转ScMV-CP基因甘蔗抗病的分子基础及环境安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蔗花叶病严重影响甘蔗生长,是甘蔗生产中主要病害之一。通过基因工程培育抗花叶病品种是甘蔗高效育种的辅助手段,2003年农业部甘蔗生理生态与遗传改良重点实验室通过基因枪介导将ScMV-CP基因转入高感花叶病的甘蔗品种拔地拉(Badila),获得了13个转ScMV-CP基因甘蔗无性系。本研究以转CP基因甘蔗作为材料,研究转基因甘蔗的抗病稳定性和工农艺性状表现;通过转基因甘蔗的光合特性研究其增产的光合基础;通过反复抗性鉴定,从中选择抗病强转基因无性系进行人工接种研究其抗病的生理生化基础和分子基础;并对转基因甘蔗环境安全性进行了初步评价;研究结果表明:
     转基因甘蔗明显提高了抗甘蔗花叶病毒的能力,人工接种和自然诱发鉴定,花叶病发病率在0-34%之间,而且在不同世代保持稳定的水平;而非转基因甘蔗拔地拉(Badila)发病率达92-100%;通过工农艺性状和抗病性综合考察,选出了5个转基因甘蔗进入环境释放,结果表明:转基因甘蔗发病率在0-20%之间,株高比非转基因甘蔗增加23-32%,有效茎数增加45-55%,每公顷蔗茎产量增加62-80.6%,甘蔗糖分绝对值提高1.15-2.15%。在13个转CP基因甘蔗中以转基因甘蔗B48表现最为优异,在多年的人工抗性鉴定和自然诱发鉴定均未发病,综合农艺性状表现优异。
     通过转基因甘蔗B48与非转基因甘蔗叶片细胞超微结构、叶绿体蛋白质组及叶片光合特性的比较,结果表明:非转基因甘蔗的叶片细胞超微结构呈典型的甘蔗花叶病毒侵染后的病理特征;叶片中细胞叶绿体被破坏,基粒片层消失;通过叶绿体蛋白的双向电泳进一步发现,非基因甘蔗叶绿体光系统Ⅰ、光系统Ⅱ中光系统Ⅰ蛋白、放氧复合体(OEC)蛋白下调,说明病毒侵染对非转基因甘蔗叶绿体的光系统Ⅰ、光系统Ⅱ造成损伤,从而使非转基因甘蔗叶片的CO_2同化能力下降;而转基因甘蔗的叶片细胞保持完整,细胞内未发现病毒粒子,叶绿体结构清晰,光系统保持正常,叶绿素含量高,PEPC酶活性强,从而使转基因甘蔗保持较高光合作用能力。
     接种甘蔗花叶病毒后,转基因甘蔗接种后游离SA增加的量比原种大,时间提前,同时SOD、POD活性提高,CAT活性显著降低,这有利于增加体内H_2O_2的积累,加强了细胞壁的氧化交联,限制了病毒进一步侵染;而非转基因甘蔗SOD、POD活性提高缓慢,下降快,CAT活性下降慢,影响了H_2O_2的积累,无法及时有效地建立抗病信号的传导途径来诱导抗性基因的表达。
     苯丙烷代谢研究结果表明,转基因甘蔗在接种后叶片PAL活性迅速上升,并保持相对较高的水平;而转基因甘蔗PAL活性上升要滞后于转基因甘蔗,而且下降迅速。非转基因甘蔗PPO活性上升比转基因甘蔗慢而且增加的幅度也小;转基因甘蔗接种后积累类黄酮速度快,持续时间长,含量增幅较大,在整个过程中保持一个相对较高的浓度,非转基因接种后类黄酮含量下降而且变动幅度大。
     利用本实验室开发的斑茅(甘蔗的近缘属植物)干旱胁迫下的cDNA微阵列,研究了转基因甘蔗B48和非转基因甘蔗接种后基因表达的差异情况,结果表明:转因甘蔗接种后上调表达的克隆有43个,主要参与细胞的结构保护、信号传导、蛋白质合成、能量代谢、呼吸作用等有关过程;这说明接种病毒激活了转基因甘蔗体内众多抗病基因。利用芯片杂交的结果,克隆了候选MYB基因的片段,生物信息学分析该MYB基因属于典型R2R3 MYB转录因子,实时定量PCR分析表明所克隆的甘蔗MYB基因在不同组织表达特异性不明显,但是受外源SA和H_2O_2强烈诱导。
     接种后的叶片蛋白质组研究表明:转基因甘蔗与非转基因甘蔗的叶片蛋白的2-DE图谱有明显差异,在转基因甘蔗叶片中有10个蛋白表达上调,1个蛋白特异诱导表达;而非转基因甘蔗中3个表达上调,1个特异诱导。质谱鉴定表明,转基因甘蔗中核因子激酶、细胞质APX和Mn-SOD被诱导上调表达;而在非转基因甘蔗中铁氧还蛋白和甘蔗旱诱导蛋白表达上调。
     转基因甘蔗环境安全性评价结果表明:田间转基因甘蔗与非转基因甘蔗害虫的危害没有差异,在土壤总DNA未检测到外源ScMV-CP基因;转基因甘蔗根际土壤的细菌和真菌数量明显提高,但放线菌数量差异不明显;转基因甘蔗中的NPTII标记基因并没有增加对卡那霉素抗性的土壤微生物数量;转基因甘蔗和非转基因甘蔗根际细菌多样性研究表明,Simpson指数(D’)、Shannon-Wiener指数(H’)、Mclntosh指数(DMc)差异不明显,说明转基因甘蔗对土壤细菌的多样性影响很小;转基因甘蔗显著提高了根际土壤脲酶活性,但对土壤的蔗糖酶和磷酸单脂酶没有影响。初步研究表明,转基因甘蔗对土壤细菌和真菌有一定的影响,但对放线菌影响很小;就目前来看,短期内对土壤肥力没有不利影响。
Sugarcane mosaic disease is one of major disease to sugarcane and influences the growth of sugarcane seriously. Breeding resistant cultivars by genetic engineering is an assistant method in high-effective breeding of sugarcane. ScMV-CP gene was transformed to high-susceptible sugarcane cv. Badila by particle bombardment in the Key Lab of Sugarcane Eco-Physiology& Genetic Improvement, Ministry of Agriculture in 2003, and 13 ScMV-CP gene transgenic sugarcane were gained. Using these transgenic sugarcanes as material, the resistant stability and agronomic performance of transgenic sugarcane were studied after environmental release; and photosynthetic basic of yield increase was studied through the difference of photosynthetic characteristics between transgenic and non-transgenic sugarcane; After resistance identifying repeatedly, the high-resistant transgenic line was chosen to study the physiological and biochemical basis and molecular basic of resistance; and transgenic sugarcane environmental risk was assessed as well. The results showed as followed:
     Resistance to ScMV was improved significantly in CP transgenic sugarcanes, the incidence of ScMD(sugarcane mosaic disease) ranged from 0 to 34% after inoculation and natural infection, and kept stable in different generation of progenies. But the incidence of the non-transgenic sugarcane amounted to 92-100%. 5 transgenic lines were chosen for environmental release according to the agronomic performance and resistance of transgenic sugarcane, the results indicated that the incidence of ScMD ranged from 0 to 20%, stalk length increased by23-32%, effective stalk increased by 45-55%, cane yields of per hectare increased by 62-80.6%, and the sugar content(absolute value) increased by 1.15-2.15% in transgenic sugarcane compared with the counterpart in non-transgenic sugarcane. The transgenic line B48 was the best line in 13 transgenic sugarcane lines, and had nice agronomic traits and no disease development after inoculation or natural infection in four years.
     The cell ultrastructure, chloroplast proteome and photosynthetic traits in leaves of transgenic line B48 and the counterpart of non-transgenic line were studied. The results showed that the cell ultrastructure of non-transgenic sugarcane leaves displayed the typical cytopathological character infected by ScMV, and the cytoplasm was filled with ScMV particles, but none of these profiles were found in cell ultrstructure of transgenic sugarcane. These confirmed that the sugarcane mosaic disease was caused by ScMV and showed the disease resistance of the transgenic line on cellular level in addition. The chloroplasts were destroyed and the grana lamella disappeared in non-transgenic sugarcane leaves after infected by ScMV. The chloroplast proteome was studied by 2-DE. it was found that the chloroplast photosystem I protein and Oxygen evolution complex(OEC) of photosystem II(PS II) in leaves of non-transgenic sugarcane were down-regulated. These suggested that the PSI and PS II of chloroplasts in leaves of non-transgenic were damaged after virus infection, and resulted in the decrease of chloroplasts content and net photosynthetic ratc(Pn). Moreover, the infection lowered the activity of phosphoenolpyruvate carboxylase (PEPC). All of these changes in leaves of non-transgenic sugarcane decreased the CO_2 assimilation capacity and inhibited the plant growth, and finally caused the yield loss. While transgenic sugarcane had integrated cell structure and chloroplasts structure and accompanied with the high content of chloroplasts and activity of PEPC in leaves. So the transgenic line kept better capacity of photosynthesis. It can be regarded as the photosynthetic basis of the yield increase in transgenic sugarcanes.
     The content of endogenous free SA and conjugated SA increased both in transgenic and non-transgenic sugarcane after inoculation. And SA had a significantly negative correlation with CAT activity, increasing of SA inhibited the CAT activity and caused accumulation of H_2O_2. These were the common defense response to ScMV in transgenic and non-transgenic sugarcane. But the increase of free SA in transgenic sugarcane was higher than non-transgenic sugarcane, and ahead of the latter. At the same time SOD, POD activity increased and CAT activity lower remarkably in transgenic line. Changes of these enzyme activities leaded to accumulation of H_2O_2 and enhanced the cell wall cross—linking to limited the virus to infect further. But in non-transgenic sugarcane, the SOD,POD activity increased slowly, and decreased rapidly, and CAT decreased slowly. These changes of protective enzyme activities influenced the accumulation of H_2O_2 and cause the plant could not establish signal transduction pathways of resistance effectively.
