类囊体膜磷脂酰甘油不饱和度对番茄耐盐性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Lycopersicon esculentum Mill.)作为一种重要的经济作物,在世界范围内分布广泛。盐分胁迫通过破坏植物类囊体膜结构和功能导致光合性能下降,而类囊体膜上不饱和脂肪酸含量的上升则有利于光合功能的维持。番茄中决定叶绿体类囊体膜中磷脂酰甘油(PG)中顺式不饱和脂肪酸含量的是叶绿体甘油-3-磷酸酰基转移酶(LeGPAT)对底物的选择性。番茄中GPAT优先选择C18:1-ACP作为底物,因此番茄中PG的sn-1位上就含有较高比例的18:1脂肪酸,盐胁迫条件下,这些脂肪酸可以在酰基脂肪酸去饱和酶的作用下进一步去饱和化成为顺式多聚不饱和脂肪酸。
     本文以野生型(WT),转正义番茄叶绿体甘油-3-磷酸酰基转移酶(LeGPAT)基因株系T2-19(+), T2-5(+)和转反义LeGPAT基因株系T2-16(-), T2-2(-)为试验材料,通过测定类囊体膜脂脂肪酸组成、盐胁迫后PG脂肪酸组成、光合及叶绿素荧光参数、叶绿体活性氧的产生、叶绿体活性氧清除酶活性以及D1蛋白修复等指标,研究了类囊体膜脂PG不饱和程度与番茄耐盐性的关系。主要结果如下:
     1.对番茄植株类囊体膜脂脂肪酸组成进行分析,结果表明,在WT和转基因植株类囊体膜脂的四种类脂中双半乳糖基甘油二酯(DGDG),单半乳糖基甘油二酯(MGDG),硫代异鼠李糖基甘油二酯(SQDG)的脂肪酸含量没有明显变化,而PG中脂肪酸含量发生了明显变化。与野生型相比,转正义基因番茄植株类囊体膜脂PG中18:2和18:3含量明显增加,脂肪酸不饱和程度升高,而转反义基因番茄植株PG 18:2和18:3含量下降,脂肪酸不饱和度明显下降。盐胁迫下,转正义基因番茄植株PG不饱和脂肪酸含量比未处理前稍有增加,而WT和转反义基因株系不饱和脂肪酸含量稍有下降,总体变化不明显。
     2.盐胁迫下,野生型和转基因株系的光合速率(Pn)和PSII最大光化学效率(Fv/Fm)都降低。但与野生型相比,转正义基因植株的Fv/Fm、Pn下降程度较小,而转反义基因植株的下降程度较大。表明类囊体膜脂PG不饱和度的提高有利于维持光合机构的稳定性,减轻对PSⅡ的光抑制。
     3.与野生型相比,盐胁迫下转正义基因植株维持较高的叶绿体超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性,产生较少的O2和H2O2;而转反义基因植株叶绿体抗氧化酶SOD及APX活性较低,O2和H2O2的含量较高。与其它株系相比,转正义基因株系叶绿体SOD和APX维持较高的活性,有利于清除活性氧,能够降低由于活性氧的积累而造成的膜脂过氧化程度,维持细胞膜的完整性。
     4.分离类囊体膜,进行SDS-PAGE和Western杂交,分析盐胁迫对D1蛋白修复速率的影响。Western杂交表明,短期盐处理对D1蛋白含量影响较小。长期盐胁迫下野生型和转基因番茄植株D1蛋白总含量均下降。与野生型相比,转正义基因番茄植株能够维持较高的D1蛋白含量,转反义基因植株含量较低。D1蛋白合成抑制剂处理后,转正义基因番茄植株D1蛋白净降解速率较高;而转反义基因植株中D1蛋白净降解速率最慢。与野生型相比,盐胁迫下转正义基因番茄植株D1蛋白的修复速率最快,而转反义基因植株最慢。
     上述结果表明,PG不饱和脂肪酸含量的增加可能提高D1蛋白的修复速率,提高叶绿体抗氧化酶的活性,进而提高番茄植株的耐盐性。
As an important cash crop, tomato (Lycopersicon esculentum mill.) is a world-wide distribution. Salt stress can damage the structure and function of thylakoid membrane, causing the decrease of photosynthesis, but the increase of unsaturated fatty acid of thylakoid membrane can enhance the ability of photosynthesis of plants. The dominant factor determining the level of cis-unsaturated fatty acids in PG is the substrate selectivity of glycerol-3-phosphate acyltransferase(LeGPAT)in tomato chloroplasts, which prefers 18:1-ACP to 16:0-ACP as a substrate. Therefore, a large proportion of oleic acid (18:1) occurs at the sn-1 position of PG in tomato, and under salt stress, oleic acid (18:1) of sn-1 position desaturates further into cis-polyunsaturated fatty acids of linoleic acid (18:2) and linolenic acid (18:3) by acyl-fatty acid desaturase in thylakoid membranes.
