种子含油量相关基因的克隆与功能比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高种子含油量是油料作物育种的重要目标。为了对含油量相关基因的功能进行深入分析,本研究克隆或合成了催化整个三酰甘油合成途径的含油量相关的5个基因。于同一遗传转化载体平台,采用农杆菌介导法,在模式植物烟草中完成了5个目标基因的功能比较研究。
     利用同源序列法从油菜中克隆含油量相关基因BnGPDH、BnGPAT、BnDGAT的全长cDNA序列,对它们的序列特征进行了生物信息学分析;人工合成来自酵母的2个含油量相关基因ScGPDH、ScLPAT,并对它们的序列特征进行了生物信息学分析。构建由种子特异启动子Napin调控的5个目标基因转化油菜和烟草的载体,并将5个基因转化野生型烟草植株,均成功获得大量阳性植株。气相色谱分析结果表明,野生型烟草种子含油量为12.68%,种子脂肪酸主要由棕榈酸(C16:0)、硬脂酸(C18:0)、油酸(C18:1)、亚油酸(C18:2)、亚麻酸(C18:3)组成,不含超长链脂肪酸芥酸等。作为油菜含油量转基因理论研究的材料,具有本底低、背景干净的优势。可考虑以烟草为模式植物进行油料作物超长链脂肪酸的超量表达和异位表达,以获取工业用优良脂肪酸的研究工作。
     转基因烟草T0代植株种子含油量的分析结果表明:1)单独转化BnDGAT和ScLPAT基因可使野生型烟草种子含油量显著提高;2)单独转化BnGPAT、ScGPDH以及BnGPDH基因可使野生型烟草种子含油量极显著提高。
     转基因烟草T1代植株种子含油量的分析结果表明: 1)BnGPAT基因转化烟草T1代种子含油量分布在14.26%-18.03%间,平均值为15.91%; 2)BnDGAT T1代植株种子含油量分布于13.93%-18.88% ,平均值为16.05%; 3)ScGPDH T1代植株种子含油量分布于14.18%-19.58%,平均值为16.50%; 4)ScLPAT T1代植株种子含油量分布于13.80%-20.64%,平均值为16.93%; 5)除一株种子含油量为11.73%,相对降低含油量7.51%外,BnGPDH基因转化烟草植株T1代种子的含油量为13.50%-19.85%,平均值为16.13%; 6)5个基因转化提高种子含油量的平均值依次为25.47%、26.58%、30.13%、33.52%和27.21%。合成的2个基因ScLPAT和ScGPDH提高含油量的程度稍稍领先,之后依次是BnGPDH、BnDGAT和BnGPAT。
     以上结果表明,来自油菜的3个基因和来自酵母的2个基因,都能够在烟草种子中有效表达且稳定遗传。5个基因绝大多数后代均在一定程度上提高了种子含油量,但各基因的表现存在差异,不同转化事件的表现也存在显著差异。本研究为后期鉴定纯合体完成杂交试验,研究相关基因杂交组合以期进一步提高烟草种子含油量的研究提供了依据,也为油菜高含油量的基因调控提供了理论与实践支持。
Oil content is the key object of oilseed breeding. It is important to investigate the genes related to oil content. In this study, 5 genes involved in oil content during triacylglycerol biosynthesis were cloned or synthesized in order to elucidate through transgenic over-expression how different the 5 genes are on the oil content.
     To investigate the function of the genes involed in oil content, the full cDNA sequences of BnGPDH、BnGPAT and BnDGAT genes were cloned from rapeseed, as well as ScGPDH、ScLPAT were synthesized from yeast. These 5 sequences were aligned and analyzed by using bioinformatic tools and then incorporated into rapeseed and tobacco transgenic vectors regulated by Napin promoter. A lot of positive tobacco transformants of these genes were obtained through agrobacterium-mediated transformation. The following results were drawn through the analysis of oil content in seed by gas chromatography.
     The results of wild type tobacco showed that the oil content of WT is 12.68% with the fatty acids C16:0, C18:0, C18:1, C18:2, C18:3 and free of long chain fatty acid. The T0 transformants of tabacco showed significantly higher oil content in seed than WT tobacco when transformed separately with BnDGAT and ScLPAT gene and showed highly significant higher oil content in seed when transformed separately with BnGPAT, ScGPDH and BnGPDH gene.