     The studies of metabolism of phenylalanine showed the PAL, PPO activities enhanced both in transgenic sugarcane and non-transgenic sugarcane after inoculation with ScMV. PAL activity in transgenic line increased rapidly and kept stable after inoculation. But PAL activity in non-transgenic increased later than transgenic line and decreased promptly. And PPO activity in non-transgenic sugarcane was later and lower increase than transgenic sugarcane. The content of flavonoids in leaves accumulated fast, last a long time and kept a higher concentration in transgenic sugarcane after inoculation; But the content of flavonoids decrease and can not keep stable level in non-transgenic line. Metabolism of phenylalanine in transgenic sugarcane differed from non-transgenic sugarcane are cause by the different resistance to the ScMV.
     Different genes expression in transgenic and non-transgenic sugarcane was analyzed after inoculation used E. arundinaceum(sugarcane related plant) cDNA microarray under drought stress developed by our lab. The result showed there were 43 up-regulated clones in transgenic sugarcane. These clones took part in cell structure protection, signal transduction, protein synthesis, energy metabolism, respiration and so on. For example, cell wall protein GP2(HRGPGP2) and protein binding / structural constituent of cell wall played a role in cell structure protection, and zinc finger protein, MYB protein transcription factor took part in resistant signal transduction, and acetyl CoA carboxylase participated in secondary metabolism to produce flavonoids and other secondary metabolites. These results suggested that the resistance to ScMV in transgenic sugarcane due to resistant genes were activated rather than transferred CP gene into sugarcane. Candidate MYB gene fragment was cloned base on result of cDNA mircroarray hybridization. Bioimformatics analysis of the fragment suggested the sugarcane MYB gene belonged to the typical R2R3 MYB family genes. And result of real-time quantitative PCR analysis indicated the sugarcane MYB gene did not show any organ-specific, but induced by exogenous SA and H_2O_2 strongly. These suggested this MYB transcription factor of sugarcane may play a role in the resistance.
     Study on proteome in leaves of transgenic line B48 and non-transgenic line showed that images of 2-DE were very different from each other after inoculation. 10 proteins were up-regulated and 1 was induced specifically in leaves of transgenic sugarcane, but 3 were up-regulated and 1 was induced specifically in leaves of non-transgenic sugarcane. 7 different proteins were identified by MS/MS using 4700 Proteomics Analyzer (Applied Biosystems, USA). The up-regulated proteins in leaves of transgenic sugarcane were IkappaB kinase, cytosolic ascorbate peroxidase (APX) and Mn-superoxide dismutase (Mn-SOD), and unknown protein was specifically induced. The up-regulated proteins in leaves of non-transgenic sugarcane were unknown protein and rieske Fe-S precursor protein, and drought-inducible protein was specifically induced. These suggested that the different protein expression due to the different resistance of transgenic sugarcane and non-transgenic sugarcane.
     Environmental risk of ScMV-CP transgenic sugarcane was primarily assessed thought non-target organism investigation in the field, CP gene horizontal transfer to the soil microbe and effects on micro-ecology of rhizosphere soi in different growth stage of sugarcane and under different cultural patterns. Effects on micro-ecology of rhizosphere soil were studied using BIOLOG Ecoplate and plate cultivation of microorganism associated with related soil enzyme activities analyses. The results showed that there was no difference in pest harming between transgenic sugarcane and non-transgenic sugarcane, and no ScMV-CP gene was detected in soil total DNA; The total number of colony forming units(CFUs) of culturable bacteria and fungi were increased in transgenic sugarcane rhizosphere soil, but the total number of CFUs of culturable actinomycetes was not effected. Changes of CFUs of microbe resistant to kanamycin(Km) in medium indicated that number of soil microbe resistant to Km in soil wasn't increased because of NPT II in transgenic sugarcane; BIOLOG experiment showed the metabolism activity of soil bacteria was increased lightly, and the soil bacteria diversity indexes such as Simpson index(D'),Shannon-Wiener index(H'), evenness, Mclntosh index(DMc) were not different between transgenic sugarcane and non-transgenic sugarcane after inoculating 72h in BIOLOG Ecoplate. Urease activities in the rhizosphere soil of transgenic sugarcane were significantly higher than that of non-transgenic plant, but sucrase activity and phosphatase activities were not influenced. These primary results indicated that transgenic sugarcane had some effects on soil bacteria and fungi, but on effect on actinomycetes; transgenic sugarcane had no disadvantage influence on soil fertility at the present time. These suggested changes of micro-ecology of rhizosphere soil were caused unlikely by exogenous gene expression in transgenic sugarcane, maybe was the non-prediction effect after environmental release of transgenic sugarcane.
引文
[1] Bourne, B.A. 1972. Significant developments in the early phases of the Florida cane sugar industry[J]. Sugar Azucar 67:19-24.
    [2] 李海明,潘世明.果蔗花叶病的发生与防治[J].甘蔗,2003,10(4):22-24
    [3] 蒋军喜,周雪平,洪健.杭州地区甘蔗花叶病病原鉴定[J].农业生物技术学报,2002,10(4):377-380
    [4] 陈炯,杨建平,程晔,等.浙江甘蔗花叶病病原初步鉴定.植物病理学报,2001,31(3):271-273
    [5] Shukla DD, Frenkel MJ, McKern NM, Ward CWJika J,Tosic M, Ford RE.Present status of the sugarcane mosaic subgroup of potyvFiruses[J]. Arch Virol Suppl,1992,5:363-373
    [6] Ammar E D, Rodriguez-cerezo, E Shaw J G, et al. Association of vifions and coat protein of tobacco vein mottling potyvirus Lh cylindrical inclusions in tobacco cells[J]. Phytopathology,1994, 84: 520-523
    [7] Li D-B(李德葆),Zhou X-P(周雪平),Chen J-Sh(陈集双), et al. Diagnosis of plant viruses by electron microscopy[J]. Journal of Chinese Electron Microscopy Society(电子显微学报), 1999,18(3): 274-289
    [8] Edwardson J R. Inclusion bodies[J]. Archive of Virology, 1992, (Suppl 5): 25-30
    [9] Guo X-Q (郭兴启),Zhu X-P (竺晓平),Zhang J-D (张杰道),et al. Changes of Cell Ultrastructure of Maize Leaves Infected bv Maize Dwarf Mosaic Virus[J]. Scientia Agricultura Sinica(中国农业科学),2004.37(1):72-75
    [10] 王卫兵,洪健,周雪平.SrMV和ScMV侵染玉米的细胞超微病变比较研究[J].浙江大学学报(农业与生命科学版)2004,30(2)215-220
    [11] Lesemann D E, Shukla D D, Tosic M, et al. Differential of the four viruses of the Sugarcane mosaic virus subgroup based on cytopathology[J]. Archive of Virology,1992,(Suppl 5):353-361
    [12] 方王奇,李文凤、丁铭.等.云南甘蔗花叶病原的电镜诊断.电子显微镜,2005.24(4):421-321
