温度胁迫下番茄叶绿体甘油-3-磷酸酰基转移酶基因的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温是限制冷敏感植物产量和地理分布的重要因素。生物膜是低温伤害的初始位点。植物的抗冷性与膜脂中脂肪酸的不饱和程度密切相关。由于叶绿体中磷脂酰甘油(PG)的sn-2位主要被饱和脂肪酸或反式不饱和脂肪酸所占据,因而PG在sn-1位的顺式不饱和脂肪酸水平决定了植物的抗冷性。决定PG中sn-1位顺式不饱和脂肪酸含量的是叶绿体甘油-3-磷酸酰基转移酶(GPAT: EC2.3.1.15)对底物的选择性。GPAT是PG生物合成过程中的第一个酰基脂化酶,它将脂肪酰转移到3-磷酸甘油的sn-1位上合成1-酰基-Sn-甘油-3-磷酸(溶血磷脂酸)。来源于抗冷性不同的植物的GPAT对底物酰基具有不同的选择性。一般来说,抗冷植物中GPAT优先选择C18:1-ACP作为底物,因此在这些植物中PG的sn-1位上就含有较高比例的18:1脂肪酸,这些脂肪酸可以在酰基脂肪酸去饱和酶的作用下进一步去饱和化成为顺式多聚不饱和脂肪酸;然而在冷敏感植物中,GPAT很难区分C18:1-ACP和C16:0-ACP,由于16:0脂肪酸不能被进一步去饱和形成顺式不饱和脂肪酸,结果这些植物中PG的sn-1位顺式不饱和脂肪酸含量较低,从而表现为冷敏感。
     本研究从番茄叶片中分离到叶绿体甘油-3-磷酸酰基转移酶基因,并对该基因的表达和功能进行了分析。主要结果如下:
     1.利用同源序列设计简并引物,通过RT-PCR的方法从番茄叶片克隆到甘油-3-磷酸酰基转移酶基因的中间片段,通过5’-RACE和3’-RACE分别克隆到5’和3’片段,拼接后设计特异引物扩增到全长cDNA,命名为LeGPAT (DQ459433)。该基因全长为1770 bp,ORF为1314 bp,编码437个氨基酸,分子量约为48 kDa。同源序列比较发现,番茄甘油-3-磷酸酰基转移酶基因的序列与甜椒、红花、豌豆、菠菜的甘油-3-磷酸酰基转移酶基因的序列同源性较高。结构同源性分析表明LeGPAT有四个序列保守的结构域,block I的组氨酸和天冬氨酸残基,block III的甘氨酸残基和block IV的脯氨酸残基都是绝对保守的,它们组成了一个重要的催化位点。
     2.将p35S-LeGPAT-GFP融合蛋白在豇豆原生质体中瞬时表达。通过Confocal观察到GFP激发的绿色荧光和叶绿素的红色自发荧光完全重合,说明LeGPAT的基因产物定位于叶绿体
     3. Northern杂交分析显示,LeGPAT在不同器官中呈非特异性表达,在叶绿素含量高的组织中表达量较高。同时,该基因在4-40℃的温度范围内均有表达,且受低温诱导,高温胁迫抑制其表达。
     4.将获得的LeGPAT与含有35S启动子的pBI121载体重组,分别构建了正义和反义表达载体,利用农杆菌介导的叶盘法转化番茄,用PCR和Northern杂交的方法对带卡那抗性的转基因番茄植株进一步检测,获得了转正义和反义基因的番茄植株。与野生型植株相比,过量表达LeGPAT的番茄叶片类囊体膜PG中18:2和18:3含量明显增加,脂肪酸不饱和度升高,从而导致低温胁迫下转基因植株类囊体膜的流动性高于野生型植株。LeGPAT表达发生沉默的番茄植株中PG的18:2和18:3含量下降,而16:0,16:1和18:0含量增加,脂肪酸饱和度升高。
     5.构建了原核表达载体pET-LeGPAT,并在大肠杆菌BL21中表达融合蛋白,免疫小白鼠,制备抗体,其抗血清效价为1:500。Western杂交表明,转正义植株中LeGPAT已在蛋白水平过量表达。
     6.将野生型和转正义基因番茄的酶提取液,以及原核表达后纯化的蛋白分别与[1-14C]18:1-CoA,[1-14C]16:0-CoA,甘油-3-磷酸,HEPES-NaOH缓冲液和BSA反应测定甘油-3-磷酸酰基转移酶的选择性和该酶的活性。结果表明,尽管番茄是冷敏感植物,但甘油-3-磷酸酰基转移酶对18:1的选择性明显高于16:0,且转正义基因番茄的酶含量和总活性高于野生型。
     7.在低温弱光(4℃,100μmol m-2 s-1)胁迫条件下,野生型和转正义基因株系T1-5和T1-19的光合速率(Pn)都降低,但野生型的降低较明显,并且T1-5和T1-19的Pn可以在12 h内恢复,而野生型的Pn在12 h时仅恢复了73.2%,在24 h时恢复了86.4%。在低温胁迫过程中,T1-5和T1-19的光系统II最大光化学效率(Fv/Fm)降低的程度比野生型小,而且恢复较快,恢复8 h时T1-5和T1-19的Fv/Fm完全恢复,但此时野生型的Fv/Fm只恢复了95.2%。在低温弱光处理过程中,转正义基因植株与野生型的氧化态P700都降低,且区别不大,而转正义基因植株的氧化态P700恢复较快。经过24 h的恢复,T1-5的氧化态P700恢复了98.5%,T1-19的恢复了99.4%,而野生型的只恢复了85.3%;经过12 h的低温胁迫,T1-5和T1-19的相对电导率分别增加到21.3%和19.3%,而野生型的增加到24.4%。转正义基因植株和野生型的NPQ及(A+Z)/(V+A+Z)都增加,但转正义基因植株的NPQ和(A+Z)/(V+A+Z)增加的较多。野生型番茄的叶绿体SOD和APX活性在胁迫的最初6 h升高,随后降低,而转正义基因植株的叶绿体SOD和APX活性在处理9 h后才轻微的降低。低温处理6 h后,转正义基因植株的SOD和APX活性高于野生型。野生型番茄的O2和H2O2的含量在低温处理6 h后开始增加,而转正基因植株的O2和H2O2含量在处理9 h后才增加,而且野生型的O2和H2O2含量增加的程度明显高于转基因植株。胁迫结束时,T1-5,T1-19和野生型的O2含量分别增加了15.7%,14.8%和63.0%,而H2O2含量分别增加了26.0%,15.8%和77.6%。
     8.反义介导的LeGPAT的缺失能够影响番茄的育性。从形态上看,转反义基因株系(-)12的花粉粒大部败育。(-)12株系从小孢子母细胞时期绒毡层开始败育,在单核小孢子液泡期败育的花粉粒明显高于野生型。反义介导的LeGPAT的缺失能够减少内质网的合成,改变油脂的大小。当花粉粒在培养基上萌发60 min后,野生型的花粉有65%的萌发,而转反义基因株系(-)12的花粉仅有8%的萌发。当花粉粒在培养基上萌发120 min后,野生型花粉的萌发率几乎为100%,而(-)12株系的仅为20%。转反义基因株系(-)12中53.8%(14/26)的花败育,而野生型植株中仅有7.8%(4/51)的花败育。转反义基因植株的种子败育,失去再生能力,而野生型的种子发育正常。
     9.在高温弱光胁迫(45℃,100μmol m-2 s-1)下处理6 h和12 h,野生型和转反义基因番茄的放氧速率都降低,但野生型降低的比较明显。45℃处理6 h后,野生型,(-)7和(-)12株系的放氧速率分别降低到初始值的30.5%,47.4%和50.9%;12 h时分别降低到7.2%,18.5%和19.4%。高温胁迫过程中,野生型和转反义基因番茄的Fv/Fm都降低,但野生型降低的比较明显。45℃下处理12 h,野生型,(-)7和(-)12株系的Fv/Fm分别降低了42.5%,30.9%和26.8%。
     上述结果表明,LeGPAT的表达受低温诱导,被高温胁迫抑制。番茄叶绿体甘油-3-磷酸酰基转移酶对18:1的选择性明显高于16:0,且转正义基因番茄中该酶的含量和总活性高于野生型番茄。过量表达该基因可提高番茄植株的耐冷性,而抑制该基因表达可增强番茄植株的耐热性,影响番茄的育性。
Low temperature is the major factor limiting the productivity and geographical distribution of chilling-sensitive plant species. It was suggested that membrane was the primary position to be damaged under chilling stress. The tolerance of plants to chilling stress was closely connected with the fatty acid unsaturation of plant membrane lipids. Sn-2 position is occupied mainly by saturated and trans-unsaturated fatty acids, so the content of cis-unsaturated fatty acids at the sn-1 position of Phosphatidylglycerol (PG) determines chilling resistance. The dominant factor that determines the level of cis-unsaturated fatty