     In T1 generation, all the transformants from the four genes BnGPAT, BnDGAT, ScGPDH and ScLPAT showed significantly higher oil content with the rang 14.26%-18.03%, 13.93%-18.88%, 14.18%-19.58% and 13.80%-20.64%, and the mean 15.91%, 16.05%, 16.50% and 16.93%, respectively, corresponding to an oil content increase by 25.47%,26.58%,30.13% and 33.52%. Transformants from BnGPDH showed larger variation in oil content ranging from 11.73% to 19.85%, among which only one transformant showed a 7.51% drop in oil content.
     In conclusion, all the 5 genes derived from rapeseed and yeast can increase seed oil content significantly and they ranked from ScLPAT, ScGPDH, BnGPDH, BnDGAT to BnGPAT according to the magnitude of the increase in oil content. This study provides a basis for the further experiment by stacking these genes into a single rapeseed cultivar.
引文
1.柴晓杰,王丕武,关淑艳. (2004).反义技术及其在植物基因工程中的应用.吉林农业大学学报, 26(05),515-518.
    2.陈锦清,吴关. (2006).植物种子重要成分的代谢工程.核农学报, 20(2), l23-127.
    3.崔红,刘海礁,李雪君. (2006).转外源法呢基焦磷酸合酶基因烟草抗赤星病研究.作物学报, 32(6), 817-820.
    4.杜建中,孙毅,曹秋芬,郝曜山,刘龙龙,贺健. (2008).甘蓝型油菜的遗传转化.生物技术通讯, (05), 772-776.
    5.段武德. (主编).(2008).转基因植物检测.北京:中国农业出版社.
    6.方小平,王转,陈茹梅,李均,范云六,罗莉霞,等. (2010).能以植酸磷为唯一磷源生长的转基因甘蓝型油菜.作物学报, 36(2), 228-232.
    7.傅若农. (2005).近两年国内气相色谱的应用进展(Ⅱ),分析试验室,2005, 24(05). 79-92.
    8.傅廷栋,周永明. (2006).油菜遗传改良与生物柴油.云南农业大学学报, 21(增刊), 25-28.
    9.傅廷栋. (2007).油菜的品种改良.作物研究,3, 159-162.
    10.傅廷栋. (2008).油菜杂种优势研究利用的现状与思考.中国油料作物学报, 30(增刊), 1-5.
    11.高建芹,张洁夫,浦惠明,戚存扣,傅寿仲. (2007).近红外光谱法在测定油菜籽含油量及脂肪酸组成中的应用.江苏农业学报,23(3), 189-195.
    12.官春云. (2002).油菜转基因育种进展.中国工程科学, (8), 8-13
    13.郭晓丽. (2008).根癌农杆菌介导植物遗传转化的分子机制.衡水学院学报,10(1), 52-54.
    14.郭学兰,王汉中,李均. (2001).玉米转座因子Ac转基因甘蓝型油菜的遗传变异.中国油菜学报, 23(1), 7-11.
    15.郭兆奎,杨谦,姚泉洪. (2006). HAL1基因转化烟草提高烟叶含钾量研究.中国烟草学报, 12(5), 46-51.
    16.侯丙凯,胡赞民,党本元,石锐,陈正华. (2002)定点整合抗虫基因到油菜叶绿体基因组并获得转基因植株.植物生理与分子生物学学报, 28(3),187-192.
    17.胡亚平. (2009).油料作物油脂合成相关基因的转录、克隆和功能比较研究. [博士学位论文].北京:中国农业科学院.
    18.黄琼华,杨伟光,李德谋,罗小英,裴炎. (2002)农杆菌介导法将FPF1基因导入油菜的研究初报.山西农业大学学报, 24(2), 124-127.
    19.蓝海燕,王长海,张丽华,刘桂珍,王岚兰,陈正华,等. (2000).导入-1, 3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究.生物生物工程学报, 16(2), 142-146.
    20.郎春秀,胡张华,刘智宏,黄锐之,陈锦清. (1999).油菜农杆菌转基因体系的建立及转PEP反义基因油菜的获得.浙江农业学报, 11(2), 55-58.
    21.李卫,郭光沁.(2000). Cre/loxP系统介导的位点特异性重组技术及其应用.生物技术通报,1,33-37.
    22.李晓丹.(2006).油料作物种子脂肪酸累积模式及相关基因的克隆与序列比较研究. [博士学位论文].北京:中国农业科学院.