    [13] Balachandran S. Osmond C B, Makino A. Effect of two strains of tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoaccli mation under two nitrogen nutrition regimes[J]. Plant Physiol., 1994(b),104:1043-1050
    [14] Reinero A, Beachy R N. Reduced photosystem Ⅱ activity and accumulation of viral coat protein in chloroplasts of leaves infected with tobacco mosaic virus [J]. Plant Physiol.,1989,89: 111-116.
    [15] NaderiM, BergerPH. Pathogcnesis-related protein la is induced in potato virus Y-infected plants as well as by coat protein targeted to chloroplasts[J]. Physiol Mol Plant Pathol,1997,50:67-83
    [16] 彭晏辉,雷娟利,黄黎锋,等.马铃薯Y病毒侵染对叶绿体超微结构、光合和荧光参数的影 响[J].植物病理学报,2004,34(1):32-36
    [17] 付东亚,洪健,陈集双,等.芜菁花叶病毒外壳蛋白在寄主植物叶绿体中的积累及其对光系统Ⅱ活性的影响[J].植物生理与分子生物学学报,2004,30(1):34-40
    [18] Y. H. Zhou, Y.H. Peng, J.L. Lei. Effects of Potato Virus y~(NTN) Infection on Gas Exchange and Photosystem 2 Function in Leaves of Solanum tuberosum L[J]. Photosynthetica,2004,42(3): 417-423
    [19] 李燕宏,洪健,谢礼,等。蚕豆萎蔫病毒2号分离物侵染对蚕豆叶片光合活性和叶绿体超微结构的影响[J].植物生理与分子生物学学报,2006,32(4):490-496
    [20] Jaber Rahoutei, Isabel Garcia-Luque, Matilde Bar6n. Inhibition of photosynthesis by viral infection: Effect on PSⅡ structure and function[J].Physiol.Planta,2000,110:289-292
    [21] 王春梅,施定基,朱水芳,等.黄瓜花叶病毒对烟草叶片和叶绿体光合活性的影响[J].植物学报,2000,42(4):388-392
    [22] 洪健,徐颖,黎军英,等.芜菁花叶病毒(TuMV)侵染对寄土植物光台作用的影响[J].电子显微学报,2002,22(1):110-113
    [23] Funayama S, Hikosaka K, Yahara T. Effect of virus infection and growth irradiance on fitness components and photosynthetic properties of Eupatorium makinoi(Compositae) [J]. American Journal of Botany,1997,84(6): 823-829.
    [24] 许莉萍,陈如凯,李跃平.利用愈伤组织培养和茎尖培养去除甘蔗花叶病毒[J].福建农业大学学报,1994,23(3):253-256
    [25] 许莉萍,潘大仁,陈如凯.基因工程甘蔗:潜能、现状和前景[J].生物工程学报,2001,17(4):371-374
    [26] Powel-Abel. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene[J]. Science,1986,232:738-743
    [27] 付东亚,陈集双.黄瓜花叶病毒基因组不同部分及卫星RNA介导的对植株的保护及其作用机理[J].生命科学,2002,14(5):296-298
    [28] 郭兴启,温孚江,宋云枝,等.翻译和非翻译马铃薯Y病毒外壳生白基因介导的抗病性比较[J].病毒学报,2001,17(4):360-367
    [29] 张振臣,张力.黄瓜花叶病毒(CMV)运动蛋白基因介导的抗病性[J].植物学报,1999,41(6):585-590
    [30] 魏振承,Foster G转烟草花叶病毒复制酶基因烟草的病毒抗性研究[J],湖北农学院学报,2000,20(3):229
    [31] Shepherd DN, Mangwende T, Martin DP, et al. Inhibition of maize streak virus (MSV) replication by transient and transgenic expression of MSV replication-associated protein mutants[J].J Gen Virol. 2007, (1):325-336.
    [32] Niu QW, Lin SS, Reyes JL, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance[J].Nat B iotechnol. 2006,24(11): 1420-1428.
    [33] 张海燕,陈正华.获得病毒抗性的植物基因工程策略及其抗病机理研究进展[J].武汉植物学研究1999,17(增刊):15-24
    [34] 徐秉良,师桂英,薛应钰.黄河蜜甜瓜CMV CP基因转化及其抗病性鉴定[J].果树学报2005,22(6):734-736
    [35] Haque AK, Tanaka Y. Sonoda S, Nishiguchi M. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery, mottle virus[J].Plant Mol Biol. 2007,63(1):35-47.
    [36] 李芳.郭兴启,侯文萃.转基因烟草中pvyN CP基因沉默及其介导的抗病性受温度的调控[J].植物病理学报.2006,36(1):41-48.
    [37] 郭兴启,吕七恩,朱常香.等.利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草[J].植物病理学报,2001,31(4):347-356
    [38] 周小梅,贾炜珑,赵云云.车专MDMV CP基因玉米植株的再生[J].植物研究.2006,26(4):261-264
    [39] Smith G R, Ford R, Frenkel M J et al. Transient expression of the coat protein of sugarcane mosaic virus in sugarcane protoplasts and expression in Escherichia coli[J].Archives of Virology, 1992,125:15-23
    [40] Joyce P A, McQualter R B, Bernard M J, et al. Engineering for resistance to SCMV in sugarcane[J].Acta Horticulture, 1998,461:385-391
    [41] Smith GR, Gambley RZ, Egan B T, et al. Progress in development of a sugarcane meristem transformation system and production of SCMV-resistant transgenics. Proceedings of the Australian. Society of Sugar Cane Technologists[C]. 1994, 15:237-243.
    [42] Ivan L. Ingelbrecht, James E. Irvine, et al. Posttranscriptional Gene Silencing in Transgenic Sugarcane. Dissection of Homology-Dependent Virus Re sistance in a Monocot That Has a Complex Polyploid Genome[J]. Plant Physiol. 1999,119:1187-1198
    [43] 姚伟,余爱丽,徐景升,等.转ScMV-CP基因甘蔗的分子生物学分析与鉴[J].分子植物育种.2004,2(1):13-18
    [44] R. A. Gilbert, M. Gallo-Meagher, J. C. Comstock. et al. Agronomic Evaluation of Sugarcane Lines Transformed for Resistance to Sugarcane mosaic virus Strain E[J]. Crop Sci. 2005 (45):2060-2067
    [45] Lindbo JA, Dougherty WC. Pathogen-derived resistance toa potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nuclectide sequence[J].Mol Plant-Microbe Interact, 1992,5:144-153
    [46] Manoel T. Souza, Jr., Paula F. et al. Influence of Coat Protein Transgene Copy Number on Resistance in Transgenic Line 63-1 against Papaya Ringspot Virus Isolates[J].HortScience, 2005,40:2083-2087.
    [47] Wilson TMA. Strategies to protect crop plants against viruses:Pathogen-derived resistance blossoms[J .Proc Natl Acad Sci USA, 1993,903134-3141
    [48] Neves-Borges AC, Collares WM. Pontes JA,et al. Coat protein RNA-mediated protection against Andean potato mottle virus in transgenic tobacco[J]. Plant Sci,2001,160:699-712
    [49] 张德水,陈受直.植物抗病性的分子生物学研究进展[J].植物病理学报,1997,27(2):97-103
    [50] 王金生.分子植物病理学[M].北京,中国农业出版社,1999.1-30.
    [51] 田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用[J].植物生理学通讯,2005,41(2):235-241.
    [52] Ingeborg Thoma, Christiane Loeffler. Alok K Sinha. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants[J].The Plant J, 2003,34(3) : 363-368.
    [53] Fath A, Bethke P, Beligni V et al. Active oxygen and cell death in cereal aleurone cells[J]. J Exp Bot, 2002, 53:1273-1282.
    [54] Bradly D J, Kjellbom P, Lamb C J. Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response[J]. Cell, 1992, 70:21-30
    [55] Brisson L F, Tenhaken R, Lamb C J. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance[J]. Plant Cell, 1994, 6:1703-1712.
    [56] Levine A, Tenhaken R, Dixon R et al. H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell, 1994.79:583-593
    [57] Chamnongpol S, Willekens H, Moeder W, et al. Defense activation and enhanced pagyogen tolerance induced by H_2O_2 in transgenic plants[J]. Proceedings ofthe National Acadeny of Sciences, 1998,95:5818-5823.
    [58] 程艳丽,宋纯鹏.植物细胞H_2O_2的信号转导途径[J].中国科学C辑(生命科学)2005,35(6):480-489
    [59] 董金皋.韩建民.植物与病原物互作中的活性氧代谢及其作用[J].沈阳农业大学学报.2000.31(5):427-431.
    [60] Potikha TS. Collins CC, Johnson D1 et al. The Involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers[J]. Plant Physiol, 1999,119: 849-858.
    [61] Kiraly Z, E1-Zahaby H. Golal A, Abdou S, Adam A et al. Effect of oxv free radicals on plant pathogenic bacteria and fungi and on some plant diseases[J]. See Ref. 1993, 77a: 9-19.
    [62] Aver yanov A A. Lapikova V P. Djawakhia V G. Active oxygen mediates heat-induced resistance of rice plant to blast disease[J]. Plant Sic, 1993, 92:27-34.
    [63] Wu G. Shortt B J. Lawrence E B, Levine E B, Fitzsimmons K C. Shah D M. Disease resistance conferred by expression of agene encoding H_2O_2-generating glucose oxidase in transgenic potato plants[J]. Plant Cell, 1995, 7:1357-1368.
