番茄类囊体膜不饱和脂肪酸增多缓解低温下PSⅡ的光抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温冷害是影响作物正常生长发育的环境因素之一。细胞膜系统是植物遭受低温冷害的首要部位,冷害的根本原因是细胞膜系统受损。植物类囊体膜受到低温伤害后,结构和功能遭到破坏,导致光合功能下降,而类囊体膜不饱和脂肪酸含量的上升则有利于光合功能的维持。番茄甘油-3-磷酸酰基转移酶(LeGPAT)优先选择C18:1-ACP作为底物,使其转移到叶绿体类囊体膜中磷脂酰甘油(PG)的sn-1位上,导致PG含有较高比例的18:1脂肪酸,从而能够决定叶绿体类囊体膜上磷脂酰甘油(PG)顺式不饱和脂肪酸含量。因此,探讨低温胁迫下类囊体膜PG顺式不饱和脂肪酸含量维持光合功能的作用具有重要的理论意义和应用价值。
     本实验以野生型(WT),转正义番茄叶绿体LeGPAT基因株系T_2-19(+)、T_2-5(+)和转反义LeGPAT基因株系T_2-16(-)、T_2-2(-)为试材,通过测定类囊体膜脂脂肪酸组成、光合及叶绿素荧光参数、叶绿体活性氧的产生、叶绿体活性氧清除酶活性以及D1蛋白修复等,研究了类囊体膜脂PG脂肪酸不饱和程度与番茄耐冷性的关系。主要结果如下:
     (1)番茄类囊体膜PG脂肪酸组成的分析。结果表明,和WT相比,转基因植株类囊体膜脂PG脂肪酸含量发生了明显变化。转正义基因番茄植株类囊体膜脂PG的18:2和18:3含量明显增加,脂肪酸不饱和程度升高,而转反义基因番茄植株PG的18:2和18:3含量下降,脂肪酸不饱和度明显下降。
     (2)长期低温胁迫下,野生型和转基因株系的生长量受到了不同程度的抑制,其中转反义基因植株的抑制程度最高,转正义基因植株的抑制程度最低。对低温下野生型和转基因株系的光合放氧速率和PSII最大光化学效率(Fv/Fm)进行测定后发现,植株生长量受低温抑制的程度与低温下光合及Fv/Fm受抑制的趋势相同。表明低温下植株生长量减少与光合受到抑制有关,而类囊体膜脂PG不饱和度的提高有利于维持光合机构的稳定性,减轻对PSII的光抑制。经过4d的低温胁迫,T_2-5、T_2-19、WT、T_2-2和T_2-16的相对电导率分别增加到46.72、49.11、67.07、73.21和79.96%。这表明在低温胁迫条件下,各个株系的番茄叶片均遭到了明显的伤害,与WT相比,转正义基因株系的膜系统受到的伤害程度较轻,而转反义基因株系番茄的膜系统受到的伤害程度较重。
     (3)与野生型相比,低温胁迫下转正义基因植株维持较高的叶绿体超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性,产生较少的O_2(?)和H_2O_2;而转反义基因植株叶绿体抗氧化酶SOD及APX的活性较低,O_2(?)和H_2O_2的含量较高。与其它株系相比,转正义基因株系叶绿体SOD和APX维持较高的活性,有利于清除活性氧,能够降低由于活性氧的积累而造成的膜脂过氧化程度,维持细胞膜的完整性。
     (4)低温胁迫对D1蛋白修复速率的影响。分离类囊体膜,进行SDS-PAGE和Western杂交,结果表明,低温胁迫下野生型和转基因番茄植株D1蛋白总含量均下降。与野生型相比,转正义基因番茄植株能够维持较高的D1蛋白含量,而转反义基因植株D1蛋白含量较低。用蛋白合成抑制剂硫酸链霉素处理后,转正义基因番茄植株D1蛋白含量少于转反义基因植株中D1蛋白含量。
     上述结果表明,低温胁迫下PG不饱和脂肪酸含量的增加可能提高了D1蛋白的修复速率,降低膜的伤害度,提高抗氧化酶的活性,进而提高番茄植株的耐冷性。
Plants are incapable of escaping from unfavorable environment, such as low temperature. The membrane is the primary location that was damaged under chilling stress. Chilling stress can damage the structure and function of thylakoid membrane, causing the decrease of photosynthesis, but the increase of unsaturated fatty acid of thylakoid membrane can enhance the photosynthesis ability of plants. GPAT from chilling-resistant plants prefers oleoyl-ACP (18:1-ACP) to palmitoyl-ACP (16:0-ACP) as a substrate. Thus, the proportion of oleic acid (18:1) changes at the sn-1 position of PG in chilling resistant plants. So, it is significant to study the relationship between the proportion of unsaturated fatty acids and chilling tolerance by using GPAT transgenic tomato plants.