    23.李延莉,孙超才,钱小芳,王伟荣,庄静. (2003)油菜籽品质测定方法(近红外反射光谱法与传统化学方法)的比较.上海农业学报, 19(1),11-14.
    24.李艳,惠有为,张仲凯,黄新奇,李毅. (2001).转查耳酮合酶基因矮牵牛共抑制的研究.中国科学, 31(5), 401-407.
    25.廖星,王汉中. (2003).我国油菜品种变革对生产发展的影响.中国油菜学报, 25(3), 99-103.
    26.刘爱秋,邓晓建,王平荣,李秀兰.近红外光谱分析技术及其在农业领域的应用.西南农业学报, 2003, 16(2), 98-102.
    27.刘后利. (2000).油菜遗传育种学.中国农业大学出版社.
    28.卢长明. ( 2008 ).转基因油菜及其检测技术研究进展.中国油料作物学报, 30(增刊):9-18.
    29.卢善发. (2000).植物脂肪酸的生物合成与基因工程.植物学通报, 17(6):481-491.
    30.马慧,赵开军,徐正进. (2003).农杆菌介导的水稻遗传转化现状及展望.中国生物工程杂志, 23(4), 23-31.
    31.阮成江,李群. (2008).基因调控种子含油量研究进展及生物柴油用海滨锦葵遗传改良策略可再生能源. 26(4), 35-40.
    32.沈金雄,傅廷栋,涂金星,马朝芝. (2007).中国油菜生产及遗传改良潜力与油菜生物柴油发展前景.华中农业大学学报, 12,894-899
    33.石东乔,周奕华,胡赞民,张丽华,刘桂珍,陈正华. (2001).基因枪法转移反义油酸脱饱和酶基因获得转基因油菜.农业生物技术学报, 9(4), 359-362.
    34.苏丹. (2008).草甘膦氧化还原酶基因转化油菜的研究. [硕士学位论文].呼和浩特:内蒙古大学.
    35.孙洁. (2008).甘蓝型油菜查尔酮异构酶基因的反义转化. [硕士学位论文].重庆:西南大学.
    36.谭太龙,徐一兰,官春云. (2005).油菜含油量的影响因素及其调控研究概况.作物研究, (05), 332-335.
    37.王道杰,杨翠玲,陆鸣. (2009).真空渗透法转化油菜及转化种子的筛选.植物学报, (02), 216-222.
    38.王伏林,吴关庭,郎春秀,陈锦清. (2006)植物中的乙酰辅酶A羧化酶(AACase).植物生理学通讯, 42(1), 10-14.
    39.王关林,方宏筠. (2000).植物基因工程原理与技术(第2版).北京出版社.
    40.王贵春,杨光圣. (2007).油菜高含油量育种研究进展.安徽农业科学, 35(18), 5373- 5375,5411.
    41.王汉中. (2004).中国油菜品种改良的中长期发展战略.中国油菜学报, 26(3), 98-101.
    42.王汉中. (2007).我国油菜油菜产需形势分析及产业发展对策.中国油菜学报, 29(1), 101-105.
    43.王镜岩,朱圣庚,徐长法. (2002).生物化学.北京:高等教育出版社.
    44.王小萍,张庶社. (2006).核磁共振法在油菜籽含油量测定技术中的应用.粮油检测与加工, (5), 43-44.
    45.王晓雯,杨星勇,李德谋. (2006).转nsLTPs类抗菌蛋白基因烟草对赤星病和青枯病的抗病性分析.农业生物技术学报, 14(3), 365-370.
    46.王竹云,杨翌玲. (2001).油菜种子含油量NMR法测定的条件优化.西部粮油科技, 26(2), 46-49.
    47.邬贤梦,官春云,李栒. (2003).油菜脂肪酸品质改良的研究进展.作物研究, 17(3),152-157.
    48.吴建国,石春海,张海珍,樊龙江. (2002).应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究.作物学报, 28(3), 421-425.
    49.吴乃虎. (2001).基因工程原理.北京:科学出版社.
    50.吴乃虎. (2006).基因工程术语.北京:科学出版社.
    51.徐光硕,饶勇强,孟金陵. (2003).以器官和发育特异性抗病双基因转化油菜.分子植物育种, 1(3), 303-312.
    52.押辉远,秦广雍,霍裕平.(2005). Prd29A及DREB1A的克隆和干旱诱导型植物表达载体的构建与鉴定.植物生理学通讯,41(3), 371-375.