    [64] Chen Z, Ricigliano JW, Klessig DF. Purification and characterization of a soluble salicylic acid-binding protein from tobacco[J]. Proc Natl Acad Sci USA, 1993, 90:9533-9537.
    [65] David H. Slaymaker, Duroy A. Navarre, Daniel Clark, et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response[J].PNAS, 2002,99(18):11640-11645
    [66] Kumar, D., Klessig, D. F.The high-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity[J]. Pnas,2003 100:16101-16106
    [67] Van Camp W, Van Montagu M, Inze D. H_2O_2 and NO: redox signals in disease resistance[J]. Trends Plant Sci, 1998, 3:330-334.
    [68] 梁琼,燕永亮,侯明生.不同玉米品种抗感MRDV与防御酶活性的关系[J],华中农业大学学报,2003,22(2):114-116
    [69] 孙红炜,路兴波,杨崇良,等.不同抗性玉米品种接种甘蔗花叶病毒(SCMV)后4种防御酶活性变化研究[J].植物病理学报,200636(2):181-184
    [70] 廖朝晖,朱必凤,刘安玲.水稻对白叶枯病菌抗性与活性氧关系的研究[J].中山大学学报(自然科学版),2002,41(4):78-81.
    [71] 李兰真,赵会杰,等.小麦锈病与活性氧代谢的芙系(简报)[J].植物生理学通讯,1999,35(2):115-117.
    [72] 吴晓丽,李建民,断留生,等.花椰菜幼苗叶片抗氧化酶系统与抗黑腐病关系的研究[J].植物病理学报,2005,35(6):509-513
    [73] 柯玉琴,潘廷国,方树民.青枯菌侵染对烟草叶片H_2O_2代谢、叶绿素荧光参数的影响及其与抗病性的关系[J].中国生态农业学报,2002,10(2):36-39.
    [74] 曾永三,王振中.豇豆与锈菌互作中的活性氧代谢研究[J].植物病理学报,2004,34(2):146-153
    [75] 余文英,潘廷国,柯玉琴,等.甘薯抗疮痂病的活性氧代谢研究[J].河南科技大学学报(农学版),2003,23(3):1-6.
    [76] 魏颖颖,王风龙,等.烟草与黄瓜花叶病毒互作中过氧化氢酶活性的变化[J].烟草科技,2005,(10):36-39.
    [77] 李荣花,陈捷.等.玉米纹枯病抗性与防御酶关系的研究[J].天津师范大学学报(自然科学版),2005,25(4):32-36.
    [78] 陈坤明.官海军,等.植物抗环血酸的生物合成、转运及其生物学功能[J].西北植物学报,2004,24(2):329-336.
    [79] ReuveniR, A gapov V, ReuveniM, et al. Folia spray of phosphates induces growth increase and svstemic resistance to Puccinia sorghi in maize[J]. P lant Pathology, 1994.43: 245.
    [80] 杜近义,胡国赋,等.植物次生代谢产物的生态学意义[J].生物学杂志,1999,16(5):9-10.
    [81] 付佳.王洋,等.萜类化合物的生理生态功能及经济价值(1)[J].东北林业大学学报,200331(6):59-62.
    [82] 刘亚光,李海英,等.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学,2002,21(3):195-198.
    [83] 宾金华,姜胜.茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系[J].植物 生理学报,2000,26(1):1-6.
    [84] Matros A, Amme S, Kettig B, et al.Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y[J].Plant Cell Environ. 2006 Jan;29(1):126-37.
    [85] 刘丽君,吴俊江,等.大豆抗疫霉病菌的生理生化机制[J].中国油料作物学报,2005,27(1):81-83
    [86] Shadle GL, Wesley SV, Korth KL, et al.Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase[J]. Phytochemistry. 2003 Sep;64(1):153-61.
    [87] 薛春生,肖淑芹,等.玉米与矮花叶病毒互作对防御反应酶系活性的影响[J].种子,2005,24(3):6-10.
    [88] 寿森炎,冯壮志,等.番茄抗感青枯病品种的生理生化差异[J].浙江大学学报(农业与生命科学版),2005,31(5):550-554.
    [89] 王雅平,吴兆苏,等.小麦抗赤霉病性的生化研究及其机制的探讨[J].作物学报,1994,20(3):327-333
    [90] 李淑菊,马德华,庞金支,等.黄瓜感染黑星病菌后的生理变化及抗病性的产生[J].华北农学报.2003,18(3):74—77
    [91] 杨辉,沈火林.朱鑫,等.防御酶活性、木质素和总酚含量与辣椒抗黄瓜花叶病毒的关系[J].中国农学通报,2006,22(5):369-373
    [92] 朱宏波,腾冰,等.不同抗性大豆品种感染SMV1后若干生化变化[J].西北农业学报,2001,10(3):38-40.
    [93] 余清,刘勇,等.几种烟草抗病毒剂田间约效及对烟株抗病性的影响[J].云南农业大学学报,2001,16(1):9-12.
    [94] 滕冰,吴宗蹼,等.大豆感染SMV后种粒多酚类物质变化的研究[J].中国油料作物报,1999.21(3):41-43
    [95] 庄炳昌,王玉民,等.抗性不同大豆品种感染灰斑病后若干生化变化[J].作物学报,1993,19(6):568-569.
    [96] 李淼,檀根甲,周冬生,等.基因芯片技术及其在植物病害研究中的应用[J].植物保护,2003,29(1):5-9
    [97] 裴雁曦,李德葆,骆红梅.等.用cDNA微阵列分析水稻防卫反应及信号传导相关基因.浙江大学学报(农业与生命科学版),2003,29(4):299-301
    [98] Flavia Tal, PAPIN-TERZI, Flavia RISO ROCHA,, et al. Transcription profiling of signal transduction-related genes in sugarcane tissues[J]. DNA RESEARCH. 2005,12:27-38
    [99] Reymond P. DNA microarray and plant defense. [J] Plant Physiol f3iochem, 2001,39:313-321
    [100] Wan JR,Mark FD,Andrew F.ent probing plant-pathogen interactions and downstream defense signaling using DNA microarrays[J].Fun Integ Geno,2002, 2:259-273.
    [101] Katagiri F A. global view of defense gene expression regulation-a highly interconnected signaling network[J]. Current Opinion in Plant Biology, 2004,7:1-6
    [102] Scheideler M, Schlaich N L, Fekkenberg K, et al. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays[J].Journal of Biological Chemitry, 2002, 277:10555-10561
    [103] Maleck K, kevine A, Eulgem T, et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance [J].Nat Genet, 2000, 26: 403-410.
    [104] Tao Y, Xie Z, Chen W, Glazebrook J, et al.Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae[J]. Plant Cell, 2003,15(2): 317-330
    [105] Sehenk PM, Kazan K, Wilson I, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proc Nail Acad Sci USA, 2000, 97: 11655-11660.
    [106] Chen W, Provart NJ, Glazebrok J, et al. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J]. Plant Cell, 2002, 14: 559-574.
    [107] 王英,沙爱华.DNA微阵列研究植物—病原菌互作及防御反应信号转导机制[J].荆门职业技术学院学报,2005,20(3):92-96
    [108] Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate imunity[J]. Nature, 2002, 415: 977—983.
    [109] Dangl JL, Jones JD.Plant pathogens and integrated defence responses to infection[J].Nature, 2001,411(6839): 826-33.
    [110] Lamb CJ, Ryals JA. Ward ER, Dixon RA (1992) Emerging Strategies for Enhancing Crop Resistance to Microbial Pathogens[J]. Bio-Technology 10(11): 1436-1445
    [111] Wilkins M R. Williams K L. Appel R D. et al. Proteome Research: New Frontiers in Functional Genomics[J]. Germany:Spring-Verlag,1997
    [112] Ong S E. Pandev A.An evalution of the use of Two-dimention gel electrophoresis in proteomics[J].Biomol Eng,2001,18(5): 195-205
    [113] Thierry Rabilloud.Two-dimention gel electrophoresis in proteomics: old.old fashioned, but it still climbs up the mountains[J].Proteomics,2002,2:3-10
    [114] 何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报,自然利学版2002.38(4):558—562.
    [115] 李跃建,姬红丽,彭云良,等.应用双向电泳技术研究条锈菌侵染后小麦蛋白质的改变[J].四川大学学报,2005,37(2):80—85.
    [116] 柴小青,靳飞,张艳萍,等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报,2004,25(3):46-51
    [117] SHEN S, KOMATSU S. Characterization of proteins responsive to gibberelin in the leaf sheath of rice(Oryza sativa L.)seedling using proteome analysis[J].Biological and Pharmaceutical Bulletin, 2003,26:129-136
    [118] 范海延,陈捷,程根武,等.应答白粉病菌胁迫的黄瓜功能蛋白质组学研究[J].西北农林科技大学学报(自然科学版),2005,33(增刊):259-259
    [119] Zhou W, Eudes F, Laroche A, et al.Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum[J]. Proteomics. 2006 6(16):4599-609
    [120] Tariq Mahmood, Asad Jan, Makoto Kakishima,et al.Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades[J]. Proteomics, 2006, 6(22):6053-65.
    [121] Smith JA, Blanchette RA, Burnes TA, et al.Proteomic comparison of needles from blister rust-resistant and susceptible Pinus strobus seedlings reveals upregulation of putative disease resistance proteins[J]. Mol Plant Microbe Interact. 2006,19(2):150-60.
    [122] Rampitsch C, Bykova NV, McCallum B, et al.Analvsis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction[J]. Proteomics. 2006, 6(6): 1897-907
    [123] Kim ST, Kim SG, Hwang DH,et al.Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea[J]. Proteomics. 2004,4(11):3569-78
    [124] Clive James. Global Status of Commercialized Biotech/GM Crops: 2006,No.35, www.isaaa.org
    [125] P. M. Bennettl, C. T. Livesey, D. Nathwani, et al.An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy[J]. Journal of Antimicrobial Chemotherapy, 2004, 53:418-431