acids in PG is the substrate selectivity of glycerol-3-phosphate acyltransferase(GPAT: EC2.3.1.15)in chloroplasts, which catalyzes the first step of glycerolipid biosynthesis by transferring the acyl group of acyl-(acyl-carrier protein) (ACP) to the sn-1 position of glycerol-3-phosphate to yield 1-acylglycerol-3-phosphate (lysophosphatidate; LPA). GPAT from chilling-resistant plants prefers oleoyl-ACP (18:1-ACP) to palmitoyl-ACP (16:0-ACP) as a substrate. Thus, a large proportion of oleic acid (18:1) occurs at the sn-1 position of PG in chilling-resistant plants. Under chilling stress oleic acid (18:1) of sn-1 position desaturates further into cis-polyunsaturated fatty acids of linoleic acid (18:2) and linolenic acid (18:3) by acyl-fatty acid desaturase in chloroplast membranes. The enzyme from chilling-sensitive plants hardly distinguishes 18:1-ACP from 16:0-ACP. Fatty acid of sn-1 position remains unchanged, resulting in a low level of cis-unsaturated fatty acids at the sn-1 position of PG, which increase sensitivity of plants to chilling stress.
     In this study, we isolated and characterized chloroplast glycerol-3-phosphate acyltransferase gene from tomato. The main results are as follows:
     1. Two degenerate primers were designed to amplify specific DNA fragment using cDNA prepared from tomato leaves according to the homologous sequences from other plants. The middle fragment of interested cDNA was obtained by RT-PCR. The 5’and 3’fragment of the cDNA was isolated by 5’and 3’RACE. The clone, which named LeGPAT (Acession Numeber:DQ459433), contains 1770 bp nucleotides with an open reading frame (ORF) of 1314 bp comprising 437 amino acid residues with the predicted molecular mass of 48 kDa. The deduced amino acid sequence showed high identities with GPAT from Capsicum annuum, Carthamus tinctorius, Pisum sativum, Spinacia oleracea. Amino acid sequence alignment revealed that the plant members contained four acyltransferase domains. The His and Asp residues in block I, the Gly residue in block III, and the Pro residue in block IV, all of which have shown to form a catalytically important site in this family of acyltransferases, are absolutely conserved.
     2. p35S-LeGPAT-GFP fusion protein was constructed and transiently expressed in cowpea protoplasts derived from leaf tissue. It was observed with confocal microscopy that the green fluorescence was clearly associated with chloroplasts and colocalized with the red autofluorescence of chloroplasts, demonstrating that LeGPAT subcellular localization on chloroplast.
     3. Northern hybridization shows that LeGPAT constitutively expressed in stems, petals, fruits and leaves of wild type plants. The transcripts were high in the tissues abundant of chlorophyll. LeGPAT expressed extensively from 4 to 40℃in leaves and the expression of LeGPAT was obviously induced by low temperature and inhibited by high temperature.
     4. The full-length LeGPAT cDNA was subcloned into the expression vector pBI121 downstream of the 35S-CaMV promoter to form sense and antisense constructs. The constructs were first introduced into Agrobacterium tumefaciens LBA4404 by the freezing transformation method and verified by PCR and Northern hybridization. It was indicated that the LeGPAT had been recombined into tomato genome and both sense and antisense transgenic tomato plants were obtained. A higher content of 18:2 and 18:3 in PG was detected in sense transgenic plants compared with the wild type (WT) tomato plants. The fluidity of thylakoid membrane of sense transgenic plants was higher than WT under low temperature. Depletion of LeGPAT in tomato decreased the content of unsaturated fatty acids (18:2 and 18:3) in PG. But the contents of 16:0, 16:1 (△3- trans, sometimes referred to as high-melting-point fatty acids) and 18:0 increased in antisense transgenic plants compared to that of WT plants.