    53.叶梁,李枞,宋艳茹. (2000).双价/三价种子特异性表达载体的构建及表达PHB合成相关基因的转基因油菜的获得.科学通报, 45(5), 516-521.
    54.余义勋,包满珠. (2004).不同结构的外源ACO基因导入香石竹对瓶插寿命的影响.生物工程学报, 20(5):704-707.
    55.张海. (2009). pCAOxO-PMI表达载体的构建及导入甘蓝型油菜的研究。[硕士学位论文].成都:四川农业大学.
    56.赵延鹏,姜伯乐,梁和. (2008).农杆菌介导的油菜遗传转化研究进展.广西农业生物科学, (03), 294-298.
    57.钟巍然. (2008).甘蓝型油菜BnF3'H基因的反义转化. [硕士学位论文].重庆:西南大学.
    58.周雪荣,彭仁旺,方荣祥,陈正华,莽克强. (1997).表达核糖核酸酶基因的雄性不育油菜的获得.遗传学报, 24(6), 531-536.
    59.邹智. (2008).油菜安全高效转化体系研究. [硕士学位论文].北京:中国农业科学院.
    60. Anai, T., Koga, M., Tanaka. H., Kinoshita, T., Rahman, S. M., &Takagi, Y. (2003). Improvement of rice (Oryza sativa L.) seed oil quality through introduction of a soybean microsomal omega-3 fatty acid desaturase gene. Plant Cell Rep, 21(10), 988-992.
    61. Andrea, C. Neal. (2006). Studies on Enzyme Activities Involved in Fatty Acid Activation and Acylation. Doctoral thesis Swedish University of Agricultural Sciences Uppsala.
    62. Anklam, E., Gadani, F., &Heinze, P., (2002) Analytical methods for detection anddetermination of genetically modified organism in agricultural crops and plant derived food products. Eur. Food Res. Technol, 214, 3–26.
    63. Asa, V., Katarina, G., Lena G. , & Lennart A. (1991). Distinct Intracellular Localization of Gpd1p and Gpd2p, the Two Yeast Isoforms of NAD-dependent Glycerol-3-phosphate Dehydrogenase, Explains Their Different Contributions to Redox-driven Glycerol Production. The Journal of biology chemistry, 293, 38, 39677–39685.
    64. Baud, S., Guyon, V., Kronenberger, J., Wuilleme, S., Miquel. M., Caboche, M., et al. (2003). Multifunctional acetyl-CoA carboxylase is essential for very long chain fatty acid elongation and embryo development in Arabidopsis, Plant J, 33(1), 75-86.
    65. Bourgis, F., Kader, J. C., Barret, P., Renard, M., Robinson, D., Robinson, C., et al. (1999). A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol, 120(3), 913-922.
    66. Brown, A. P., Brough, C. L., Kroon, J. T., & Slabas, A. R. (1995) Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Mol Biol, 29(2), 267-278.
    67. Brown, A. P., Carnaby, S., Brough, C., Brazier, M., & Slabas, A. R. (2002). Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene. Biochem J, 364(3): 795-805.
    68. Brown, A. P., Coleman, J., Tommey, A. M., Watson, M. D., & Slabas, A. R. (1994) Isolation and characterisation of a maize cDNA that complements a 1-acyl sn-glycerol-3-phosphate acyltransferase (GPAT) mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol, 26(1), 211-223.
    69. Davies, K.M. (2007), Genetic modification of plant metabolism for human health benefits, Mutat.Res.: Fundam. Mol. Mech. Mutagen. doi:10.1016/j.mrfmmm.02.003.
    70. Delourme, R., Falentin, C., Huteau, V., Clouet, Horvais, V. R., Gandon, B., et al.. (2006). Genetic control of oil content in oilseed rape (Brassica napus L). Theor Appl Genet, 113, 1331–1345.
    71. Denise, A. & Timothy, J. L. (1991). Nucleotide Sequence of the glpD Gene Encoding Aerobic sn-Glycerol 3-Phosphate Dehydrogenase of Escherichia coli K-12. Journal of bacteriology, 173, 1, 101-107.
    72. Edlin, D. A., Kille, P., Wilkinson, M. D., Jones, H. D., & Harwood, J. L. (2000) Morphological and metabolic changes in transgenic wheat with altered glycerol-3-phosphate acyltransferase or acyl-acyl carrier protein (ACP) thioesterase activities. Biochem Soc Trans, 28(6), 682-683.
