯萎病抗性及其与体内一些生化物质含量的关系[J].西北农业学报,2001,10(4):34-36.
    [93]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105
    [94]朱海燕,刘忠德,王长荣,等.茶柿间作系统中的茶树根际微环境的研究[J].西南师范大学学报(自然科学版),2005,30(4):715-718
    [95]郑毅,汤利.间作作物的养分吸收利用与病害控制关系研究[A].云南科技出版社,云南昆明.2008
    [96]赵平,郑毅,汤利,等.小麦蚕豆间作施氮对小麦氮素吸收、累积的影响[J].中国生态农业学报,2010,18(4):16
    [97]赵平,鲁耀,董艳,等.小麦蚕豆间作下氮素营养水平对小麦硅营养的影响[J].西北农业学报,2010(002):78-84
    [98]赵文杰,张丽静,畅倩,等.低磷胁迫下豆科植物有机酸分泌研究进展[J].草业科学,2011,28(6):1207-1213
    [99]赵兰凤,胡伟,刘小锋,等.生物有机肥对香蕉枯萎病及根系分泌物的影响[J].生态环境学报,2013,22(3):423-427
    [100]周照留,赵平,汤利,等.小麦蚕豆间作对作物根系活力、蚕豆根瘤生长的影响[J].云南农业大学学报,2007,22(5):665-671
    [101]周宝利,尹玉玲,李云鹏,等.嫁接茄根系分泌物与抗黄萎病的关系及其组分分析[J].生态学报,2010,30(11):3073-3079
    [102]周洪友,杨合同,唐文化.沙打旺根腐病发生及病原菌鉴定[J].草地学报,2004,12(4):285-288
    [103]张淑香,高子勤,刘海玲.连作障碍与根际微生态研究Ⅲ土壤酚酸物质及其生物学效应[J].应用生态学报,200,11(5):741-744
    [104]张俊英,王敬国,许永利.不同大豆品种根系分泌物中有机酸和酚酸的比较研究[J].安徽农业科学,2007,35(23):7127—7129,713
    [105]张俊英,王敬国,许永利.大豆根系分泌物中氨基酸对根腐病菌生长的影响[J].植物营养与肥料学报,2008,14(2):308-315
    [106]张德闪,王宇蕴,汤利等.小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J].植物营养与肥料学报,2013,19(1):127-133
    [107]张志红,李华兴,韦翔华.生物肥料对香蕉枯萎病及土壤微生物的影响[J].生态环境,2008,17(6):2421-2425
    [108]章爱群,贺立源,赵会娥,等.有机酸对土壤无机态磷转化和速效磷的影响[J].生态学报,2009,29(8):4061-4069
    [109]左存武,孙清明,黄秉智,等.利用根系分泌物与绿色荧光蛋白标记的病原菌互作关系鉴定香蕉对枯萎病的抗性[J].园艺学报,2010,37(5):713-720
    [110]左文博,吴静利,杨奇,等.干旱胁迫对小麦根系活力和可溶性糖含量的影响[J].华北农学报,2010,25(6):81-89
    [111]Asaduzzaman M, Asao T. Autotoxicity in beans and their allelochemicals[J]. ScientiaHorticulturae,2012,134:26-31
    [112]Aulakh M S,Wassmann R, Bueno C,et al. Characterization of root exudates at differentgrowth stages of tenrice (Oryzasativa sativa L.)cultivars [J]. Plant Biology,2001,3:139-148
    [113] gren G I, Franklin O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annalsof Botany,2003,92(6):795-800
    [114]Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant, Cell&Environment,2009,32(6):666-681
    [115]Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactionswith plants and other organisms[J]. Annu. Rev. Plant Biol.,2006,57:233-266
    [116]Bais H P, Park S W, Weir T L, et al. How plants communicate using the undergroundinformation superhighway[J]. Trends in plant science,2004,9(1):26-32
    [117]Bertin C, Yang X H,WestonL A. The role of root exudates and allelochemicals in therhizosphere[J]. Plant Soil,2003,256:67-78
    [118] Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal communitycomposition and diversity[J]. Applied and Environmental Microbiology,2008,74(3):738-744
    [119]Brady N C, Weil R R. The nature and properties of soils[M]. Prentice-Hall Inc,1996
    [120]Brimecombe M J, Leij F A, Lynch J M. Nematode community structure as a sensitiveindicator of microbial perturbations induced by a genetically modified Pseudomonasfluorescens strain[J]. Biology and Fertility of Soils,2001,34(4):270-275
    [121]Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal communitycomposition and diversity. Applied and Environmental Microbiology,2008,74(3):738-744
    [122]Burhan N, Shaukat S S. Effects of atrazine and phenolic compounds on germination andseedling growth of some crop plants[J]. Pakistan Journal of Biological Sciences,2000,3(2):269-274
    [123]Bürgmann H, Meier S, Bunge M, et al. Effects of model root exudates on structure andactivity of a soil diazotroph community[J]. Environmental microbiology,2005,7(11):1711-1724
    [124]Cardon Z G, and Whitbeck J L (Eds.). The rhizosphere: an ecological perspective[M].Academic press,2011
    [125]Callaway R M. Direct mechanisms for facilitation: positive interactions and independence inplant communities [J]. Springer, Dordreche, The Netherlands,2007:15-59