     5. A recombinant of prokaryotic expression vector pET-LeGPAT was constructed and transformed to E.Coli. BL21. The strong induced fusion protein bands were collected into PBS solution and used to immunize white mice to obtain antiserum. The value of antibody reaches 1:500. Western hybridization revealed the presence of the strong positive protein signals corresponding to LeGPAT in sense transgenic plants.
     6. Substrate selectivity and enzyme activity of LeGPAT were measured by using purified enzyme fractions of wild type and sense transgenic tomato leaves and protein from the E. coli. cells expressing LeGPAT. Each reaction mixture contained [1-14C]18:1-CoA and [1-14C]16:0-CoA, glycerol-3-phosphate, HEPES-NaOH buffer and BSA. Results showed that LeGPAT exhibited 18:1-selectivity over 16:0 and transgenic plants had higher selectivity (18:1) than wild type plants.
     7. Although Pn of WT and sense transgenic plants decreased markedly under chilling stress in the low irradiance (4℃, 100μmol m-2 s-1), the decrease of Pn was more obvious in WT than in sense transgenic plants. After tomato plants were transferred to a condition of 25℃and a PFD of 600μmol m-2 s-1, Pn of T1-5 and T1-19 recovered completely in 12 h, whereas Pn of wild type plants recovered only 73.2% in 12 h and 86.4% in 24 h. Fv/Fm decreased obviously during chilling stress (4℃) and recovered slowly in wild type plants relative to in sense transgenic plants. Fv/Fm of T1-5 and T1-19 recovered completely in 8 h, while Fv/Fm of WT only recovered 95.2%. The oxidizable P700 decreased significantly both in WT and sense transgenic plants under chilling stress in the low irradiance and there were no evident differences. When tomato plants were transferred to a suitable condition of 25℃and a PFD of 100μmol m-2 s-1, the oxidizable P700 of sense transgenic plants recovered more quickly than WT. After 24 h recovery, the oxidizable P700 could recover 98.5%, 99.4% and 85.3% in T1-5, T1-19 and WT, respectively. After treatment at 4℃for 12 h, the relative electrolytic leakage of T1-5 and T1-19 increased to 21.3% and 19.3%, whereas 24.4% in WT. Both NPQ and the de-epoxidized ratio of the xanthophylls cycle, (A+Z)/(V+A+Z), increased in WT as well as in sense transgenic plants at chilling temperature. NPQ and (A+Z)/(V+A+Z) of sense transgenic plants markedly increased relative to that of WT during chilling stress. The chloroplastic SOD and APX activities of WT plants increased during first 6 h of chilling stress and then decreased, whereas the SOD and APX activities of sense transgenic plants increased during first 9 h of chilling stress and then slightly decreased. After 6 h chilling stress, Chloroplast SOD and APX activities of transgenic plants were higher than that of WT. The contents of O 2 and H2O2 in WT increased after 6 h chilling stress, while the contents of O 2 and H2O2 of sense transgenic plants increased only after 9 h chilling stress. Both O 2 and H2O2 contents increased more markedly in WT plants than in sense transgenic plants. At the end of chilling stress, O 2 content in leaves of T1-5, T1-19 and WT plants increased for about 15.7%, 14.8% and 63.0% of initial values, respectively, and H2O2 content of T1-5, T1-19 and WT increased for about 26.0%, 15.8% and 77.6% of initial values, respectively.
     8. Antisense-mediated depletion of LeGPAT severely affected tomato male fertility. Examination of scanning electron micrographs of pollen grains revealed that the majority of pollen grains of antisense line were collapsed in morphology. Clear evidence of tapetum developmental defects was detected beginning at the microspore mother cell stage. More arrested pollen grains were found at the vacuolated microspore stage in antisense line (-)12 than in wild type tomato plants. In addition, lipid bodies in antisene line (-)12 were more evident and ER was less than in WT. After germination on culture medium for 60 min, approximately 65% of WT pollen grains germinated, while only 8% of (-)12 germinated. After 120 min, the proportion of germinated pollen grains in WT was nearly 100%, compared to only 20% in (-)12 line. According to the statistical analysis, flower development was arrested in 53.8% (14/26) of the samples from antisense lines, compared to only 7.8% (4/51) in wild type plants. Seeds of wild type developed normally and could reproduce, whereas the progenitive ability of antisense seeds was lost.
     9. The O2 evolution rates of WT and antisense transgenic tomato plants significantly decreased at 45℃for 6 h and 12 h. The decrease was more obvious in the wild type than in antisense transgenic plants. After 6 h heat stress, the O2 evolution rates in wild type, antisense transgenic lines (-)7 and (-)12 decreased to about 30.5%, 47.4% and 50.9% of initial values, respectively. After 12 h heat stress the O2 evolution rates of wild type, (-)7 and (-)12 lines decreased to 7.2%, 18.5% and 19.4% of initial values, respectively. Fv/Fm decreased in both WT and transgenic plants at 45℃heat stress, with wild types showing the greater decrease. At the end of 12 h heat stress, Fv/Fm in wild type, (-)7 and (-)12 lines decreased about 42.5%, 30.9% and 26.8%, respectively.
     The functional analysis showed that expression of the gene was induced by low temperature, whereas it was inhibited by heat stress. LeGPAT exhibited 18:1-selectivity over 16:0. The content of LeGPAT was higher in transgenic plants than in wild type tomato. It is interesting that overexpression of chloroplast LeGPAT increased the resistance to chilling stress. However, the depletion of LeGPAT was helpful in improving the thermal tolerance of tomato plants to high temperature and caused a massive arrest in pollen development.