    73. Ericson, M. L., Rodin, J., Lenman, M., Glimelius, K., Josefsson, L. G., & Rask, L. (1986) Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem, 261(31),14576-14581.
    74. Gelvin, S. B. (2003).Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev, 67(1), 16-37.
    75. Giannoulia, K., Haralampidis, K., Poghosyan, Z., Murphy, D. J., & Hatzopoulos, P. (2000). Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues. Biochem Soc Tran , 28(6), 695-697.
    76. Gibon, Y., Vigeolas, H., & Tiessen. A. (2002). Sensitive and high throughput metabolite assays for inorganic pyrophosphate. ADPGLe. nucleotide phosphate and glycolytic intermediates bases on a novel enzymic cycling system. Plant J,30(2),221-235.
    77. Han, J., Luhs, W., Sonntag, K., Zahringer, U., Borchardt, D. S., Wolter, F. P., et al.(2001) Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol, 46(2), 229-239.
    78. Hanke, C., Wolter, F. P., Coleman, J., Peterek, G., & Frentzen, M. (1995) A plant acyltransferase involved in triacylglycerol biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur J Biochem, 232(3), 806-810.
    79. Hannon, G. J. (2002). Nature, 418(6894), 244-251.
    80. He, X., Chen, G. Q., Lin, J. T., & Mckeon, T. A. (2004). Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids, 39(9), 865-871.
    81. He, X., Chen, G. Q., Lin, J. T., Mckeon, T. A. (2006). Diacylglycerol acyltransferase activity and triacylglycerol synthesis in germinating castor seed cotyledons. Lipids, 41(3), 281-285.
    82. Hobbs, D. H., Lu, C., & Hills, M. J. (1991). Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett, 452(3): 145-149.
    83. Holst-Jensen, A., De, L. M., &Van, G., (2006). Coherence between legal requirements and approaches for detection of genetically modified organisms (GMOs) and their derived products. J. Agric. Food Chem, 54, 2799-2809.
    84. Holst-Jensen, A., R?ning, S. B., & L?seth, A. (2003) PCR technology for screening and. quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem, 375, 985-993.
    85. http://www.nyu.edu/classes/ytchang/book/c003.html
    86. Jain, R. K., Coffey, M., Lai, K., Kumar, A.&MacKenzie, S. L. (2000). Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochemical Society Transactions, 28, (6), 958-961.
    87. Jain, R. K., Coffey, M., Lai, K., Kumar, A., &Mackenzie, S. L. (2006). Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans, 28(6), 958-961.
    88. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D. L., Giblin, E. M., et al. (2001).Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol, 126(2), 861-874.
    89. Jan, J. & Edgar, B. C. (2003) Industrial oils from transgenic plants. Current Opinion in Plant Biology, 178–184.
    90. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K.,& Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.Nat Biotechnol, 17, 287-291.
    91. Kasuga, M.,Miura, S.,Shinozaki, K.,& Yamaguchi-Shinozaki, K.(2004).A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought-and
    92. Katrin, L., Ricky, A., Eriksson, & P.and AdIer, L. (1993). A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Molecular Microbioiogy, 10(5), 1101-1111.
    93. Kim, H. U., &Huang, A. H. (2004).Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol, 134(3), 1206-1216.
    94. Kosugi, Y., Waki, K., & Iwazaki, Y. (2002). Senescene and expression of transgenic non-ethylene-producing canation flower.J Japan Soc Hort Sci, 71(5), 638-642.
    95. Kroon, J. T., Wei, W., Simon, W. J., & Slabas, A. R. (2006), Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry, 67(23), 2541-2549.
    96. Lu, C., & Hills, M. J. (2002). Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development. Plant Physiol, 129(3), 1352-1358.
    97. Lung, S. C., & Weselake, R. J. (2006). Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids, 41(12), 1073-1088.
    98. Lyznik, L.A., Rao, K.V., & Hodges, T.K.(1996), FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res, 24(19), 3784-3789.
    99. Ma, H. M., Shi, Q. S., & Liu, X. C. (2005). Progress in the study on diacylgycerol acyltransferase (DGAT)-related genes. Yi Chuan Xue Bao, 32(12): 1327-1332.
    100. Miraglia, M., Berdal, K., & Brera, C. (2004). Detection and traceability of genetically modified organisms in the food production chain. Food and Chemical Toxicology, 42, 1157-1180.