    [126] Heidi F. Kaeppler. Food Safety Assessment of Genetically Modified Crops[J]. Agron. J. 2000,92:793-797
    [127] 钱迎倩,田彦.转基因植物的生态风险评价[J].植物生态学报,1998,22(4):289-299
    [128] Philip JD,Belinda C,Eliana MGE2002.Potential for the environmental impact of transgenic crops[J].Nature Biotechnology,20(6):567-574
    [129] 张永军,吴孔明,彭于发,等.转基因植物的生态风险[J].生态学报,2002.22(11):1951-1959
    [130] 樊龙江,周雪平,胡秉了,等.转基因植物的基因漂流风险[J].应用生态学报,2001,12(4):630-632
    [131] 浦惠明.转基因抗除草剂油菜及其生态安全性[J].中国油料作物学报2003,25(2):88-92
    [132] JanetCotter.“越级杂草”伴随着转基因作物面出现[J].世界环境,2004,(5):66-67
    [133] David Q, Chapela IH. Transgenic DNA introgressed into traditional maize landrace in Oaxaca. Mexico[J]. Nature, 2001, 414:541-543
    [134] 柏立新,张龙娃,陈小波,等.转Bt基因保铃棉对棉田杂草群落组成与多样性的影响[J]. 植物生态学报,2003,27(5):610-616.
    [135] 陈旭升,狄住春,刘剑光,等.转基因棉花育种进展及其产业化前景分析[J].中国农学通报,2002,18(2):72-74
    [136] Losey J E, Rayor L S, Caner M. T ransgenic pollen harm smonarch larvae[J]. Nature, 1999, 399:214
    [137] 崔金杰,夏敬源。转Bt基因棉对昆虫群落结构与组成的影响[J].河南农业大学学报,1999,33(4):342-345
    [138] Brich A NE. Interaction between plants resistance genes, pest aphid population and beneficial aphid predators[J]. Scottish Crops Research Institute Annual Report, 1997,70-72
    [139] 牛颜冰,李桂新.抗病毒转基因植物释放的风险性研究进展[J].浙江大学学报(农业与生命科学版),2004,30(5):471-476
    [140] 周雪平,李德葆.抗病毒基因工程与转基因植物释放的环境风险评估[J].生命科学,2000,12(1):4-6
    [141] Korte, A. M., Maiss, E., Kramer, I. & Casper, R. Biosafety considerations of different plum pox potyvirus (PPV) genes used for transformation of plants. ⅩⅣ International Symposium on Fruit Tree Virus Diseases[J]. Acta Horticulturae, 1995,368:280-284.
    [142] Greene, A. E. & Allison, R. E Recombination between viral RNA and transgenic plant transcripts[J]. Science,1994,263:1423-1425
    [143] Lecoq, H., Ravelonandro, M., Wipf-Scheibel, et al. Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus[J]. Molecular Plant-Microbe Interactions,1993,6:403-406.
    [144] 熊明彪,何建平,宋光X.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148
    [145] Bruinsma, M., G.A. Kowalchuk, and J.A. van Veen. 2003. Effects of genetically modified plants on microbial communities and processes in soil[J]. Biol. Fertil. Soils 37:329-337
    [146] 王建武,冯远娇,骆世明.转基因作物对土壤生态系统的影响[J].应用生态学报,2002.13(4):491-494.
    [147] 汪海珍,徐建民,谢正苗.转基因作物在土壤环境中的残留及其对土壤生物的影啊[J].土壤.2005,37(4):370-374
    [148] 孙彩霞,陈利军,武志杰.等.种植转Bt基因水稻对土壤酶活性的影响[J].应用生态学报,2003,14 (12):2261-2264
    [149] Griffiths, B.S., I.E. Geoghegan, and W.M. Robertson. Testing genetically engineered potato, producing the Icctins GNA and ConA, on non-target soil organisms and processes[J].Appl. Ecol. 2000,37: 159-170.
    [150] Savka, M.A., and S.K. Farrand.. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant produced resource [J]. Nat. Biotechnol. 1997,15:363-368
    [151] 沈法富,韩秀兰,范术丽.转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化[J].生态学报,2004,24(3):432-437
    [152] 邵宏波,梁宗锁,邵明安.转基因生物体对生态环境的影响及其发展趋向[J].农业工程学报,2005,21(2):95-200
    [153] Donegan, K.K., D.L. Schaller, J.K. Stone, L.M. Ganio, G. Reed,P.B. Hamm, and R.J. Seidler. Microbial populations, fungi species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin[J]. Transgen. Res. 1996,5:25-35.
    [154] Angle, J.S. Release of transgenic plants: Biodiversity and population-level considerations[J]. Mol. Ecol.,1994,3:45-50
    [155] Dyer, W.E. Techniques for producing herbicide-resistant crops. 1996,PP.37-52. In S.O.Duke (ed.) Herbicide resistant crops. Agricultural, environmental, economic, regulatory and technical aspects. Lewis Publ., Boca Raton, FL
    [156] Daniell, H., B. Muthukumar, S.B. Lee. Marker free transgenic plants: Engineering the chloroplast genome without the use of antibiotic selection[J]. Curr. Genet. 2001,37:109-116.
    [157] Negrono D.,Jolley.M., Beer S., et al.The use of phosphomannose-Ⅰ-somerase maize plants (Zea mays L) via Agrobacterium transformation[J].Plant Cell Reports, 2000, 19(8):798-803
    [158] Kai Guoyin, Zhang Lei, Zhang Hongyu, et al. Marker free: a novel tendency of transgenic plants[J]. Acta Botanica Sinica, 2002; 44 (8): 883-888
    [159] 朱俊华,竺晓平,温孚江,等.马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性的影响[J].中国科学C辑,2004,34(1):23-30
    [160] 姚伟,耿广良,余爱丽,等.一种改良的转基因甘蔗基因组DNA进取方法[J].热带亚热带植物学报,2004.12(2):256-260
    [161] Fuh-Jyh Jan, Sheng-Zhi Pang, David M. Tricoli, et al. Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant developmental stage and enhanced by combination of transgenes from different lines[J]. Journal of General Virology, 2000(81), 2299-2306
    [162] Jan F J,Pang S Z,Tricoli D M.et al.Evidence that resistance in squash mosaic comovirus coat proteintransgenic plants is affected by plant developmental stage and enhanced bv combination of transgenes from different lines[J].Journal of General Virology,2000,81 (9):2299-2306.
    [163].刘小红,张红伟,刘昕,等.MDMV CP基因的克隆及其转基因玉米的研究[J].生物工程学报,2005,21(1):144-148.
    [164] 杨继涛,刘宝康,时卫东.植物抗病毒基因工程研究进展[J].中国农学通报,2004,10(6):272-275.
    [165] Jiang K-Q(江克清). Prokaryotic Expression of Coat Protein Gene of Sugarcane Mosaic Virus Strain E and antibody preparation[D]. Dissertation for Master Degree of Fujian Agriculture & Forestry University(福建农林大学硕士学位论文),2005.
    [166] Denise I. Jacobs, Robert van der Heijden, Robert Verpoorte. Proteomics in plant biotechnology and secondary metabolism research[J]. Phvtochemical Analysis, 2000, 11(5): 277-287
    [167] Margaret M.Shaw, Beat M.Riederer. Sample preparation for two-dimensional gel electrophoresis[J]. Proteomics 2003,3:1408-1417.
    [168] Bradford,M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal.Biochem. 1976,72:248-254
    [169] Giovanni Candianol, Maurizio Bruschil, Luca Musante, etal. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis 2004, 25, 1327-1333
    [170] Zhou Q(邹琦).Plant physiology Experiment Guide(植物生理学实验指导)[M].Beijing:China Agriculture Press.2000,72-76
    [171] Institute of Plant Physiology,Shanghai,China Science Academy and Association of Institute of Plant Physiology,Shanghai(中科院上海植物生理研究所,上海植物生理学会).Guideline of Modern Experiments in Plant Physiology(现代植物生理实验指南)[M].2nd edn Beijing:Science Press.2004,120-121
    [172] Li Y-R(李扬瑞).Studies on the Activities of ATPase in Tissues of Different Sugarcane Genotypes[J].Acta Agronomica Sinica(作物学报),1992,18(6):453-457
    [173] Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids[J].Annu Rev Plant Physiol Plant Mol Bio1,1996,47:541-68
    [174] 陈娜 郭尚敬 颜坤,等.甜椒甘油-3-磷酸酰基转移酶基因的克隆与表达分析[J].园艺学报.2005,32(5):823-82
    [175] Zhang, H., Carrell, C.J., Huang, D., Sled, V., Ohnishi, T., Smith, J.L., and Cramer, W.A. Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron-sulfur protein[J] J. Biol. Chem. 1996, 271:31360-31366
    [176] Sabine Molik, Ivan Karnauchov, Constanze. et al.The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts [J]? J. Biol. Chem. 2001, 276:42761-42766