    [126]Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids,and organic acids by maize as affected by nitrogen, phosphorus, potassium, and irondeficiency[J]. Journal of Plant Nutrition and Soil Science,2011,174(1):3-11
    [127]Cheng L, Bucciarelli B, Shen J, et al. Update on white lupin cluster root acclimation tophosphorus deficiency update on lupin cluster roots[J]. Plant physiology,2011,156(3):1025-1032
    [128]Cheng W, Zhang Q,Coleman D C, et al. Is available carbon limiting microbial respiration inthe rhizosphere?[J]. Soil Biol.Biochem,1996,2:1283-1288
    [129]Chen Y S, Zhang F S, Tang L, et al. Wheat powdery mildew and foliar N concentrations asinfluenced by N fertilization and belowground interactions with intercropped faba bean[J].Plant and Soil,2007,291(1-2):1-13
    [130]Chesson A, Stewart C S, Wallace R J. Influence of plant phenolic acids on growth andcellulolytic activity of rumen bacteria[J]. Applied and Environmental Microbiology,1982,44(3):597-603
    [131]Curl E A, Truelove B. The rhizosphere[M]. Springer-Verlag,1986
    [132]Dai C C, Chen Y, Wang X X, et al. Effects of intercropping of peanut with the medicinalplant Atractylodes lancea on soil microecology and peanut yield in subtropical China[J].Agroforestry systems,2013:1-10.
    [131]Darrah P R. Model of the rhizosphere[J]. Plant and Soil,1991,138:147-158
    [133]Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrientenvironments[J]. Plant and Soil,2002,245(1):35-47
    [134]Dixon R A, Paiva N L. Stress-induces phenylpropanoid metabolism [J].The PlantCell,1995,7:1085-1097
    [135]Dong J, Mao W H, Zhang G P, et al. Root excretion and plant tolerance to cadmiumtoxicity-a review [J].Plant soil environ,2007,53(5):193-200
    [136] Estabrook E M, Yoder J I. Plant-plant communications: rhizosphere signaling betweenparasitic angiosperms and their hosts[J]. Plant Physiology,1998,116(1):1-7
    [137] Fan F L, Zhang F S, Song Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.)interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil,2006,283(1-2):275-286
    [138]Fridley J D. The influence of species diversity on ecosystem productivity: how, where, andwhy?[J].Oikos,2001,93:514-526
    [139]Fustec J, Lesuffleur F, Mahieu S, et al. Nitrogen rhizodeposition of legumes[M]SustainableAgriculture Volume2. Springer Netherlands,2011:869-881
    [140]Gao F X, Deng Y, Chen X P, et al. Crop root behavior coordinates phosphorus status andneighbors: form field studies to three-dimensional in situ reconstruction of root systemarchitecture [J]. Plant physiology,2011,155:1277-1285
    [141]Gransee A, Wittenmayer L. Qualitative and quantitative analysis of water‐soluble rootexudates in relation to plant species and development[J]. Journal of Plant Nutrition and SoilScience,2000,163(4):381-385
    [142]Hawes M C, Gunawardena U, Miyasaka S, et al. The role of root border cells in plantdefense[J]. Trends in plant science,2000,5(3):128-133
    [143]Hakea H. Expression of phosphoenol pyruvate carboxylase and the alternative oxidase[J].Plant physiology,2004,135:549-560
    [144]Hentzer M,Wu H,Andersen J B, et al. At-tenuation of Pseudomonas aeruginosa virulence byquorum-sensing in hibitors[J]. EMBOJ,2003,22:3803-15
    [145]Henrik H N, Bjarne J, Julia K G, et al. Legume–cereal intercropping: The practicalapplication of diversity,competition and facilitation in arable and organic cropping systems[J].Renew. Agric. Food Syst,2007,23(1):3–12
    [146]Host W J, Wagner A,Marschner H. Mucilage protects roots meristems from aluminum injury[J]. Z Pflanzenphysiol,1982,105:435~444