     In this study, wild type (WT), sense transgenic lines [T_2-19(+), T_2-5(+)] and antisense transgenic lines [T_2-16(-),T_2-2(-)] of tomato were used to determine the fatty acid composition of PG in thylakoid membrane, oxygen evolving activity, the maximal photochemical efficiency of PSII (Fv/Fm), the production of chloroplastic reactive oxygen species (ROS) and activities of antioxidase in chloroplasts, and the repair of D1 protein under chilling stress. The results were showed as follows:
     (1) The results showed that the content of fatty acids of PG changed markedly. Compared with WT, a higher content of unsaturated fatty acids in PG was detected in sense transgenic plants. In contrast, the decreased unsaturation of PG in antisense transgenic plants was observed.
     (2) Under long time chilling stress, the growth of WT and transgenic lines were all decreased. But the fresh weight of the sense transgenic plants was higher than that of WT and antisense plants. Under chilling stress, the O2 evolution rates and Fv/Fm in WT and transgenic plants obviously decreased. Those decreases were more obvious in WT than those in transgenic plants. These results indicated that decrease of the fresh weight was owing to inhibition of the photosynthesis. The relative electronic conductance of leaves increased in both WT and transgenic plants under chilling stress for 4 days. But it increased more quickly in antisense plants than that in WT and sense transgenic plants. These results indicated that higher unsaturation ratio of PG reduced membrane damage under chilling stress.
     (3) Compared with WT, the sense transgenic plants could maintain higher activities of SOD and APX, and produce lower content of O_2(?) and H_2O_2 under chilling stress. In contrast, activities of SOD and APX were lower and the content of ROS was higher in the antisense transgenic plants. Relative to other lines, the higher activities of SOD and APX can scavenge more ROS, mitigate the extent of lipid peroxidation caused by the accumulation of ROS, and maintain the integrity of the cytomembrane.
     (4) We analysed the influence of chilling stress on the repair of D1 protein. During chilling stress for 8 h, the total content of D1 protein decreased among five lines. Compared with WT, there was a higher level of D1 protein in sense transgenic plants and lower level of D1 in antisense ones. After the treatment of streptomycin (SM) and low temperature, the content of D1 was lower in sense trangenic plants than in antisense ones.
     We concluded that the increase of unsaturation in PG can enhance the ability of repair of D1 protein, alleviate the injury of membrane, thus improve the activities of antioxidase in chloroplasts.
引文
曹仪值,宋占午。植物生理学。兰州大学出版社,1988,383-385
    陈国祥,何兵,魏锦城。低温下强光胁迫对小麦叶片光系统I结构与功能的影响。作物学报,2000,26(4):337-342
    陈杰中,徐春香。植物冷害及抗冷机理。福建果树,1998,2:21-23
    郭连旺,许大全,沈允钢。棉花叶片光合作用的光抑制与光呼吸的关系。科学通报,1995,40:1885-1888
    颉敏华,张继澍,郁继华,颉建明。D1蛋白周转和叶黄素循环在青花菜叶片强光破坏防御中的作用。中国农业科学2009,42(5):1582-1589
    李建龙。干早农业生态工程学。化学工业出版社,2002,5:86-87
    李新国等。银杏叶片光合作用对强光的响应。植物生理学报,1998,24(4):354-360
    林植芳,李双顺,林桂株。水稻叶片的衰老与超氧化物岐化酶活性及脂质过氧化作用的关系。植物学报,1984,26(6):605-615
    刘鸿先,曾韶西,王以柔。低温对不同耐冷力的黄瓜幼苗子叶各细胞器中超氧物歧化酶的影响。植物生理学报,1985,11:48-57
    刘鹏,孟庆伟,赵世杰。冷敏感植物的低温光抑制及其生化保护机制。植物生理学通讯,2001,37:176-182
    苏维埃,王文英。植物类脂及其脂肪酸的分析技术。植物生理学通讯,1980,3:54-60
    王洪春。植物抗逆性与生物膜结构功能研究的进展。植物生理学通讯,1985,1:60-66
    王以柔,刘鸿先,李平,曾韶西,甄立平,郭俊彦。在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响。植物生理学报,1986,2:244-251
    许大权。光系统II反应中心的可逆失活及其生理意义。植物生理通讯,1999,35(4):273-276
    杨玲,苏维埃。磷脂酰基油的热致相变与水稻抗冷性。科学通报,1994,39(16):1522-1525
    杨玲。不同低温处理对黄瓜子叶极性脂组成的影响。园艺学报,2001,28(1):36-40
    叶济宇。叶绿体的电子传递。见:余叔文,汤章城主编.植物生理与分子生物学。北京:科学出版社,1998:198-211
    曾纪晴,刘鸿先,王以柔。黄瓜幼苗子叶在低温下的光抑制及其恢复。植物生理学报,1997,23:15-20
    赵世杰。植物生理学实验指导。中国农业出版社,1998:161-165
    邹琦。植物生理学实验指导。北京:中国农业出版社,2000,161-162
    Allen D.J., Ort D.R.. Impacts of chilling temperatures on photosynthesis in warm-climateplants. Trends in Plant Sci., 2001, 6 (1): 36-42
    Alscher R.G., Donahue J.L., Cramer C.L.. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant, 1997,100 (2): 224-233