引文
陈国祥,何兵,魏锦城等. 低温下强光胁迫对小麦叶片光系统 I 结构与功能的影响.植物生理学报, 2000, 26(4): 337-342
    陈少裕. 膜脂过氧化与植物逆境胁迫. 植物学通报, 1989, 6 (4): 211-217
    戴良英, 徐领会, 黄大昉, 李 栒, 罗 宽, 官春云. 拟南芥ASK1与COI1形成蛋白复合体并控制雄性不育. 中国科学(C 辑), 2002, 32(5): 399-404
    董发才, 宋纯鹏. 植物细胞中的泛素及其生理功能. 植物生理学通讯, 1999, 35(1): 54-59
    董高峰, 陈贻竹. 植物叶黄素与非辐射能量耗散. 植物生理学通讯, 1999, 35(2): 141-144
    段伟, 李新国, 孟庆伟. 低温下的植物光抑制机理. 西北植物学报, 2003, 23(6): 1017-1023
    郭连旺, 沈允钢. 高等植物光合机构避免强光破坏的保护机制. 植物生理学通讯, 1996, 32: 1-8
    李新国, 段伟, 孟庆伟, 邹琦. PSI 的低温光抑制. 植物生理学通讯, 2002, 38(4): 375-381
    柳维波, 曹槐, 刘世熙, 刘次全. 七种不同抗冷性植物甘油-3-磷酸转酰酶 mRNA 二级结构研究. 云南植物研究, 2002, 24(4): 463-470
    彭文博, 王向阳, 赵会杰, 崔金梅. 不同光温条件对小麦旗叶生理特性及粒重的影响. 植物生理学通讯, 1992, 28(6): 421-423
    苏维埃, 王文英, 李锦树. 植物类脂及脂肪酸的分析技术. 植物生理学通讯, 1980, 3: 54-60
    王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, 6: 55-57
    温晓刚, 林世青, 匡廷云. 高温胁迫对 PSII 异质性的影响. 生物物理学报, 1996, 12: 714-718
    吴长艾, 孟庆伟, 邹琦. 叶黄素循环及其调控. 植物生理学通讯, 2001, 37(1): 1-5
    辛越勇, 冯丽洁, 许亦农, 焦德茂, 李良壁, 匡廷云. 高光胁迫对水稻籼粳亚种两个品种色素蛋白复合体的影响. 植物学报, 2000, 42(12): 1278-1284
    许大全. 光系统 II 反应中心的可逆失活及其生理意义. 植物生理学通讯, 1999, 35(4): 273-276
    杨明挚, 陈善娜, 鄢波, 黄兴奇, 刘继梅. 黑子南瓜甘油-3-磷酸酰基转移酶基因的克隆及序列分析. 云南植物研究, 1999, 21(2): 139-143
    杨明挚, 陈善娜, 鄢波, 黄兴奇, 刘继梅. 南瓜甘油-3-磷酸转酰酶基因cDNA的克隆及限制性图谱分析. 云南大学学报(自然科学版), 1998, 20(5): 374-376
    叶济宇. 叶绿体的电子传递. 见: 余叔文, 汤章城 主编. 植物生理与分子生物学. 北京:科学出版社, 1998, 198-211
    赵世杰 主编. 植物生理学实验指导. 北京: 中国农业出版社, 1998, 161-165
    Allen DJ, Ort DR. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Tren Plant Sci, 2001, 6: 36-41
    Ariizumi T, Kishitani S, Inatsugi R. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol, 2002, 43(7): 751-758
    Aro EM, Kettunen R, Tyystjrvi E. ATP and light regulated D1 protein modification and degradation. Role of D1 in photoinhibition. FEBS Lett, 1992, 297: 29-33
    Aro EM, Virgin I, Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta, 1993, 1143: 113-134
    Arvidsson PO, Carlsson M, Stefánsson H, Albertsson PA, Akerlund HE. Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes. Photosynth Res, 1997, 52(1): 39-48
    Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (eds Kyle DJ, Osmond CB, Amtzen CJ). Pp.227-287, 1987, Elsevier Science Publishers, Amsterdam
    Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (ed). Cause of photooxidative Stress and Amelioration of Defense Systems in Plants. Boca Raton: CRC Press, 1994, 77-104
    Baker NR. Possible role of photosystem II in environmental perturbations of photosynthesis. Plant Physiol, 1991, 81: 563-570
    Barber J, Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 1992, 17: 61-66
    Barber J, Norris J, Morris EP, Zheleva D, Hankamer B. The structure, function and dynamics of photosystem two. Physiol Plant, 1997, 100: 817-828
    Barber J. Molecular basis of the vulnerability of photosystem II to damage by light. Aust J Plant Physiol, 1995, 22: 201-208
    Berry JA, Bj?rkman O. Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol, 1980, 31: 491-543
    Boucher N, Carpentier K. Heat-stress stimulation of oxygen uptake by photosystem II involves the reduction of superoxide radicals by specific eletron donor. Photosynth Res, 1993, 35: 213-218
    Bruinsma J. A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta, 1961, 53: 576-578
    Campbell D, Bruce D, Carpenter C, Gustafsson P, ?quist G. Two forms of the Photosystem II D1 protein after energy dissipation and state transition in the cyanobacterium Synechocystis sp. PCC 7942. Photosynth Res, 1996, 47: 131-144
    Cao J, Govindjee. Chlorophyll a fluorescence transient as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta, 1990, 1015: 180-188
    Cheniae GM, Martin IF. Site and function of manganese within photosystem II. Role in O2 evolution and system II. Biochim Biophys Acta, 1970, 197: 219-239
    Chylla RA, Whitmarsh J. Inactive photosystem II complexes in leaves: Turnover rate and quantitation. Plant Physiol, 1989, 90: 765-772
    Cleland R, Melis A, Neale PJ. Mechanism of photoinhibition: photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res, 1986, 9: 79-88
    Coca MA, Almoguera C, Thomas TL, Jordano J. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible developmentally activated sunflower promoter. Plant Mol Biol, 1996, 31: 863-876
    Cornic G, Bukhov NG, Wiese C, Bligny R, Heber U. Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plant. Role of photosystem I-dependent proton pumping. Planta, 2000, 210: 468-477
    Crookston RK, O'Toole J, Lee R, Ozburn JL, Wallace DH. Photosynthetic depression in beans after exposure to cold for one night. Crop Sci, 1974, 14: 457-464
    Darkó é, Váradi G, Lemoine Y, Lehoczki E. Defensive strategies agaist high light stress in wild and D1 protein mutant biotypes of Erigeron canadensis. Aust J Plant Physiol, 2000, 27: 325-333
    Demmig-Adams B, Adams WW III. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant cell Environ, 1992a, 15: 411-419
    Demmig-Adams B, Adams WW III. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Mol Biol, 1992b, 43: 599-605
    Demmig-Adams B, Winter K, Krüger A, Czygan FC. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol, 1987, 84(2): 218-224
    Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophylls zeaxanthin. Biochim Biophys Acta, 1990, 1020: 1-24
    Dittrich H, Kutchan TM, Zenk MH. The jasmonate precuraor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett, 1992, 309: 33-36
    Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z. Phosphatidylglycerol is essential for oligomerization of photosystem I reaaction center. Plant Physiol, 2004, 134: 1471-1478
    Eckardt NA, Portis ARJ. Heat denaturation profiles of ribulose-1, 5- bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denaturated Rubisco. Plant Physiol, 1997(113): 243-248
    Elston T, Wang HY, Oster G. Energy transduction in ATP synthase. Nature.1998, 391: 510-513
    Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S. Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33kDa protein or of Mn? Biochim Biophys Acta, 1994, 1186: 52-58
    Eskling M, Arvidsson PO, Akerlind HE. The xanthophyl cycle, its regulation and components. Physiol Plant, 1997, 100: 806-816
    Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis. Planta, 1998, 206: 167-174