    [147]Hinsinger P, Betencourt E, Bernard L, et al. P for two, sharing a scare resource: soilphosphorus acquisition in the rhizosphere of intercropped species[J]. Plant Physiology,2011,156:1078-1086
    [148]Inal A, Gunes A, Zhang F S, et al. Peanut/maize intercropping induces changes inrhizosphere and nutrient concentrations in shoots [J]. Plant physiology and biochemistry,2007,5:350-356
    [149]Ito O, Johansen C, Adu-Gyamfi J J, et al. Roots and nitrogen in cropping systems of thesemi-arid tropics[M]. International Crops Research Institute for the Semi-Arid Tropics,1994
    [150]Jilani G, Mahmood S, Chaudhry A N, et al. Allelochemicals: sources, toxicity and microbialtransformation in soil—a review[J]. Annals of microbiology,2008,58(3):351-357
    [151]Jones D L. Organic acids in the rhizosphere–a critical review[J]. Plant and soil,1998,205(1):25-44.
    [152]Jones D L, Nguyen C, Finlay R D.Carbon flow in the rhizosphere: carbon trading at thesoil-root interface[J].Plant soil,2009,321:5-33
    [153]Jones D L, Edwards A C, Donachie K,et al. Role of proteinaceous aminoa cids released inroot exudates in nutrient acquisition from the rhizosphere[J]. Plant Soil,1994,158:183-192
    [154]Juszczuk I M, Wiktorowska A, MalusáE, et al. Changes in the concentration of phenoliccompounds and exudation induced by phosphate deficiency in bean plants (Phaseolusvulgaris L.)[J]. Plant and Soil,2004,267(1-2):41-49
    [155]Kamilova F, Kravchenko L V, Shaposhnikov A I, et al. Organic acdis, sugars, andL-Tryptophane in exudates of vegetables growing on stonewool and their effects on activitiesof rhizosphers bacteria[J].MPMI,2006,19(3):250-256
    [156]Kato-Noguchi H, Le Thi H, Sasaki H, et al. A potent allelopathic substance in cucumberplants and allelopathy of cucumber[J]. Acta Physiologiae Plantarum,2012,34(5):2045-2049
    [157]Kefeli V I, Kalevitch M V, Borsari B. Phenolic cycle in plants and environment[J]. J. CellMol. Biol,2003,2:13-18
    [158]Kong C H, Liang W N, Hu F, et al. Allelochemical and their transformations in the ageratumconyzoides intercropped citrus orchard soils [J].Plant and soil,2004,264:149-157
    [159]Kremer R, Means N, Kim S. Glyphosate affects soybean root exudation and rhizospheremicro-organisms[J]. International Journal of Environmental Analytical Chemistry,2005,85(15):1165-1174
    [160]Kuiters A T. Water-soluble phenolic substance in soils under several coniferous anddeciduouse tree species[J]. Soil Biol Biochem,1987,19:765-769
    [161]Li C Y, He X H, Zhu S S, et al. Crop diversity for yield increase[J]. PLOS one.2009,4(11):8049-53
    [162]Li L, Li S M, Sun J H, et al. Diversity enhances agricultural productivity via rhizosphererphosphorus facilitation on phosphorus deficient soils [J]. PNAS,2007,104(27):11192-96
    [163]Li L,Yang S C, Li X L, et al. Interspecifc complementary and competitive interactionsbetween intercropped maize and faba bean[J]. Plant and Soil,1999,212:105–114
    [164]Li L,Sun J H,Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping Ⅱ.Recovery or compensation of maize or soybean after wheat harvesting[J]. Field CropsResearch,2001,71:173-181
    [165]Li L,Sun J H,Zhang F S, et al. Root distribution and interactions between intercroppedspecies[J]. Oecologia,2006,147:280–290
    [166]Li Z H, Wang Q, Ruan X, et al. Phenolics and Plant Allelopathy[J]. Molecules,2010,15,8933-8952
    [167]Liang C Y, Pineros M A, Tian J, et al. Low pH, aluminum and phosphorus coordinatelyregulate malate exudation through GmALMT1to improve soybean adaptation to acid soils[J].American Society of Plant Biologists,2013, DOI:10.1104/pp.112.208934