     In order to investigate the relationship of fatty acid composition of PG in thylakoid membrane and the tolerance to salt stress, WT, sense transgenic lines T2-19(+), T2-5(+) and antisense transgenic lines T2-16(-), T2-2(-) of tomato were used to determine the fatty acid composition of thylakoid membrane, the fatty acid composition of PG, photosynthetic and chlorophyll fluorescence parameters, the production of chloroplastic reactive oxygen species (ROS) and activities of antioxidase in chloroplasts, and the repair of D1 under salt stress.
     The results showed as follows:
     1. The results showed that there was no significant difference about the unsaturated fatty acids composition of digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and sulfoquinovosyldiacylglycerol (SQDG) in wild type (WT) and transgenic plants, but the content of fatty acids of PG changed markedly. Compared with WT, a higher content of 18:2 and 18:3 in PG was detected in sense transgenic plants. In contrast, the decreased unsaturation of PG in antisense transgenic plants was observed. And compared with WT, unsaturated fatty acids of PG increased in sense lines slightly, whereas decreased in WT and antisense ones lightly.
     2. In order to investigate the correlation of fatty acid composition in thylakoid membrane and the tolerance of photosystem to salt stress, photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in WT and transgenic plants decreased under salt stress, but compared with WT, Fv/Fm and Pn decreased more obviously in antisense lines, while more slowly in sense ones. It is indicated that the increase of unstaurated fatty acid in PG can stabilize the structure of photosynthetic apparatus, and alleviate the photoinhibition of PSII.
     3. Compared with WT, the sense transgenic lines could maintain higher activities of chloroplastic SOD and APX, and produce lower content of O2 and H2O2 under salt stress. In contrast, the activities of chloroplastic SOD and APX were lower and the content of ROS was higher in the antisense transgenic plants. Relative to other lines, the higher activities of chloroplastic SOD and APX can scavenge more ROS, and mitigate the extent of lipid peroxidation caused by the accumulation of ROS, and maintain the integrity of the cytomembrane.
     4. The analysis of western blot indicated that salt stress affected the repair of D1 protein. During short-time salt stress, the total content of D1 protein changed slightly among five lines. During salt stress for a long time, the content of D1 protein decreased in WT and transgenic plants. Compared with WT, there was a higher content of D1 protein in sense transgenic lines and lower level of D1 in antisense ones. After the treatment of streptomycin (SM), the net degradation of D1 was faster in sense trangenic plants and the most slowly in antisense ones. It is demonstrated that the rate of D1 turnover in sense lines was faster than other ones.
     These results suggested that the increase of unsaturation in PG can enhance the salt tolerance in tomato plants by accelerating the repair of D1 protein and improving the activities of antioxidase in chloroplasts.