    Farmer EE. Fatty acid signaling in plants and their associated microorganisms. Plant Mol Biol, 1994, 26: 1423-1437
    Feller US, Crafts-Brandner SJ, Salvucci ME. Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol, 1998, 116: 539-546
    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976, 133: 21-25
    Foyer CH, Lelandais M. A comparison of the relative rate of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. J Plant Physiol, 1996, 148: 391-398
    Frentzen M, Heinz E, Mckeon TA, Stumpf PK. Specificatives and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem, 1983, 129: 625-636
    Frentzen M, Nishida I, Murata N. Properties of the plastidial acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant Squash (Cucurbita moschata). Plant Cell Physiol, 1987, 28: 1195-1201
    Frentzen M, Wolter FP. Molecular biology of acyltransferases involved in glycerollipid
    synthesis. In: Plant Lipid Biosynthesis. Edited by Harwood JL. Cambridge University Press, Cambridge, 1998, pp 247-272
    Fridovich I. Superoxide dismutase. Ann Rew Biochem, 1975, 44: 147-159
    Gerber DW, Burris JE. Photoinhibition and P700 in the marine diatom Amphora sp. Plant Physiol, 1981, 68: 699-702
    Giannopolitis CN, Ries SK. Superoxide Dismutases. I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314
    Gilmore AM. Mechanistic aspects of xanthophylls cycle dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant, 1997, 99: 197-209
    Gimore AM. Xanthophyll cycle-dependent nonphotochemical quenching in photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein. Photosyn Res, 2001, 67: 89-101
    Golbeck JH, Bryant DA. Photosystem I. Curr Top Bioenerg, 1991, 16: 3-177 Golbeck JH. Structure and function of photosystem I. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 293-324
    Golbeck JH. Structure, function and organization of the photosystem I reaction center complex. Biochim Biophys Acta, 1987, 895: 167-204
    Golden SS, Brusslan J, Haselkorn R. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J, 1986, 5: 2789-2798
    Gounaris K, Brain APR, Quinn PJ, Williams WP. Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta, 1984, 766: 198-208
    Gounaris K, Mannock DA, Sen A, Brain APR, Williams WP, Quinn PJ. Polyunsaturated fatty acyl residues of galactopipids are involved in the control of bilayer/non bilayer lipid transition in higher plant chloroplasts. Biocim Biophys Acta, 1983, 732: 229-242
    Govindjee. Photosystem II heterogeneity: the acceptor side. Photosynth Res, 1990, 25: 151-160
    Greer GH, Berry JA, Bj?rkman O. Photoinhibition of photosynthesis in intact bean leaves: role of light and temperature and requirement for chloroplast-protein synthesis during recovery. Planta, 1986, 168: 253-257
    Gruszecki WI, Strzalka K. Does the xanthophylls cycle take part in the regulation of the thylakoid membrane? Biochim Biophys Acta, 1991, 1060: 310-314
    Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol, 2002, 43: 1456-1464
    Halliwell B. Toxic effect of oxygen on plant tissue. Clarendon Press Oxford, 1984, 80-206 H?rtel H, Lokstein H, Grimm B, Rank B. Kinetic studies on the xanthophyll cycle in barley leaves. Plant Physiol, 1996, 110: 471-482
    Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with loss of photosysthem II activity. Preferential inactivation of Photosystem I. Photosynth Res, 1994, 40: 75-92
    Havaux M, Gruszecki WI. Heat-and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochem Photobiol, 1993, 58: 607-614
    Havaux M, Niyogi K. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA, 1999, 96: 8762-8767
    Havaux M, Tardy F, Ravenel J, Parot P. Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochrochromic shift in intact potato leaves: influence of the xanthophyll content. Plant Cell Environ, 1996, 19: 1359-1368
    Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 1998, 3: 147-151
    Havaux M. Short-term responses of PSI to heat stress. Photosyn Res, 1996, 47: 85-97
    Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot, 1997, 48: 1105-1113
    Hodgson RAL, Orr GR, Raison JK. Inhibition of photosynthesis by chilling in light. Plant Sci Lett, 1987, 49: 75-81
    Hong SS, Xu DQ. Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosyn Res, 1999, 61: 269-280
    Horton P, Ruban AV, Walter RG. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence. Physiol Plant, 1994, 106: 415-421
    Horton P, Ruban AV, Walter RG. Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 655-684
    Hugly S, Somerville C. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol, 1992, 99: 197-202
    Inoue K, Fujii T, Yokoyama E, Matsuura K, Hiyama T, Sakurai H. The photoinhibition site of photosystem I in isolated chloroplasts under extremely reducing conditions. Plant Cell Physiol, 1989, 30: 65-71
    Inoue K, Sakurai H, Hiyama T. Photoinactivation of photosystem I in isolated chloroplasts. Plant Cell Physiol, 1986, 27: 961-968
    Inoue N, Emi T, Yamane Y, Kshino Y, Koike H, Satoh K. Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant Cell Physiol, 2000, 41: 515-522
    Inoue N, Taira Y, Emi T, Yamane Y, Kashino Y, Koike H. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol, 2001, 42:1140-1148
    Jahns P, Junge W. Dicyclohexylarbodiimide-binding proteins related to the short circuit of the protonpumping activity of PSII.Identified as light-harvesting chlorophyll a/b binding proteins. Eur J Biochem, 1990, 193: 731-736
    Jakob B, Heber U. Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystem I and II. Plant Cell Physiol, 1996, 37: 629-635
    Jansson C, Maenpaa P. Site-directed mutagenesis for structure-function analysis of the photosystem II reaction center protein D1. Progr Bot, 1997, 58: 352-367
    Jimenez A, Hernandez JA, del Rio LA, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol, 1997, 114: 272-284
    Johnson N, Horton P. The dissipation of excess excitation energy in British plant species. Plant Cell Environ, 1993, 16: 673-679
    Jordan P, Formme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I as 2.5 ? resolution. Nature, 2001, 411: 909-917