    101. Nykiforuk, C. L., Furukawa-stoffer, T. L., Huff, P. W., Sarna, M., Laroche, A., Moloney, M. M., et al. (2002). Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. Biochim Biophys Acta, 1580(2-3), 95-109.
    102. Osborne, B.I., Wirtx, U., & Baker, B.(1995). A system for insertional umtagenesis andchromosomal rearrangement using the Ds transposon and Cre/lox. Plant J, 7,687-701.
    103. Park, S-U., Yu, M. & Facchini, P. J. (2002). Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of california poppy. Plant Physiol, 128(2), 696-706.
    104. Pidkowich, M. S., Nguyen, H. T., Heilmann, I., Ischebeck, T., & Shanklin, J. (2007) .Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci U S A, 104(11), 4742- 4747.
    105. Poirier, Y., Ventre, G., & Caldelari, D. (1999).Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol, 121(4), 1359-1366.
    106. Puyaubert, J., Dieryck, W., Costaglioli, P., Chevalier, S., Breton, A., & Lessire, R. (2005) Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development. Biochim Biophys Acta,, 1687(1-3), 152-163.
    107. Ramli, U. S., Salas, J. J., Quant, P. A., & Harwood, J. L. (2005). Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J, 272(22), 5764-5770.
    108. Sasaki, Y., & Nagano, Y. (2004). Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem, 68(6), 1175-1184.
    109. Shen, W.Y., Wei, Y. D., Dauk, M., Zheng, Z.F., & Zou, J.T. (2003). Identi cation of a mitochondrial glycerol-3-phosphate dehydrogenas from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Letters.536, 92-96.
    110. Shuji Yokoi, Sho-Ichi Higashi, Sachie Kishitani, NorioMurata & Kinya Toriyama. (1998). Introductionof the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Molecular Breeding 4, 269–275.
    111. Siloto, R. M., Truksa, M., Brownfield, D., Good, A. G., & Weselake, R. J. (2009). Directed evolution of acyl-CoA: diacylglycerol acyltransferase: development and characterization of Brassica napus DGAT1 mutagenized libraries. Plant Physiol Biochem, 47(6), 456-461.
    112. Surinder, P. S., Zhou, X.R. & Liu, Q. Sten Stymne and Allan G Green. (2005). Metabolic engineering of new fatty acids in plants. Current Opinion in Plant Biology, 8,197–203.
    113. Triki, S., Ben, H. J., & Mazliak, P. (2000). Diacylglycerol acyltransferase in maturing sunflower seeds. Biochem Soc Trans, 28(6), 689-692.
    114. Tzfira, T., & Citovsky, V. (2002). Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol, 12, 121-128.
    115. Van, Haaren M., & Ow, D.W.(1993), Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Bio, 223-525.
    116. Vigeolas, H., & Geigenberger, P. (2004). Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triaeylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta , 219(5),827-835.
    117. Vigeolas, H., Waldeck, P., Thorsten, Z. &Geigenberger, P. (2007). Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal, 5,431- 441.
    118. Wang, H. W., Zhang, J. S., Gai, J. Y., & Chen, S. Y. (2006). Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean. Theor Appl Genet, 112 (6), 1086-1097.
    119. Wang, H.Y., Guo, J.H., Kris, N.L.,& Lin, Y. (2007). Developmental control of Arabidopsis seed oil biosynthesis. Planta, 226,773–783.
    120. Wang, T. W., Zhang, C. G., & Wu, W. (2005). Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth anddevelopment. Plant Physiol, 138 (3), 1372-1382.
    121. Weselake, R. J., Shah, S., Tang, M., Quant, P. A., Snyder, C. L., Furukawa-stoffer, et al. (2008). T. L., Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot, 59(13), 3543-3549.
    122. Xu, J., Francis, T., Mietkiewska, E., Giblin, E. M., Barton, D. L., Zhang, Y., et al. (2008). Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol J, 6(8), 799-818.
    123. Yu, B., Wakao, S., Fan, J., & Benning, C. (2004). Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 45(5), 503-510.
    124. Zheng, P., Allen, W. B., Roesler, K., Williams, M. E., Zhang, S., Li, J., et al. (2008). A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet, 40(3), 367-372.
    125. Zou, J. Wei, Y. Jako, C. Kumar, A., Selvaraj, G., & Taylor, D. C. (1999). The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J, 19(6), 645-653.
    126. Zou, J., Katavic, V., Giblin, E. M., Barton, D. L., Mackenzie, S. L., Keller, W. A., et al. (1997). Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 9(6), 909-92