    [168]Liao H, Wan H Y, Jon S, et al. Phosphorus and aluminum interactions in soybean in relationto aluminum tolerance. Exudation of specific organic acids from different regions of theintact root system[J]. Plant Physiology,2006,141,674-684
    [169]Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual review ofmicrobiology,2009,63:541-556
    [170]Lugtenberg B J J, Kravchenko L V, Simons M. Tomato seed and root exudate sugars:composition, utilization by Pseudomonas biocontrol strains and role in rhizospherecolonization[J]. Environmental Microbiology,1999,1(5):439-446
    [171]Luthria D L, Pastor-Corrales M A.Phenolic acids content of teen dry edible bean (Phaseolusvulgaris L.) varieties [J]. Journal of Food Composition and Analysis,2006,19:205-211
    [172]Lucas Garcia J A, Barbas C, Probanza A, et al. Low molecular weight organic acids and fattyacids in root exudates of two Lupinus cultivars at flowering and fruiting stages[J].Phytochemical Analysis,2001,12(5):305-311
    [173]Lynch J M, Whipps J M. Substrate flow in the rhizosphere[M]. Springer Netherlands,1991
    [174]Martens D A. Relationship between plant phenolic acids released during soil mineralizationand aggregate stabilization[J]. Soil Science Society of America Journal,2002,66(6):1857-1867
    [175]Makoi J H J R, Ndakidemi P A. Biological, ecological and agronomic significance of plantphenolic compounds in rhizosphere of the symbiotic legumes[J]. African Journal ofBiotechnology,2007,6(12):1358-1368
    [176]Mandal S M, Chakraborty D, Dey S. Phenolic acids act as signaling molecules inplant-microbe symbioses[J]. Plant signaling&behavior,2010,5(4):359-368
    [177]Mandeel Q A. Influence of plant root exudates, germ tube orientation and passive conidiatransport on biological control of fusarium wilt by strains of nonpathogenic Fusariumoxysporum[J].Mycopathologia,2006,161:173-182
    [178]Mattila P, Hellstrom J. Phenolic acids in potatoes, vegetables, and some of their products [J].Journal of Food Composition and Analysis,2007,20(3-4):152-160
    [179]Martinez-Toledo M V, De La Rubia T, Moreno J, et al. Root exudates ofZea mays andproduction of auxins, gibberellins and cytokinins byAzotobacter chroococcum[J]. Plant andsoil,1988,110(1):149-152
    [180]Meharg A A, Killham K. Loss of exudates from the roots of prernnial ryegrass inoculatedwith a range of micro-organisms[J].Plant and Soil,1995,170:345-349
    [181]Mench M, Martin E. Mobilization of cadmium and other metals from two soils by rootexudates of Zea mays L, Nicotiana tabacum L. and Nicotiana rustica L[J]. Plant and soil,1991,132(2):187-196
    [182]Miyasaka S C, Buta J G, Howell R K, et al. Mechanism of Aluminum tolerance inSanpbean.Root exudation of citric acid[J].Plant physiol,1991,96:737-743
    [183]Nguyen C. Rhizodeposition of organic C by plants: mechanisms and controls[J].Agronomie-Sciences des Productions Vegetales et de l'Environnement,2003,23(5-6):375-396
    [184]Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resistance[J].Annu Rev Phytopathol,1992,30:369-89
    [185]Nobrega F M,Santos I S, Cunha M Da, et al.Antimicrobial proteins from cowpea rootexudates:inhibitory activity against Fusarium oxysporum and purification of a chitniase-likeprotein[J].Plant and Soil,2005,272:223-232
    [186]Patrick Z A. Phytotoxle substance associated with the decomposition in soilplant reaidues[J].Soil science,1971,111(1):13—19
    [187]Patterson D T. Effects of allelopathic chemicals on growth and physiolngics response ofsoybean[J]. Weed Science,1981,29(1)153—58