    Alves PLCA., Magalh es ACN., Barja P.R.. The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. The Botanical Review, 2002, 68 (2): 193-208
    Anderson J.M.. The molecular organization of chloroplast thylakoids. Biochimi. Biophys. Acta., 1975,416 (2): 191-235
    Andersson B., Aro E.M.. Photodamage and D1 protein turnover in photosystem II. Regulation of photosynthesis, 2004: 377-393
    Ariizumi T., Kishitani S., Inatsugi R., Nishida I., Murata N., Toriyama K.. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol., 2002, 43 (7): 751-758
    Arnon D.. Copper enzymes in isolated chloroplasts polyphenol oxidase in beta vulgaris. Plant Physiol., 1949, 24: 1-15
    Aro E.M., Virgin I., Andersson B.. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimi. Biophys. Acta., 1993, 1143 (2): 113-134
    Barber J., Gounaris K.. What role does sulpholipid play within the thylakoid membrane? Photosyn Res., 1986, 9 (1): 239-249
    Barber J., Nield J., Morris E., Zheleva D., Hankamer B.. The structure, function and dynamics of photosystem II. Physiol. Plant, 1997, 100 (4): 817-827
    Benning C.. Questions remaining in sulfolipid biosynthesis: A historical perspective. Photosynthesis research, 2007, 92 (2): 199-203
    Bertrand A., Castonguay Y.. Plant adaptations to overwintering stresses and implications of climate change. Botany, 2003, 81 (12): 1145-1152
    Bjrkman O., Demmig B.. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 1987,170 (4): 489-504
    Bowler J., Lilley T.J., Pittam J.D., Wakeling A.E.. Novel steroidal pure antiestrogens. Steroids, 1989, 54 (1): 71-99
    Browse J., Xin Z.. Temperature sensing and cold acclimation. Curr. Opin. Plant Bio., 2001, 4 (3): 241-246
    Bruinsma J.. A comment on the spectrophotometric determination of chlorophyll. Biochimi. Biophys. Acta., 1961, 52: 241-249
    Cakmak I., Marschner H.. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant physiol., 1992, 98 (4): 1222-1227
    Chain R.K.. Involvement of plastoquinone and lipids in electron transport reactions mediated by the cytochrome b6-f complex isolated from spinach. FEBS. letters, 1985,180 (2): 321-325
    Choquenot D., Greer A.E.. Intrapopulational and interspecific variation in digital limb bones and presacral vertebrae of the genus Hemiergis (Lacertilia, Scincidae). Journal of herpetology, 1989, 23 (3): 274-281
    Cyril J.P., Duncan G., Baird R.. Changes in membrane polar lipid fatty acids of seashore paspalum in response to low temperature exposure. Crop science, 2002, 42 (6): 20-31
    Dalton K., Dalton MJT.. Characteristics of pyridoxine overdose neuropathy syndrome. Acta. Neurol. Scand., 1987, 76 (1): 8-11
    Dobretsov G., Borschevskaya T., Petrov V., Vladimirov Y.A.. The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS. letters, 1977, 84 (1): 125-128
    Flanigan Y.S., Critchley C.. Light response of D1 turnover and photosystem II efficiency in the seagrass Zostera capricorni. Planta, 1996, 198(3): 319-323
    Frentzen M., Heinz E., mckeon T., Stumpf P.. Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur. J. Biochem., 1983, 129 (3): 629-636
    Gibson S., Arondel V., Iba K., Somerville C.. Cloning of a temperature-regulated gene encoding a chloroplastω-3 desaturase from Arabidopsis thaliana. Plant physiol., 1994, 106(4): 1615-1621
    Golbeck J.H.. Structure and function of photosystem I. Annu. Rev. Plant Biol., 1992, 43 (1): 293-324
    Gou L.W., Xu D.Q., Shen Y.G.. Photoinhibition of photosynthesis without net loss of D1 protein in wheat leaves under field conditions. Acta. Botanica. Sinica., 1996, 38: 196-202
    Gounaris K., Sundby C., Andersson B., Barber J.. Lateral heterogeneity of polar lipids in the thylakoid membranes of spinach chloroplasts. FEBS. letters, 1983, 156 (1): 170-174
    Greenberg B., Gaba V., Mattoo A., Edelman M.. Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kd protein of photosystem II. EMBO. J., 1987, 6 (10): 28-65
    Gupta V.K., Waymire E.C.. A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorol., 1993, 32: 251-251