    Juhler RK, Andreasson E, Yu SG, Albertsson PA. Composition of photosystem pigments in thyakoid membrane vesicles from spinach. Photosynth Res, 1993, 35: 171-178
    Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase from Arabidopsis rhaliana. Plant Physiol, 1994, 105: 601-605
    Kodama H, Horiguchi G, Nishiuchi T, Nishimura M, Iba K. Fatty acid desaturation during chilling acclimation is one of the factor involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiol, 1995, 107: 1177-1185
    Kratsch HA, Wise RR. The ultrastructure of chilling stress. Plant Cell Environ, 2000, 23: 337-350
    Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: the basis. Anuu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313
    Krause GH. Photoinhibition of photosynthesis. An evaluation of damage and protective mechanisms. Physiol Plant, 1988, 74: 566-574
    Krieger A, Moya I, Weis E. Energy-dependent quenching chlorophyll a fluorescence: effect of pH on stationary fluorescence and picosecond relaxation kinetics in thylakoid membranes and photosystem II preparations. Biochim Biophys Acta, 1992, 1102: 167
    Kruse O, Schmid GH. The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II particles of the cyanobacterium Oscill-atorie chalybea. Z Naturforsch, 1995, 50: 380-390
    Ku SB, Edwards GE, Smith D. Photosynthesis and nonstructural carbohydrate concentration in leaf blades of Panicum virgatum as affected by night temperature. Can J Bot, 1977, 56: 63-68
    Lavergne J. Fluorescence induction in algae and chloroplasts. Photochem Photobiol, 1974, 20: 377-386
    Law RD, Crafts-Brandner SJ. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1?5 - bisphosphate carboxylase/oxygenase. Plant Physiol, 1999, 120: 173-181
    Lee HY, Hong YN, Chow WS. Photoinactivation of photosystem II complex and photoprotection by non-functional neighbours in Capsicum annuum L. Leaves. Planta, 2001, 212: 332-342
    Lewin TM, Wang P, Coleman RA. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 1999, 38: 5764-5771
    Li XG, Meng QW, Jiang GQ, Zou Q. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica, 2003, 41(2): 259-265
    Li XG, Wang XM, Meng QW, Zou Q. Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica, 2004, 42: 257-262
    Liu P, Meng QW, Zou Q, Zhao SJ, Liu QZ. Effects of cold-hardening on chilling-induced photoinhibition of photosynthesis and on xanthophyll cycle pigments in sweet pepper. Photosynthetica, 2001, 39: 467-472
    Long SP, East TM, Baker NR. Chilling damage to photosynthesis in young Zea mays I. Effects of light and temperature variation on photosynthetic CO2 assimilation. J Exp Bot, 1983, 34: 177-188
    Los DA, Horvath I, Vigh L. The temperature-dependent expression of the desaturase desA in Synechocystis PCC6803. FEBS Lett, 1993, 318: 57-60
    Lunde C, Jnesen PE, Haldrup A, Knoetzel J, Scheller HV. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature, 2000, 408: 613-615 Lyons JK, Chapman EA. Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Aust J Plant Physiol, 1976, 3: 291
    Lyons JM, Raison JK. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol, 1970, 45: 386-389
    Lyons JM. Chilling injury in plants. Annu Rev Plant Physiol, 1973, 24: 445-451 Martin B, Ort DR, Boyer JS. Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol, 1981, 68: 329-334
    Martineau JR, Specht JE. Temperature tolerance in soybeans. Crop Science, 1979, 19: 75-81 McCain DC, Croxdale J, Markley JL. Thermal damage to chloroplast envelope membranes. Plant Physiol, 1989, 90: 606-609
    McConn M, Browse J. The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 1996, 8: 403-416
    Mead JF. Free radical mechanism of lipid damage, a consequence for cellular membranes. In Free Radical in Biology Chapter 2 (eds Pryor WA). Academic Press, New York, 1976
    Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol, 1992, 33: 541-553
    Mohanty P, Vani B, Prakash JS. Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforch, 2002, 57: 836-42
    Moon BY, Higashi S, Gombos Z, Murata N. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA, 1995, 92: 6219-6233
    Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. Trienoic fatty acids and plant tolerance of high temperature. Science, 2000, 287: 476-479
    Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992, 356: 710-712
    Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol, 1997, 115 (3): 875-879
    Murata N, Sato N, Takahashi N, Hamazaki Y. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol, 1982, 23(6): 1071-1079
    Murata N. Molecular species composition of phosphatidylglylcerols from chilling-sensitive and chilling-resistant plant. Plant Cell Physiol, 1983, 24: 81-86
    Nash D, Miyao M, Murata N. Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta, 1985, 807: 127-133
    Nikolai G, Bukhov, Robert C. Hetergeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves. Physiol Plant, 2000, 110: 279-285
    Nishida I, Murata N. Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 541-568
    Nishida I, Sugiura M, Enju A. A second gene for acyl-(acyl-carrier- protein): glycerol-3-phosphate acyltransferase in squash, cucurbita moschata cv. shirogikuza*, codes for an oleate-selective isozyme: molecular cloning and protein purification studies. Plant Cell Physiol, 2000, 41(12): 1381-1383
    Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279
    Ogawa K, Kenematsu S, Takabe K Asada K. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labelling after rapid freezing and substitution method. Plant Cell Physiol, 1995, 36: 565-573
    Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957-970
    ?quist G, Chow WS, Anderson JM. Photoinhibtion of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta, 1992, 186: 450-460
    Ort DR, Whitmarsh J. Inactive photosystem II centers: A resolution of discrepancies in photosystem II quantition? Photosynth Res, 1990, 23: 101-104
    Ort DR, Yocum CF. Electron transfer transduction in photosynthesis: an overview. In: Ort DR, Yocum CF (eds). Oxygenic photosynthesis: the Light Reactions. Dordrecht, Kluwer Academic, 1996, 4: 1-9
    Ourisson G, Nakatani Y. Bacterial carotenoids as membrane reinforcers. A general role for polyterpenoids: membrane stabilization. In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Carotenoids: Chemistry and biology. Plenum Press, New York, 1990, 237-245