引文
陈志强.膜脂在类囊体不同功能膜区的分布及其与植物抗寒性的研究.中科院植物研究所博士毕业论文, 1991, p. 7-9
    刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜组成和功能的影响.植物生理学报, 1997, 23 (2) : 105-110
    郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯, 1996, 32: 1-8
    华栋,耿德贵.盐度对盐生杜氏藻叶叶绿体超微结构的影响.徐州师范大学学报,1999,17(4):54-56
    匡廷云,彭德川,陈志强,余淑云,汤章城(主编).植物生理与分子生物学(第二版).科学出版社,北京, 1998:171-187
    冷静,李良壁,陈晖,许亦农,匡廷云.捕光天线LHCII的膜脂组成及PG在LHCII聚集中的作用.生物物理学报, 2002,18(4): 388-393
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见:于叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社,1998, 752-769
    柳维波,曹槐,刘世熙,刘次全.七种不同抗冷性植物甘油-3-磷酸转酰酶mRNA二级结构研究.云南植物研究, 2002, 24(4): 463-470
    苏维埃,王文英,李锦树.植物类脂及脂肪酸的分析技术.植物生理学通讯, 1980, 3: 54-60
    王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯, 1990, 6: 55-57
    王洪春.植物抗逆性与生物膜结构功能研究的进展.植物生理学通讯, 1985, 1: 60-66
    魏国强,朱祝军,方学智,李娟,程俊. NaCl胁迫对不同品种黄瓜幼苗生长、
    叶绿素荧光特性和活性氧代谢的影响.中国农业科学, 2004, 37(11):1754-1759
    许大全.光系统II反应中心的可逆失活及其生理意义.植物生理学通讯, 1999, 35(4): 273-276
    张恩平,张淑红,司龙亭. NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32(6):446-448
    赵世杰,史国安,董新纯.植物生理学实验指导.中国农业科学技术出版社, 2002, 130-131
    Al-Hasan R, Ghannoum M, Sallal A, Abu-Elteen K, Radwan S. Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. Journal of Genernal Microbiology, 1987, 133:2607 - 2616
    Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol, 2001, 125: 1842-1853
    Allakhverdiev SI, Murata N. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res, 2008, 98: 1-3
    Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol, 2002, 130: 1443-1453
    Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc. Natl Acad Sci USA, 1999, 96: 5862-5867
    Anderson JM. Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chorolasts. FEBS Letters, 1981, 124(1): 1-10
    Andersson B, Aro EM. Photodamage and D1 protein turnover in photosystem II. In: Aro EM, Andersson B (ed.) Regulation of Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, pp. 377-393
    Ariizumi T, Kishitani S, Inatsugi R. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol, 2002, 43(7): 751-758
    Arnon D I. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiology, 1949, 24 : 1-15.Aro EM, Kettunen R, Tyystjrvi E. ATP and light regulated D1 protein modification and degradation. Role of D1 in photoinhibition. FEBS Lett, 1992, 297: 29-33
    Aro EM, Virgin I, Andersson B. Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta, 1993, 1143: 113-134
    Asada K, Miyake C. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol, 1992, 33: 541-553
    Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis. In Photoinhibition (eds Kyle DJ, Osmond CB, Amtzen CJ). Pp.227-287, 1987, Elsevier Science Publishers, Amsterdam
    Asada K. Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (ed). Cause of photooxidative Stress and Amelioration of Defense Systems in Plants. Boca Raton: CRC Press, 1994, 77-104
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Boilogy, 1999, 50: 601–639.
    Baker NR, Webber AN. Interactions between photosystems. Advances Botanical Research, 1987, 13: 1-56
    Barber J, Norris J, Morris EP, Zheleva D, Hankamer B. The structure, function and dynamics of photosystem two. Physiol Plant, 1997, 100: 817-828
    Bethke J, Eckold G, Hahn T. The phonon dispersion and lattice dynamics of alpha -AlPO4: an inelastic neutron scattering study. J Phys: Condens Matter, 1992, 4:5537-5538
    Bruinsma J. A comment on the spectrophotometric determination of chlorophyll. Biochim Biophys Acta, 1961, 53: 576-578
    Campbell D, Bruce D, Carpenter C, Gustafsson P, quist G. Two forms of the Photosystem II D1 protein after energy dissipation and state transition in the cyanobacterium Synechocystis sp. PCC 7942. Photosynth Res, 1996, 47: 131-144
    Carter D R, Cheeseman J M. The effect of external Nacl on thylakoid stacking in lettuce plants. Plant Cell Environ, 1993, 16: 215- 223.