    [188]Perez P J. Root exudates of wild oats: Allelo pathic effect on spring wheat[J]. Phytochemistry,1991,30(7):2199-2202
    [189]Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudationfrom plant roots[J]. Plant Physiology,2004,136(1):2887-2894
    [190]Pi eros M A, Magalhaes J V, Alves V M C, et al. The physiology and biophysics of analuminum tolerance mechanism based on root citrate exudation in maize[J]. Plant Physiology,2002,129(3):1194-1206
    [191]Pi eros M A, Shaff J E, Manslank H S, et al. Aluminum resistance in maize cannot besolely explained by root organic acid exudation. A comparative physiological study[J]. PlantPhysiology,2005,137(1):231-241
    [192]Prikryl. Z, Vancura V. Root exudates of plants.6. Wheat root exudation as dependent ongrowth concentration gradient of exudates and the presence of bacteria[J]. Plant and Soil,1980,57(1):69-83
    [193]Quian J H, Doran J W,Walters D T. Maize plant contributions to root zone available carbonand microbial transformations of nitrogen[J]. Soil Biol Biochem,1997,29:1451-1462
    [194]Rao J R, Cooper J E. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fissionmechanisms [J]. Journal of bacteriology,1994,176(17):5409-5413
    [195]Rengel Z. Genetic control of root exudation [J].Plant and Soil,2002,254:59-70
    [196]Rice E J, Pancholy S K. Inhibition of nitrification by climax ecosystems.Inhibitors other thantannins [J].Amer J Bot,1974,61:1095-1103
    [197]Rovira A D. Plant root exudates [J]. The Botanical Review,1969,35(1):35-57
    [198]Romheld V, Marschner H. Evidence for a specifc uptake system for iron phytosiderophoresin roots of grasses [J]. Plant Physiol,1985,80:175-80
    [199]Scheidemann P, Wetzel A. Identification and characterization of flavonoids in the rootexudate of Robinia pseudoacacia [J]. Trees,1997,11(5):316-321
    [200]Schmidt S K, Lipson D A. Microbial growth under the snow: Implications for nutrient andallelochemical availability intemperate soils[J]. Plant and Soil,2004,259:1-7
    [201]Seal A N, Pratley J E, Terry H, et al. Identification and quantitation of compounds in a seriesof allelopathic and non-allelopathic rice root exudates [J]. Journal of Chemical Ecology,2004:30,8:1647-62
    [202]Shane M W, Cramer M D, Funayama-Noguchi S, et al. Developmental physiology ofcluster-root carboxylate synthesis and exudation in harsh hakea. Expression ofphosphoenolpyruvate carboxylase and the alternative oxidase[J]. Plant Physiology,2004,135(1):549-560
    [203]Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: from soil to plant[J]. Plantphysiology,2011,156:997-1005
    [204]Shi S J, Richadson A E, Callaghan M O, et al. Effects of selected root exudate componentson soil bacterial communities[J].FEMS Microbiol Ecol,2011,77:600-610
    [205]Steinkellner S, Mammerler R, Vierheilig H. Germination of Fusarium oxysporum in rootexudates from tomato plants challenged with different Fusarium oxysporum strains[J].European journal of plant pathology,2008,122(3):395-401
    [206]Sncheoreiras A M, Weiss O A, Reigosaoger M J. Allelopathic evidence in the poaceae[J].The Botanical Review,2004,69(3):300-319
    [207]Lafay S, Gil-Izquierdo A. Bioavailability of phenolic acids[J]. Phytochemistry Reviews,2008,7(2):301-311
    [208]Tilman D, Cassman K G,Matson P A, et al.Agricultural sustainability and intensiveproduction practices[J]. Nature,2002,418:671-677
    [209]Uren N C. Types, amounts, and possible functions of compounds released into therhizosphere by soil-grown plants[J]. The Rhizosphere. Biochemistry and Organic Substancesat the SoilPlant Interface. Taylor and Francis Group, Boca Raton FL,2007:1-21.