    Owen HA, Makaroff CA. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. Ecotype Wassilewskija (Brassicaceae). Protoplasma, 1995, 185: 7-21
    Owens TG, Shreve AP, Albrecht AC. Dynamics and mechanism of singlet energy transfer between carotenoids and chlorophylls: light harvesting and nonphotochemical fluorescence quenching. In N Murata, eds, Research in Photosynthesis, Vol 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, pp 179-186
    Pearcy RW. Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol, 1978, 61: 484-486
    Pete G. Increased thermostability of pigment-protein complexes of pea thylakoid fowling catalytic hygrogenztion of membrane lipids. Biochemics Biophysical Acta, 1986, 849: 131-140
    Pfündel E, Bilger W. Regulation and possible function of the violaxanthin cycle. Photosynth Res, 1994, 42: 89-109
    Philip Y, Young AJ. Occurrence of the carotenoid lactucaxanthin in higher plant LHCII. Photosynth Res, 1995, 43: 273-282
    Pick U, Weiss M, Gounaris K, Barber J. The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta, 1987, 891: 28-39
    Polashock JT, Chin CK, Martin CE. Transgenic study of Δ9 fatty acid desaturase into tobacco(Nicotiana tabacum L). Plant Physiology, 1992, 100: 894-901
    Powles SB. Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol, 1984, 35: 15-44
    Prásil O, Adir N, Ohad I. Dynamics of Photosystem II: Mechanism of photoinhibition and recovery process. In: Barber NR, Bowyer JR (eds) Topics in photosynthesis, Vol 11, the photosystems: structure, function, and molecular biology. Oxford: Elsevier Scientific Publisher, 1992, 295-348
    Quinn PJ, Williams WP. Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. In: Photosynthetic Mechanisms and the Environment. Eds. J. Barber and N. R. Baker, Elsevier, Amsterdam, 1985, pp 1-47
    Raison JK, Roberts JKM, Berry JA. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Nerium oleander, to growth temperature. Biochim Biophys Acta, 1982, 688: 218-228
    Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol, 1983, 73: 238-242
    Rock CO, Garwin JL. Prepative enzymic synthesis and hydrophobic chromatography of acyl-acyl carrier protein. Biology Chemistry, 1979, 254: 7123-7128
    Rockholm DC, Yamamoto H Y. Violaxanthin de-epoxidase. Plant Physiol, 1996, 110: 697-703
    Ronghan PG, Nishida I. Concentration of long-chain acyl-acyl carrier proteins during fatty acid synthesis by chloroplasts isolated from pea (Pisum sativum), Sawflower(Cathamus tinctoms), and Amaranthus(Amaranthus lividus)leaves. Arch Biochemistry Biophysiology, 1990, 276: 38-46
    Roughan PG, Slack CR. Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol, 1982, 33: 97-132
    Roughan PG. Acyl lipid synthesis by chloroplasts isolated from the chilling- sensitive plant Amaranthus lividus L. Biochim Biophysiol Acta, 1986, 878: 371-379
    Roughan PG. Phosphatidylglycerol and chilling-sensitive in plants. Plant Physiology, 1985, 77: 740-746
    Routaboul JM, Fischer SF, Browse J. Trienoic fatty acids are required to maintain chloroplast function at low temperature. Plant Physiol, 2000, 124: 1697-1705
    Ruban AV, Horton P. Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Aust J Plant Physiol, 1995, 22: 221-230
    Ruban AV, Young AJ, Pascal AA, Horton P. The effect of illumination on the xanthophyll composition of the photosystem II light harvesting complexes of spinach thylakoid membrane. Plant Physiol, 1994, 104: 227-234
    Sairam Pk, Srivastava GC. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci, 2002, 162: 897-904
    Sakamoto A, Sulpice R, Hou CX, Kinoshita M, Higashi SI, Kanaseki T, Nonaka H, Moon BY, Murata N. Genetic modification of the fatty acid unsaturation of phosphatidylglycerol in chloroplast alters the sensitivity of tobacco plants to cold stress. Plant Cell and Environment, 2003, 27: 99-105
    Sakurai I, Hagio M, Gombos Z, Tyystj?rvi T, Paakkarinen V, Aro EM, Wada H. Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol, 2003, 133: 1376-1384
    Salvucci ME, ?gren WL. The mechanism of Rubisco activase: insights from studies of the properties and structure of the enzyme. Photosynth Res, 1996, 47: 1-11
    Santarius KA. Site of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophoshorylation by heating. J Therm Biol, 1975, 1: 101-107
    Sato N, Aoki M, Maru Y, Sonoike K, Minoda A, Tsuzuki M. Involvement of sulfoquinovosyl diacylglycerol in the structural integrity and heat-tolerance of photosystem II. Planta, 2003, 217: 245-251
    Sauer A, Heise KP. Control of fatty acid incorporation into chloroplast lipids in vitro. Z. Natureforsch, 1984, 39: 593-599
    Schansker G, Srivastava A, Govindjee, Strasser RJ. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003, 30: 785-96
    Schreiber U, Armond PA. Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta, 1978, 502: 138-151
    Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, 1994, pp 49-70
    Seidler A. The extrinsic polypeptides of photosystem II. Biochim Biophys Acta, 1996, 1277: 35-60
    Sharkey TD. Some like it hot. SCIENCE. Plant biology, 2000, 287 (5452): 435-436
    Shen JR, Terashima I, Katok S. Cause for dark, chilling-induced inactivation of photosynthetic oxygen-evolving system in cucumber leaves. Plant Physiol, 1990, 93: 1354-1357
    Siegenthaler PA, Rawyler A, Smutny J. The phospholipids population which sustains the uncoupled noncyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim Biophys Acta, 1989, 975: 104-111
    Soll J, Roughan PG. Acyl-acyl carrier protein pool sizes during steady-state fatty acid synthesis by isolated spinach chloroplasts. FEBS Lett, 1982, 146: 189-192
    Somerville C, Browse J. Plant lipids: metabolism, mutants and membranes. Science, 1991, 252: 80-87
    Somerville C. Direct tests of the membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA, 1995, 92: 6215-6218
    Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem, 2005, 43: 1082-1088
    Sonoike K, Kamo M, Hihara Y, Enami I. The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res, 1997, 53: 55-63