    Cleland R, Melis A, Neale PJ. Mechanism of photoinhibition: photochemical reaction center inactivation in system II of chloroplasts. Photosynth Res, 1986, 9: 79-88
    Darkóé, Váradi G, Lemoine Y, Lehoczki E. Defensive strategies agaist high light stress in wild and D1 protein mutant biotypes of Erigeron canadensis. Aust J Plant Physiol, 2000, 27: 325-333
    Dittrich H, Kutchan TM, Zenk MH. The jasmonate precuraor, 12-oxo-phytodienoic acid, induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett, 1992, 309: 33-36
    Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z. Phosphatidylglycerol is essential for oligomerization of photosystem I reaaction center. Plant Physiol, 2004, 134: 1471-1478
    Dubertret G, Gerard-Hirne C, Tre′molie`res A. Importance of trans-D3-hexadecenoic acid-containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Physiol Biochem, 2002, 40:829–836
    Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A. Evidence from in vivo manipulations of lipid composition in mutants that the D3-trans-hexadecenoicacid-containing phosphatidylglycerol is involved in the biogenesis of the lightharvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem, 1994, 226:473–482
    Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis. Planta, 1998, 206: 167-174
    Farmer EE. Fatty acid signaling in plants and their associated microorganisms. Plant Mol Biol, 1994, 26: 1423-1437
    Fowers TJ. Chloride as a nutrient and as an osmoticum. In: Tinker B, L?uuchli A, eds. Asvanced in plant nutrition, New York: Praeger, 1988, 3: 55-78
    Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976, 133:21-25
    Frentzen M, Heinz E, Mckeon TA, Stumpf PK. Specificatives and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem, 1983, 129: 625-636
    Frentzen M, Nishida I, Murata N. Properties of the plastidial acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant Squash (Cucurbita moschata). Plant Cell Physiol, 1987, 28: 1195-1201
    Frentzen M, Wolter FP. Molecular biology of acyltransferases involved in glycerollipid synthesis. In: Plant Lipid Biosynthesis. Edited by Harwood JL. Cambridge University Press, Cambridge, 1998, pp 247-272
    Fry B, Cox J, Gest H, Hayes J M. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. J Bact, 1986, 165: 328-330
    Fujita Y, Murakami A. Regulation of electron transport composition in cyanobacterial photosynthetic system: Stoichiometry among photosystem I and II complexes and their light-harvesting antennae and cytochrome b 6/f complex. Plant Cell Physiol, 1987, 28: 1547–1553
    Gilmore DJ, Hipkins MF, Webber AN, Baker NR, and Boney AD. The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Planta, 1985, 163: 250–256
    Golden SS, Brusslan J, Haselkorn R. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J, 1986, 5: 2789-2798
    Gounaris K, Brain APR, Quinn PJ, Williams WP. Structural reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim Biophys Acta, 1984, 766: 198-208
    Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol, 2002, 43: 1456-1464
    Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato
    leaves is not correlated with loss of photosysthem II activity. Preferential inactivation of Photosystem I. Photosynth Res, 1994, 40: 75-92
    Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot, 1997, 48: 1105-1113
    Hong SS, Xu DQ. Light-induced increase in initial chlorophyll fluorescence Fo level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosyn Res, 1999, 61: 269-280
    Huflejt ME, Tremolieres A, Pineau B, Lang JK, Hatheway J, Packer L. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311. Plant Physiol, 1990, 94: 1512-1521
    Jakob B, Heber U. Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystem I and II. Plant Cell Physiol, 1996, 37: 629-635
    Jansson C, Maenpaa P. Site-directed mutagenesis for structure-function analysis of the photosystem II reaction center protein D1. Progr Bot, 1997, 58: 352-367
    Jeanjean P, Sicart P, Robert JL, Planel R, Mollot F. DX states in GaAs/AlAs short-period superlattices doped selectively with silicon. Semicond Sci Technol, 1993, 8:1977-1978
    Jordan P, Formme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I as 2.5 resolution. Nature, 2001, 411: 909-917
    Kratsch HA, Wise RR. The ultrastructure of chilling stress. Plant Cell Environ, 2000, 23: 337-350
    Kyle DJ, Kuang TY, Janet L.Movement of sub-population of the light havesting complex (LHCII) from grana to stroma lamellae as a consequence of its phosphorylation. Biochimica et Biophysica Acta, 1983, 765:89-96
    Lapina LP, Popov BA. Effect of sodium chloride on the photosynthetic apparatus of tomatoes. Fiziol Rast, 1970, 17: 477–481
    Lee HY, Hong YN, Chow WS. Photoinactivation of photosystem II complex and photoprotection by non-functional neighbours in Capsicum annuum L. Leaves. Planta, 2001, 212: 332-342