    Hagio M., Gombos Z., Varkonyi Z., Masamoto K., Sato N., Tsuzuki M.. Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant physiol., 2000, 124 (2): 795-804
    Hankamer B., Barber J., Boekema E.J.. Structure and membrane organization of photosystem II in green plants. Annu. Rev. Plant. Biol., 1997, 48 (1): 641-671
    Havaux M., Davaud A.. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity. Photosynth Res., 1994, 40 (1): 75-92
    Hihara Y., Sonoike K.. Regulation, inhibition and protection of photosystem I. Regulation of photosynthesis, 2004: 507-531
    Kirk JTO., Tilney-Bassett A.R.. The plastids, their chemistry, structure, growth, and inheritance. The Plastids, Ed 2. Elsevier/North Holland, Amsterdam, 1978, pp50-63
    Kodama H., Hamada T., Horiguchi G., Nishimura M., Iba K.. Genetic enhancement of cold tolerance by expression of a gene for chloroplast [omega]-3 fatty acid desaturase in transgenic tobacco. Plant physiol., 1994, 105 (2): 601-605
    Kratsch H.A., Wise R.R.. The ultrastructure of chilling stress. Plant, Cell & Environ., 2000, 23 (4): 337–350
    Kruse O., Schmid G.. The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II -particles of the cyanobacterium Oscillatoria chalybea. J. Biosciences, 1995, 50 (5-6): 380-390
    Kwon J.H., Lee Y.M., An C.S.. cDNA Cloning of Chloroplastω-3 Fatty Acid Desaturase from Capsicum annuum and Its Expression upon Wounding. Mol. Cells, 2000, 10 (5): 493-497
    Kyle D., Ohad I., Arntzen C.. Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc. Natl. Acad. Sci. USA., 1984, 81 (13): 40-70
    Loll B., Kern J., Saenger W., Zouni A., Biesiadka J.. Lipids in photosystem II: interactions with protein and cofactors. Biochimi. Biophys. Acta., 2007, 1767 (6): 509-519
    Lunde C., Jensen P.E., Haldrup A., Knoetzel J., Scheller H.V.. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature., 2000, 408 (6812): 613-615
    Lyons J.M.. Chilling injury in plants. Annu. Rev. Plant Physiol., 1973, 24 (1): 445-466
    McCord J.M., Fridovich I.. Superoxide dismutase. J. Biol. Chem., 1969, 244 (22): 6049-6308
    Michel H., Deisenhofer J.. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry, 1988, 27 (1): 1-7
    Moon B.Y., Higashi S., Gombos Z., Murata N.. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperaturephotoinhibition in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA., 1995, 92 (14): 6219-6223
    Murata N., Ishizaki-Nishizawa O., Higashi S., Hayashi H., Tasaka Y., Nishida I.. Genetically engineered alteration in the chilling sensitivity of plants. Nature., 1992, 356 (6371): 710-713
    Murata N., Siegenthaler P.A.. Lipids in photosynthesis: an overview. Lipids in Photosynthesis: Structure, Function and Genetics, 2004: 1-20
    Murata N.. Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol., 1983, 24(1): 81-86
    Murphy D.J.. The importance of non-planar bilayer regions in photosynthetic membranes and their stabilisation by galactolipids. FEBS. letters, 1982, 150 (1): 19-26
    Nishida I., Murata N.. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Biol., 1996, 47 (1): 541-568
    Nixon P.J., Chisholm D.A., Diner B.A.. Isolation and functional analysis of random and site-directed mutants of photosystem II. Plant Protein Engineering, 1992: 93-141
    Niyogi K.K.. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant. Biol., 1999, 50 (1): 333-359
    Orlova I., Serebriiskaya T., Popov V., Merkulova N., Nosov A., Trunova T.. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol., 2003, 44: 447-450
    Pick F.R., Agbeti M.. The seasonal dynamics and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1991, 76 (4): 565-580
    Prasil O., Adir N., Ohad I., Barber J.. The photosystems: Structure, function and molecular biology. The photosystems: Structure, function and molecular biology, 1992
    Rawyler A., Unitt M.D., Giroud C., Davies H., Mayor J.P., Harwood J.L.. The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. Photosynth. Res., 1987, 11 (1): 3-13.