    [177] Huamin Zhang. Julian P. Whitelegge Ferredoxin:NADP+ Oxidoreductase is a Subunit of the Chloroplast Cytochrome b6fComplex[J]. J. Biol. Chem..2001, 276(41):38159-65.
    [178] Tova Trebitsh. Avihai Danon.Translation of chloroplast psbA mRNA is regulated by signals initiated bv both photosystems Ⅱ and Ⅰ[J]. PNAS. 2001.98:12289-12294
    [179] Petra Fromme, Patrick Jordan, Norbea Krauss, Structure of photosystem Ⅰ[J].Biochimica et Biophysica Acta.,2001,(1507):5-31.
    [180] Wu Xu, Huadong Tang, Yingchun Wang, el al. Proteins of |he cyanobactcrial photosystem Ⅰ[J].Biochimica et Biophysica Acta 2001, (1507): 32-40.
    [181] Petra Frommel, Paul Mathis, Unraveling the Photosystem Ⅰ reaction center: a history, or the sum of manv efforts [J]. Photosynthesis Re,2004, (80):109-124.
    [182] Wang Sh-Q(王水琦),Ye X-L(叶小丽).Chen T-J(陈庭俊).Advances in Sugarcane Mosaic Virus Disease[J].Chinese Agriculture Science Bulletin(中国农学通报),2002,18(4):94-97
    [183] Yao W(姚伟),Duan Zh-Zh(段真珍),Zhou H(周会),et al.Cloning and sequence anal.vsis of coat protein genes of Sugarcane mosaic virus isolates obtained from Fujian[J].Acta Phytopathologyca Sinica(植物病理学报).2006,36(4):378-381
    [184] Kirsi Lehto, Mikko Tikkanen, Jean-Baptiste Hiriart, et al. Depletion of the Photosystem Ⅱ Core Complex in Mature Tobacco Leaves Infected by the Flavum Strain of Tobacco mosaic virus[J]. MPMI, 2003, 16 (12): 1135-1144.
    [185] Abbink, T. E. M., Peart, J. R., Mos, T. N. M.,et al. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem Ⅱ enhances.virus replication in plants[J]. Virology,2002,295:307-319.
    [186] 李海莲,侯喜林,等.黄萎病粗毒素接种对感病和抗病茄子品种的一些酶类活性和光合特性的影响[J].植物生理学通讯,2005,41(4):453-456.
    [187] 冯福应,邵金旺,等.甜菜抗(耐)丛根病性不同的品种绿原酸和阿魏酸研究[J].中国甜菜糖业2001,(4):1-5.
    [188] 申卫星,陈玉,等.西瓜枯萎病菌对西瓜及其嫁接砧木的接种试验和绿原酸、阿魏酸变化动态同抗病性的关系[J].山尔农业大学学报,1998,29(4):460-477
    [189] 宋凤鸣,郑重.绿原酸和阿魏酸与棉花对枯萎病抗性的关系[J].浙江农业大学学报.1996,22(3):236-240.
    [190] 周仲驹,林奇英,谢联辉.甘蔗病毒及类似病害的研究现状和进展[J].四川甘蔗,1988(2):28-32.
    [191] 李兆亮,原永兵,李冬梅.薄层层析和高效液相层析技术结合测定植物叶片水杨酸含量[J].植物生理学通讯,1997,33(2):130-132.
    [1922] Rasumssaen JB, Hammerschmidit R, Zook MN. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv Syringae[J]. Plant Physiology, 1991, 97:1342-1347.
    [193] 李合生.植物生理生化实验原理利技术[M],北京,高等教育出版社,1999:260-261
    [194] 李杨瑞.甘蔗组织中过氧化物酶活性及其与生长和工艺成熟的关系初探[J].广西农Physiol.1977,59:315-318.
    [195] Giannoplitis CN,Sk Ries Superoxide dismutase 1.Purification and quantitative relationship with water-soluble protein in seeding[J]. Plant Physiol, 1977, 59:315-318
    [196] 章骏德,刘国屏,等.编.植物生理实验法[M].南昌:江西人民出版社.1982.26-29
    [197] 沈文彪,徐朗莱,叶茂炳,等.抗环血酸过氧化物酶活性测定的探讨[J].植物生理学通讯,1996,32(3):203-205
    [198] 王敬文,薛应龙.植物苯丙氨酸解氨酶的研究Ⅱ苯丙氨酸解氨酶在马铃薯晚疫病中的作用[J].植物生理学报,1982,8(1):35-41
    [199] 刘祖祺.植物抗性生理学[M].北京:中国农业出版社,1994.370-371.
    [200] 郭文硕,黄宗安.锥栗对栗疫病抗性与过氧化物酶的关系[J].福建林学院学报,2000,20(1):1-4
    [201] Kang GZ, Wang ZX, Sun GC. 2003a.Participation of H_2O_2 in enhancement of cold chilling by salicylic acid in banana seedlings[J]. Acta Bot Sin, 45(5):567-573.
    [202] Leon J, Lawton M A, Raskin I. Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco[J]. Plant Physiol, 1995, 108:1673-1678.
    [203] 冉隆贤,谷文众,吴光金.水杨酸诱导桉树抗青枯病的作用及相关酶活性变化[J].林业科学研究,2004,17(1):12-18
    [204] 王长春,蔡新忠,林敬州,等.水杨酸和乙烯在烟草抗黑胫病中的作用[J].植物保护学报,200330(3):295-299
    [205] 毛爱军,王永健,冯兰香,等.水杨酸诱导辣椒抗疫病生化机制的研究[J].中国农学通报,2005,21(5):219-223
    [206] Foyer C H, Noctor G. Redox homeostasis and antioxidant signalling: A metabolic interface between stress percption and physiological responses [J]. Plant Cell,2005,17:1866-1875.
    [207] Neill S J, Desikan R, Hancock J T. Hydrogen peroxide singalling [J]. Curt Opin Plant Biol,2002,5:388-395.
    [208] Apel K, Hirt H. Reactive oxygen species: Metabolism. oxidative stress, and signal transduction [J]. Annu Rev Plant Bio.2004,55:373-399.
    [209] Helene Vanacker, Tim L.W. Carver, Christine H. Foyer. Eartv H_2O_2 Accumulation in Mesophyll Cells Leads to Induction of Glutathione during the Hyper-Sensitive Response in the Barley-Powdery Mildew Interaction[J]. Plant Physiology, 2000(123): 1289-1300.
    [210] Martha L. Orozco-Cardenas, Javier Narvaez-Vasquez, Clarence A. Ryan. Hydrogen Peroxide Acts as a Second Messenger for the Induction of Defense Genes in Tomato Plants in Response to Wounding, Systemin, and Methyl Jasmonate[J]. The Plant Cell, 2001(13): 179-191.
    [211] 黄学跃,赵立红,刘勇,等.黄瓜花叶病毒诱导烟草抗病性的生化研究[J].云南大学学报(自然科学版),1999,21(3):236-238
    [212] 童蕴慧,郭桂萍,徐敬友.等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511
    [213] 叶茂炳,徐朗菜,徐雍臬.苯丙氨酸解氨酶和绿原酸与小麦抗赤霉病性的关系[J].南京农业大学学报,1990,13(3):103-107.
    [214] 栾晓燕,陈怡,杜维广.不同抗性大豆品种感染SMV后过氧化物酶、多酚氧化酶、超氧化物歧化酶的变化分析[J].大豆科学,2001,20(3):200-203
    [215] 谢春艳.宾金华,陈兆平,等.多酚氧化酶及其生理功能[J].生物学通报,1999,34(6):11-13
    [216] 路兴波,吴洵耻,周凯南.小麦抗感纹枯病品种酶活性比较研究[A].植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会论文集[c].北京:科学技术出版社,1998
    [217] 栾晓燕,陈怡,杜维广,等.大豆感染SMV3后多酚类物质的变化分析[J].大豆科学,2003,22(3):186-189
    [218] 黄诚梅,李杨瑞,叶燕萍.甘蔗茎尖培养中减轻酚害[J].植物生理学通讯,2004,40(1):39-41
    [219] 刘陟,杜林方,万波,等.高等植物病程相关蛋白[J].天然产物研究与开发,2005,17(2):229-234
    [220] Ebner C, Hofanann-Sommergruber K, Breiteneder H. Plant food allergens homologous to pathogenesis-related proteins[J]. Alergy, 2001, 56(67): 43-44
    [221] Rosinski, J.A., Atchley, W.R.Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin[J]. J. Mol.Evol. 1998, 46, 74-83
    [222] Lipsick, J.S., 1996. One billion years of Myb. Oncogene 13. 223- 235. Nei, M., 1996. Phylogenetic analysis in molecular evolutionary genetics[J]. Annu. Rev. Genet. 30, 371-403
    [223] Stracke, R., Werber, M., Weisshaar,B..The R2R3-Myb gene family in Arabidopsis thaliana[J]. Curr. Opin. Plant Biol. 2001,.4:447-456.
    [224] Chen F, Casranova V, Shi X, D emers LM. New insights into the role of nuclear factor-kB, a ubiquitous transcription factor in the initiation of diseases[J]. Clin Chem 1999; 45:7-17
    [225] 陈林,戴爱国,胡瑞成.核因子相关因子2及蛋白激酶与γ谷氨酰半胱氮酸在慢性阻塞性肺疾病大鼠肺组织的表达[J].中华结核和呼吸杂志 2006,29(7)487—488
    [226] 杨民和,郑重.蛋白质可逆磷酸化在植物—病原菌互作中的作用[J].植物生理学通讯,2001,37(2):173-177
    [227] 杨斌,余静,陈勃.松针褐斑病菌毒素对紫茎泽兰抗病相天酶的影响[J].草业科学2005,22(6):81-84
    [228] 马长乐,王萍萍 曹子谊,等.盐地碱蓬(suaeda salsa)APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报,2002,28(4):261-266
    [229] 李筠,邓西平,郭尚洙,等.转铜锌超氧化物歧化酶和抗坏血酸过氧化物酶基因甘薯的耐旱性[J].植物生理与分子生物学学报,2006,32(4)
    [230] 张玉秀,柴团耀.菜豆病程相关蛋白基因在重金属胁迫下的表达分析[J].中国生物化学与分子生物学报,2000,16(1)46-50
    [231] Jin H, Martin C. Multifunctinonality and diversity within the plant MVB-gene family[J], plant Mol.Biol,1999,41:577—585
    [232] Yinong YANG, Daniel F.Klessig. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco[J]. PNAS, 1996, 93:14972-14977
    [233] Hood E E, Shen Q I, Varner J E. A developmentally regulated hydroxyprolinc rich glycoprotcin in maize pericarp cell walls[J]. Plant Physiol, 1988,87:138-142
    [234] Hammerschmidt R, Lamport D T A, Muldoon E P. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum[J] Physiol Plant Path,1984,24:43-47
    