    Li G, Knowles PF, Murphy DJ, Nishida I, Marsh D. Spin-label ESR studies of lipid-protein interactions in thylakoid membranes. Biochem, 1989, 28: 7446-7452
    Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 ? resolution. Nature, 2004, 428:287–292
    Loll B, Kern J, Seanger W, Zouni A, Biesiadka J. Lipids in photosystem II: Interactions with protein and cofactors. Biochim Biophys Acta, 2007, 1767(6): 509-519
    Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Arch Biochem Biophys, 2005, 444 (2): 139-158
    Mattoo A, Giardi MT, Raskind A, Edelman M. Dynamic metabolism of photosystem II reaction center proteins and pigments. Plant Physiol, 1999, 107: 454-461
    McConn M, Browse J. The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 1996, 8: 403-416
    McCourt P, Browse J, Watson J, Arntzen CJ, Somerville CR. Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol, 1985, 78:853–858
    Mead JF. Free radical mechanism of lipid damage, a consequence for cellular membranes. In Free Radical in Biology Chapter 2 (eds Pryor WA). Academic Press, New York, 1976
    Melis A. Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta, 1991, 1058: 87-106
    Moon BY, Higashi S, Gombos Z, Murata N. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA, 1995, 92: 6219-6233
    Muller M, Santarius K A. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity. Plant physiology, 1978, 62:326-329 Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25: 239-250
    Murata N, Higashi SI, Fujimura Y. Glycerolipids in various preparations of photosystem II from spinach chloroplast. Biochim Biophys Acta, 1990, 1019:261–268
    Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992, 356: 710-712
    Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992, 356: 710-712
    Murata N, Los DA. Membrane fluidity and temperature perception. Plant Physiol, 1997, 115 (3): 875-879
    Murata N, Sato N, Takahashi N, Hamazaki Y. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol, 1982, 23(6): 1071-1079
    Murata N, Wada H. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J, 1995, 308:1-7
    Murata N. Molecular species composition of phosphatidylglylcerols from chilling-sensitive and chilling-resistant plant. Plant Cell Physiol, 1983, 24: 81-86
    Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta, 2006, 1757:742–749
    Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279
    Ogawa K, Kenematsu S, Takabe K Asada K. Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labelling after rapid freezingand substitution method. Plant Cell Physiol, 1995, 36: 565-573
    Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell, 1995, 7: 957-970 Ort DR, Yocum CF. Electron transfer transduction in photosynthesis: an overview. In: Ort DR, Yocum CF (eds). Oxygenic photosynthesis: the Light Reactions. Dordrecht, Kluwer Academic, 1996, 4: 1-9
    Pick U, Gounaris K, Weiss M, Barber J. Tightly bound sulpholipids in chloroplast CF0-CF1. Biochim Biophys Acta, 1985, 808: 415-420
    Pick U, Weiss M, Gounaris K, Barber J. The role of different thylakoid glycolipids in the function of reconstituted chloroplast ATP synthase. Biochim Biophys Acta, 1987, 891: 28-39
    Prásil O, Adir N, Ohad I. Dynamics of Photosystem II: Mechanism of photoinhibition and recovery process. In: Barber NR, Bowyer JR (eds) Topics in photosynthesis, the photosystems: structure, function, and molecular biology. Oxford: Elsevier Scientific Publisher, 1992, 11: 295-348
    Ral GG, Rao GR. Pigment composition and chlorophyllase activity in pigment pea and Gingelley under Nacl salinity. Indian J Exp Biol, 1986, 19: 768-770
    Rawyler A, Siegenthaler PA. Transmembrane distribution of phospholipids and their involvement in electron transport as revealed by phospholipase A2 treatment of spinach thylakoids. Biochim Biophys Acta, 1981, 635:348-368
    Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol, 1983, 73: 238-242
    Rockholm DC, Yamamoto H Y. Violaxanthin de-epoxidase. Plant Physiol, 1996, 110: 697-703
    Ronghan PG, Holland R, Slack CR. The role of chloroplasts and microsomal fractions in polar lipid synthesis [1-14C] acetate by cell-free preparation from spinach (Spinacia oleracea) leaves. Biochemistry, 1980, 188: 17-22
    Roughan PG, Slack CR. Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol, 1982, 33: 97-132
    Sakamoto A, Sulpice R, Hou CX, Kinoshita M, Higashi SI, Kanaseki T, Nonaka H, Moon BY, Murata N. Genetic modification of the fatty acidunsaturation of phosphatidylglycerol in chloroplast alters the sensitivity of tobacco plants to cold stress. Plant Cell and Environment, 2003, 27: 99-105
    Sakurai I, Hagio M, Gombos Z, Tyystj?rvi T, Paakkarinen V, Aro EM, Wada H. Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol, 2003, 133: 1376-1384