    Sonoike K, Terashima I, Iwaki M, Itoh S. Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett, 1995, 362:235-238
    Sonoike K, Terashima I. Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta, 1994, 194: 287-293
    Sonoike K. Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: Possible involvement of active oxygen species. Plant Sci, 1996a, 115:157-164
    Sonoike K. Photoinhibition of photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996b, 37(3): 239-247
     Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol, 1995, 36:825-830
    Sparace SA, Mudd B. Phosphatidylglycerol synthesis in spinach chloroplasts: Characterization of the newly synthesized molecule. Plant Physiol, 1982, 70: 1260-1264
    Srivastava A, Guisse B, Greppin H, Strasser RJ. Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient. Biochim Biophys Acta, 1997, 1320: 95-106
    Staehelin LA, Arntzen CJ. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol, 1983, 97: 1327-1337
    Szalontai B, Kota Z, Nonaka H, Murata N. Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry, 2003, 42: 4292-4299
    Taylor JL, Fritzemeier KH, H?user I, Kombrink E, Rohwer F, Schr?der M, Strittmatter G, Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact, 1990, 3: 72-77
    Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not system II. Planta, 1994, 193: 300-306
    Terashima I, Huang LR, Osmond CB. Effects of leaf chilling on thylakoid functions measured at room temperature in Cucumis sativus L. and Oryza sativa L. Plant Cell Physiol, 1989a, 30: 841-850
    Terashima I, Kashino Y, Katoh S. Exposure of leaves of Cucumis sativus L. to low temperatures in the light causes uncoupling of thylakoids I Studies with isolated thylakoids. Plant Cell Physiol., 1991b, 32: 1267-1274
    Terashima I, Shen JR, Katoh S. Chilling damage in cucumber (Cucumis sativus L.) thylakoids. In Plant Water Relations and Growth under Stress (eds. M Tazawa, M Katsumi, Y Masuda and H. Okamoto) Yamada Science Foundation, Osaka and My K K, Tokyo, 1989b, 470-472
    Thomas C, Johnson, Jane C, Schneider, Somerville C. Nucleotide sequence of acyl-acyl carrier protein: glycerol-3-phosphate acyltransferase from cucumber. Plant Physiology, 1992, 99: 771-772
    Thomas PG, Dominy PJ, Vigh L, Mansourian AR, Quinn PJ, Williams WP. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim Biophys Acta, 1986, 849: 131-140
    Thornber JP. Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol, 1975, 26: 127-158
    Tjus SE, Moller BL, Scheller HV. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol, 1998, 116: 755-764
    Van Kooten O, Snel JPH. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990, 25: 147-150
    Varadi G, Dorko E, Polos, Szigeti Z, Lehoczki E. Xanthophyll cycle patterns and in vivo photoinhibition in herbicide-resistant biotypes of Conyza Canadensis. J Plant Physiol, 1994, 144(66): 669-674
    Viering E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 579-620 Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol, 2002, 129 (2): 876-885
    Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 7209-7214
    Wada H, Gombos Z, Murata N. Enhancement of chilling torlerance of a cyanobacterium by genetic manupulation of fatty acid desaturation. Nature, 1990, 347: 200-203
    Wada H, Murata N. Membrane lipids in Cyanobacteria. In: Siegenthaler PA, Murata N, editors. Lipids in Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp 65-81
    Walker D. The use of O2 electrode and fluorescence probes in simple measurements of photosynthesis. Robert Hill Institute, University of Sheffield, UK, 1990
    Webb MS, Green BR. Biochemical and biophysical properties of thylakoid acyl lipids scattering changes and electrochromic pigment absorption shift in spinach leaves. Z Pflanzenphysiol, 1991, 101: 169-178
    Weber H, Vick BA, Farmer EE. Dinor-oxo-phytodienoic acid: A new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA, 1997, 94: 10473-10478
    Weber S, Wolter FP, Buck F, Frentzen M, Heinz E. Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol, 1991, 17: 1067-1076
    Weis E, Berry JA. Plants and high temperature stress. In SPLong, FI Woodward eds, Symposia of the Society for Experimental Biology Number XLII. The Company of Biologist, Cambridge, 1988, UK, pp 329-346
    Weis E. Temperature sensitivity of dark-inactivation and light-activation of the ribulose-1,5-bisphosphate carboxylase in spinach chloroplasts. FEBS Lett, 1981, 129: 197-200
    Wild A, Ball R. Photosynthetic Unit and Photosystems. A Current View of the Photosynthetic Apparatus. Leiden: Backhugs Publishers, 1997, pp127-153
    William W, Adamsi II, Demming-Adams. The xanthophyll cycle, protein turnover, and the high tolerance of sun-acclimated leaves. Plant Physiol, 1993, 103: 1413-1420
    Wise RR, Naylor AW. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol, 1987, 83: 278-282
    Wraight CA, Kraan GPB, Gerrits NM. The pH dependence of delayed and prompt fluorescence in uncoupled chloroplasts. Biochim Biophys Acta, 1972, 283: 259-267
    Xu YN, Siegenthaler PA. Low temperature treatments induce an increase in the relative content of both linolenic and trans-hexadecenoic acids in thylakoid membrane. Plant Cell Physiol, 1997, 38(5): 611-618
    Yamane Y, Kashino Y, Koike H. Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res, 1998, 57: 51-59
    Yamashita S, Butter WL. Inhibition of chloroplasts by UV-irradiation and heat treatment. Plant Physiol, 1968, 43: 2037-2040
    Yang ZL, Li LB, Kuang TY. Thermal stability of oxygen evolution in photosystem II core complex in the presence of digalactosyl diacylglycerol. Chinese Science Bulletin, 2002, 47: 2089-2092
    Yokoi S, Higashi SI, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Molecular Breeding, 1998, 4: 269-275
    Yordanov I, Dilova S, Petkova R, Pangelova T, Goltsev V, Süss KH. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys, 1986, 12: 147-155
    Zhang N, Portis JR. Mechanisms of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involing reductive activation by thioredoxin-f. Proc Natl Acad Sci USA, 1999, 96: 9438-9443
    Zheng ZF, Xia Q, Dauk M, Shen WY, Selvaraj G, Zou JT. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell, 2003, 15: 1872-1887