    [235] Pablo D. Rabinowicz,, Edward L. Braun., Andrea D. Wolfe, et al. Maize R2R3 Myb Genes: Sequence Analysis Reveals Amplification in the Higher Plant[J]. Genetics,1999,153: 427-444
    
    [236]Stracke, R., Werber, M., Weisshaar,B..The R2R3-Myb gene family in Arabidopsis thaliana[J]. Curr. Opin. Plant Biol. 2001,.4:447-456.
    
    [237]Justin 0. Borevitz, Yiji Xia. et al. Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis[J]. Plant Cell, 2000,(12):2383-2394
    
    [238]Deluc, F. Barrieu, C. Marchive, et al. Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathway[J].Plant Physiology , 2006,140(2): 499 - 511.
    
    [239]Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J., Marks, M.D., A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J]. Cell 1991. 67, 483-493.
    
    [240] Kazuo Hosoda, Aya Imamura, Etsuko Katoh, et al. Molecular Structure of the GARP Family of Plant Myb-Related DNA Binding Motifs of the Arabidopsis Response Regulators[J]. Plant Cell, 2002,14: 2015-2029
    
    [241]Vailleau F, Xavier Daniel, Maurice Tronchet, et al. A R2R3-MYB gene,AtMYB30,acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack[J].Proc.Natl.Acad.Sci.USA.,2002,99(15):10179-84
    
    [242]H. Abe. K. Yamaguchi-Shinozaki, T. Urao, et al. Role of Arabidopsis MYC and MYB Homologs in Drought-and Abscisic Acid-Regulated Gene Expression[J]. Plant Cell,1997,9: 1859-1868
    
    [243]Yu, E.Y., Kim, S.E., Kim, J.H., Ko, J.H., Cho, M.H., Chung, I.K...Sequence-specific DNA recognition by the Myb-like domain of plant telomeric protein RTBP1. J. Biol. Chem. 2000,275. 24208-24214.
    