    Sakurai I, Mizusawa N, Ohashi S, Kobayashi M, Wada H. Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol, 2007, 144: 1336-1346
    Sato N, Sonoike K, Tsuzuki M, Kawaguchi A. Impaired photosystem II in a mutant of Chlamydomonas reinhardyii defective in sulfquinovosyl diacylglycerol. Eur J Biochem, 1995, 234:16-23
    Sharkey TD. Some like it hot. Science. Plant biology, 2000, 287 (5452): 435-436
    Siegenthaler PA, Rawyler A, Smutny J. The phospholipids population which sustains the uncoupled noncyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim Biophys Acta, 1989, 975: 104-111
    Siegenthaler PA, Rqwyler A. In Encyclopedia of Plant Physiology (Staehelin LAand Arntzen C J eds.). Springer, 1986, 19: 713-706
    Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiol Biochem, 2005, 43: 1082-1088
    Sonoike K, Terashima I, Iwaki M, Itoh S. Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett, 1995, 362:235-238
    Sonoike K, Terashima I. Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L. Planta, 1994, 194: 287-293
    Sonoike K. Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: Possible involvement of active oxygen species. Plant Sci, 1996a, 115:157-164
    Sonoike K. Photoinhibition of photosystem I: Its physiological significance inthe chilling sensitivity of plants. Plant Cell Physiol, 1996b, 37(3): 239-247
    Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol, 1995, 36:825-830
    Staehelin LA, Arntzen CJ. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol, 1983, 97: 1327-1337
    Sui N, Li M, Liu XY, Wang N, Fang W, Meng QW. Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica, 2007a, 45(3): 447- 454
    Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, , 2007b, 226: 1097-1108
    Takahashi S, Murata N. Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II. Biochim Biophys Acta, 2006, 1757(3): 198-205
    Tanaka Y, Hibino T, Hayashi Y. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci, 1999, 148(2): 131-138
    Tasaka Y, Nishida I, Higashi S, Beppu T, Murata N. Fatty acid composition of phosphatidylglycerols in relation to chilling sensitivity of woody plants. Plant Cell Physiol, 1990, 31(4): 545-550
    Taylor JL, Fritzemeier KH, Huser I, Kombrink E, Rohwer F, Schrder M, Strittmatter G, Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact, 1990, 3: 72-77
    Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not system II. Planta, 1994, 193: 300-306
    Tester M, DavenportR. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91:503-527
    Thomas C, Johnson, Jane C, Schneider, Somerville C. Nucleotide sequence ofacyl-acyl carrier protein: glycerol-3-phosphate acyltransferase from cucumber. Plant Physiology, 1992, 99: 771-772
    Thomas PG, Dominy PJ, Vigh L, Mansourian AR, Quinn PJ, Williams WP. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim Biophys Acta, 1986, 849: 131-140
    Thornber JP. Chlorophyll-proteins: light-harvesting and reaction center components of plants. Annu Rev Plant Physiol, 1975, 26: 127-158
    Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 7209-7214
    Wada H, Gombos Z, Murata N. Enhancement of chilling torlerance of a cyanobacterium by genetic manupulation of fatty acid desaturation. Nature, 1990, 347: 200-203
    Wada H, Murata N. Membrane lipids in Cyanobacteria. In: Siegenthaler PA, Murata N, editors. Lipids in Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp 65-81
    Wada H, Murata N. The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res, 2007, 92: 205-205
    Weber H, Vick BA, Farmer EE. Dinor-oxo-phytodienoic acid: A new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA, 1997, 94: 10473-10478
    Weber S, Wolter FP, Buck F, Frentzen M, Heinz E. Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol, 1991, 17: 1067-1076
    Wise RR, Naylor AW. Chilling-enhanced photooxidation. Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol, 1987, 83: 278-282
    Xu YN, Siegenthaler PA. Low temperature treatments induce an increase in the relative content of both linolenic and trans-hexadecenoic acids in thylakoid membrane. Plant Cell Physiol, 1997, 38(5): 611-618
    Yeo AR. Molecular biology of salt tolerance in the context of wholeplant physiology. J Exp Bot, 1998, 49: 915-929
    Yokoi S, Higashi SI, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Molecular Breeding, 1998, 4: 269-275
    Zhang, L.X., Paakkarinen, V., van Wijk, K.J., Aro, E.M.: Co-translational assembly of the D1 protein into photosystem II. -J. Biol. Chem. 274: 16062-16067, 1999.
    Zheng ZF, Xia Q, Dauk M, Shen WY, Selvaraj G, Zou JT. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell, 2003, 15: 1872-1887
    Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2):66-7.