    Routaboul J.M., Fischer S.F.. Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant physiol., 2000, 124 (4): 16-97
    Sakurai I., Hagio M., Gombos Z., Tyystj rvi T., Paakkarinen V., Aro E.M.. Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant physiol., 2003, 133 (3): 1376-1384
    Vega S.E., Bamberg J.B., Palta J.P.. Evidence for the up-regulation of stearoyl-ACP (Δ9) desaturase gene expression during cold acclimation. Amer. J. Photo. Res., 2004, 81 (2): 125-135
    Satoh K.. Isolation and properties of the photosystem II reaction center. The Photosynthetic Reaction Center, 1993, 1: 289-318
    Sharma J., Panico M., Shipton C.A., Nilsson F., Morris H.R., Barber J.. Primary structure characterization of the photosystem II D1 and D2 subunits. J. Biol. Chem., 1997, 272 (52): 33158
    Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y.. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 2002, 53 (372): 130-135
    Siegenthaler P.A., Rawyler A., Smutny J.. The phospholipid population which sustains the uncoupled non-cyclic electron flow activity is localized in the inner monolayer of the thylakoid membrane. Biochim. Biophysi. Acta., 1989, 975 (1): 104-111
    Siegenthaler P.A., Trémolières A.. Role of acyl lipids in the function of photosynthetic membranes in higher plants. Lipids in Photosynthesis: Structure, Function and Genetics, 2004: 145-173
    Singer S.. Structure and function of biological membranes. Academic Press, New York, 1971: 146-190
    Singer S.J., Nicolson G.L.. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175 (23): 720-731
    Sonoike K.. Various aspects of inhibition of photosynthesis under light/chilling stress: “Photoinhibition at chilling, temperatures”versus“Chilling damage in the light”. J. Plant Res., 1998, 111 (1): 121-129
    Steponkus P.L., Uemura M., Joseph R.A., Gilmour S.J., Thomashow M.F.. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA., 1998, 95 (24): 145-170
    Sui N., Li M., Zhao S., Li F., Liang H., Meng Q.. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 2007a, 226: 1097-1108
    Sui N., Li M., Shu D., Zhao S., Meng Q.. Antisense-mediated depletion of tomato chloroplast glycerol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. Physiol. Plant, 2007 b, 130: 301-314
    Sung D.Y., Kaplan F., Lee K.J., Guy C.L.. Acquired tolerance to temperature extremes. Trends Plant Sci., 2003, 8 (4): 179-187
    Takahashi Y., Matsumoto H., Goldschmidt-Clermont M, Rochaix JD. Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex. Plant Mol. Biol., 1994, 24 (5): 779-788
    Terashima M., Kubo A., Suzawa M., Itoh Y., Katoh S.. The Roles of the N‐ linked carbohydrate chain of riceα‐amylase in thermostability and enzyme kinetics. Eur. J. Biochem., 1994, 226 (1): 249-254
    Underhill S., Cirtchley C.. Anthocyanin declorisation and its role in lychee pericarp browning. Aust. J. Exp. Agr., 1994, 34: 115-122
    Virgin I., Ghanotakis D.F., Andersson B.. Light-induced D1-protein degradation in isolated photosystem II core complexes. FEBS. letters, 1990, 269 (1): 45-48
    Wada T., Qian X., Greene M.I.. Intermolecular association of the p185 neu protein and EGF receptor modulates EGF receptor function. Cell, 1990, 61 (7): 1339-1347
    Walker R.A., Salmon E.D., Endow S.A.. The Drosophila claret segregation protein is a minus-end directed motor molecule. 1990
    Wise R.R., Naylor A.W.. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol., 1987, 83 (2): 278-282
    Xu Y., Siegenthaler P.A.. Low temperature treatments induce an increase in the relative ontent of both linolenic andΔ3-hexadecenoic acids in thylakoid membrane phosphatidylglycerol of squash cotyledons. Plant Cell Physiol., 1997, 38 (5): 611-618
    Yu B., Xu C., Benning C.. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl. Acad. Sci. USA., 2002, 99 (8): 57-32
    Zhang N., Portis J.. Mechanisms of light regulation of rubisco: a specific role for the larger rubisco activase isoform involing reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. USA., 1999, 96:9438-9443