    [244]Cizhong Jiang, Xun Gu, Thomas Peterson. Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L.ssp indica [J].Genome Biology 2004,(5):R46-11
    
    [245]Cizhong Jiang, Jianying Gu, Surinder Chopra.et al. Ordered origin of the typical two- and three-repeat Myb genes[J].Gene .2004, (326): 13-22
    
    [246]Harald D. Kranz.Marten Denekamp, Raffaella Greco, et al.Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J].PIant Journal, 1998,(16): 263-276
    
    [247]CEDRONI M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploidy cotton [J]. Plant Molecular Biology,2003, 51:313-325.
    [248]Marten Denekamp , Sjef C.Smeekens.Integration of Wounding and Osmotic Stress Signals Determines the Expression of the AtMYB102 Transcription Factor Gene[J]. Plant Physiol. 2003 ,132(3): 1415-1423.
    
    [249]Anusha P. Dias, Edward L. Braun. Michael D. et al.Recently Duplicated Maize R2R3 Myb Genes Provide Evidence for Distinct Mechanisms of Evolutionary Divergence after Duplication[J].Plant Physiology, Feb 2003; 131: 610.
    
    [250]Vicente Rubio, Francisco Linhares, Roberto Solano,et al.A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae [J]. Genes Dev. 2001,15(16): 2122-2133
    
    [251]Urao T, Yamaguchi-Shinozaki K, Urao S et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. Plant Cell,5:1529-1539
    
    [252]Manu Agarwal. Yujin Hao, Avnish Kapoor, et al.A R2R3 Type MYB Transcription Factor Is Involved in the Cold Regulation of CBF Genes and in Acquired Freezing Tolerance[J].J. Biol. Chem., Dec 2006; 281: 37636 - 37645
    
    [253] Jianhua Zhu, Paul E. Verslues, Xianwu Zheng, et al.HOSlO encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants[J].PNAS. 2005; 102: 9966 - 9971
    
    [254]Xiaoyan Dai, Yunyuan Xu, Qibin Ma, et al. Overexpression of a R1R2R3 MYB Gene, OsMYB3R-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis[J]. Plant Physiology, 2007, 10.1104/pp.l06.094532
    
    [255]Van Loon L C.Induced Resistance in Plants and the Role of Pathogenesis-related Proteins[J].European Journal of Plant Pathology,1997,103:753-765
    
    [256]Sakihito Kitajima, Fumihiko Sato. Plant Pathogenesis-Related Proteins: Molecular Mechanisms of Gene Expression and Protein Function[J]. J. Biochem, 1999, 12591: 1-8
    
    [257]MICHEL LEGRAND, SERGE KAUFFMANN, PIERRETTE GEOFFROY,Biological function of pathogenesis-related proteins: Four tobacco Pathogenesis-related proteins are chitinase[J]. Proc Natl Acad Sci USA, 1987,84:6750-6754
    
    [258]Claude P.Selitrennikoff. Antifungal proteins[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,200167.7:2883-2894.
    
    [259]Shigemi Seo.Masaji Okamoto,Takayoshi Iwai, et al.Reduced Levels of Chloroplast FtsH Protein in Tobacco Mosaic Virus-Infected Tobacco Leaves Accelerate the Hypersensitive Reaction[J].the Plant cell,2000, 12: 917-932,
    
    [260]Schilling S, Stenzel I, von Bohlen A, et al. Isolation and characterization of the glutaminyl.3 cyclases from Solarium tuberosum and Arabidopsis thaliana: implications for physiological functions[J].Biol Chem. 2007,388(2):145-53
    
    [261] Chang-Jin Park, Jong-Min An, Yun-Chul Shin,et al. Molecular characterization of pepper germin-like protein as the novel PR-16 family of pathogenesis-related proteins isolated during the resistance response to viral and bacterial infection[J]. Planta, 2004, 219(5): 797-806
    [262] KOMATSU S MICHAEL P, WASHBUM B, et al. Separation and characterization of proteins from green and etiolated shoots of rice(Oryza sativa L.):towards a rice proteome[J]. Eletrophoresis, 1999,20:630-636
    [263] GYGI S P, ROCHON Y.FRANZA B R, et al. Correlation between protein and mRNA abundance in yeast[J]. Mol Cell Biol,1999,19(3):1720-1730.
    [264] Kling J. Could transgenic super crops one day breed super weeds[J].Science, 1996, 274 (5285): 180-181
    [265] Mikkelsen TR, Jensen J, Jorgensen RB. The risk of crop transgene spread[J]. Nature, 1996, 380 (6569): 31
    [266] 魏伟,钱迎倩,马克平.转基因作物与其野生亲缘种间的基因流[J].植物学报,1999,41(4):343-348
    [267] Malone L A, Burgess E P J, Stefanovic D. Effects of a Bacillus thuringiensis toxin, two Bacillus thuringiensis biopesticide formulations, and a soybean trypsin inhibitor on honey bee (Apis mellifera L.) survival and food consumption[J]. Apidologie, 1999, 30:465-473
    [268] 刘标,许崇任.转基因植物对传粉蜂类影响的研究进展[J].生态学报,2003,23(5):946-955
    [269] Schuler T H, Denholm I, Jouanin L, et al. Population-scale laboratory studies of the effect of transgenic plants on nontarget insects[J]. Molecular Ecology, 2001, 10(7): 1845-1853.
    [270] NealJ.L.,R.I.Larson, T.G. Atkinson. 1973. Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat[J]. Plant Soil 39:209-212
    [271] McGregor A N, Turner M A, 2000.Soil effects of transgenic agriculture: biological processes and ecological consequences[J]. NZ Soil News 48(6):166-169
    [272] Saxena D, Stotzkv G. Bacillus thuringiensis(Bt)toxin released from root exudates and biomass of Bt corn has no apparent effect on erathworns, nematodes, protozoa, bacteria, and fungi in soil[J]. Soil Biology & Biochemistry, 2001,33:1255-1230
    [273] Oger P. Petit A, Dessaux Y. 1997. Genetically engineered plants producing opines alter their biological environment[J].Nature Biotechnol,15(4):369-372
    [274] 中国科学院南京土壤研究所微生物室.土壤微生物实验法[M].北京:科学出版社,1985,40-75
    [275] 关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1986.P264-270
    [276] Hackett C.A.. Griffiths B.S. Statistical analvsis of the time-course of Biolog substrate utilization[J].Journal of Microbiological Methods,1997,30:63-69
    [277] 曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2005,9(1):105-109
    [278] Rhoades J D, Shouse P J, Alves NA, et al. Determining soil salinity from soil electrical conductivity using different models and estimates[J]. Soil Sci.Soc.Am.J.54(1):46-54.
    [279] Choi K H, Dobbs F C. Comparison of two kinds of biolog microplates (GN and ECO)in their ability to distinguish among aquatic microbial communities[J].Journal of Microbiological Methods, 1999,36(3):203-213
    [280] Zak J.C.,Willig M.R.,Moorhead D.L, et al. Functional diversity of microbial communities a quantitative approach[J]. Soil Biology & Biochemistry,1994,26, 1101-1108
    [281] Hancock J F. Grumet R, Hokanson S C. The opportunity for escape of engineered gene from transgenic crops[J]. Hortscience,1996,31(7):1080-1085.
    [282] Bergelson JCB, Wichmenn G.Promiscuity in transgenic plant[J].Nature,1998,395:25-27.
    [283] C. Neal Stewart, Jr. Harold A. Richards, Ⅳ Matthew D. Halfhill. Transgenic plants and biosafetv: science, misconceptions, and public perceptions[J].Biotechniques,2000,29:832-843
    [284] Hilbeck A, Baumgartner M, Fried P M, et al. Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea (Neuroptera: Chrysopidae) [J]. Environ Entomol, 1998, 27(2): 480-487
    [285] P. P. Motavalli, R. J. Kremer, M. Fang, et al. Impact of Genetically Modified Crops and Their Management on Soil Microbiallv Mediated Plant Nutrient Transformations[J]. J. ENVIRON. QUAL., 2004 33:816-924
    [286] Kari E. Dunfield and James J. Germida. Impact of Genetically Modified Crops on Soil-and Plant-Associated Microbial Communities[J]. J. ENVIRON. QUAL., 2004 33:806-815
    [287] Donegan KK, Palm CJ. Fieland VJ, et al. Change in levels, spicies and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var[J]. Kurstaki endotoxin.Applied soil Ecology, 1995,2:111-124
    [288] 王建武.冯远娇.种植Bt玉米对土壤微生物活性和肥力的影响[J].生态学报,2005,25(5):1213-1220
    [289] 袁红旭,张建中,郭建夫.等.种植转双价抗真菌基因水稻对根际微生物群落及酶活性的影响[J].土壤学报.2005,42(1):122—126