    [210]Vance C P, Allan D L. Phosphorus Deficiency in Lupinus albus: Altered lateral rootdevelopment and enhanced expression of phosphoeno/pyruvate carboxylase[J].PlantPhysiology,1996:31-41
    [211]Walker T S, Bais H P, Grotewold E, et al. Root exudation and rhizosphere biology[J]. Plantphysiology,2003,132(1):44-51
    [212]Wu H S, Raza W, Liu D Y, et al. Allllelopathic impact of artificially appllied coumarin onFusarium oxysporum f. sp. niveum[J]. World J Microbiol Biotechnol,2008,24:1297~1304
    [213]Xu W H,Liu H,Ma Q F, et al. Root Exudates,rhizosphere Zn Fractions,and Znaccumulation Zn levels of ryegrass at different Soil[J]. Pedosphere,2007,17(3):389—396
    [214]Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecifc competition and N transferbetween wheat and fababean using direct and indirect15N techniques[J]. Plant and Soil.2004,264,45–548
    [215]Yu J Q. Allelopathic suppression of Pseudomonas solanacearum infection of tomato(Lycopersicon esculentum) in a tomato-chinese chive (Allium tuberosum) intercroppingsystem[J]. Journal of chemical ecology,1999,25(11):2409-2417
    [216]Kuzyakov Y. Review: factors affecting rhizosphere priming effects[J]. Journal of PlantNutrition and Soil Science,2002,165(4):382
    [217]Zheng Y, Zhang F S,Li L. Iron availability as affected by soil moisture in intercroppedpeanut and maize [J]. Journal of Pant Nutrition,2003,(26)12:2425-2437
    [218]Zuo Y M, Zhang F S, Li X L,et al. Studies on the improvement in iron nutrition of peanut byintercropping with maize on a calcareous soil [J]. Plant and Soil,2000,220:13-25
    [219]Ye S F, Yu J Q, Peng Y H, et al. Incidence of Fusarium wilt in Cucumis sativus L.is promotedby cinnamic acid,an antotoxin in root exuates[J]. Plant and Soil,2004,263:143-150
    [220]Yu J Q, Ye S F, Zhang M F, et al. Effects of root exudates and aqueous root extracts ofcucumber (cucumis sativus) and allelochemicals on photosynthesis and antioxidant enzymesin cucumber[J].Biochemical sysematics and Ecology,2003,31:129-139
    [221]Zahar Haichar F el, Marol C, Berge O, et al. Plant host habitat and root exudates shape soilbacterial community structure[J]. The ISME journal,2008,2(12):1221-1230.
    [222]Zhang F S, Li L, Sun J H. Contribution of above-and below-ground interactions tointercropping [J]. W. J. Horst et al.(Eds), Plant nutrition–Food security and sustainability ofagro-ecosystems,2001:978-979
    [223]Zhu Y Y, Chen H R, Fan J H, et al.Genetic diversity and disease control in rice[J]. Nature,2000,406:718-722
    [224]Zhu H Y, Liu Z D, Wang C R, et al. Effects of intercropping with persimmon on therhizosphere environment of tea[J]. Front. Biol.China,2006,4:407-410
    [225]Zhu M Q, Ma C M, Wang Y, et al. Effect of extracts of Chinese pine on its own seedgermination and seedling growth [J].Front Agric China,2009,3(3):353-358