转抗冻蛋白基因烟草的抗寒性及遗传稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用获得的转胡萝卜36KD抗冻蛋白基因烟草,系统地检测了转基因烟草的抗寒性,对T1代进行遗传稳定性分析,同时比较了CaMV35S启动子、Prd29A启动子对外源基因表达的影响。由检测结果可以看出,胡萝卜36KD抗冻蛋白基因的表达提高了烟草的抗寒性,Prd29A启动子受低温诱导后可以提高外源基因的表达水平,且优于CaMV35S启动子。
     经4℃低温锻炼,-1℃处理24h,转基因烟草的存活率及光化学效率明显高于野生型,-6℃处理野生型烟草叶片的电解质渗透率趋于最大值,细胞膜被严重破坏,而至-8℃转基因烟草的电解质渗透率才达到最大值,因此,36KD抗冻蛋白基因提高了转基因烟草的抗冻性。
     4℃低温锻炼后,可溶性糖、可溶性蛋白、脯氨酸含量变化及抗氧化酶活性的测定结果表明,转基因烟草上述抗寒性物质的积累量高于野生型烟草,转Prd29A-AFP基因烟草抗寒性物质的积累量明显高于转CaMV35S-AFP基因的烟草,说明36KD抗冻蛋白基因提高了转基因烟草在低温锻炼期间抗寒性物质的积累能力,从而提高了烟草的抗寒性。
     T1代转基因烟草遗传稳定性分析显示,该外源基因符合孟德尔式遗传。T1代阳性植株在-1℃处理后的存活率及光化学效率也明显高于野生型烟草,证明36KD抗冻蛋白基因可以稳定地遗传给下一代,使转基因植株的后代也能维持较高的抗寒性。
     Prd29A和CaMV35S启动子对转基因烟草的生长发育都产生一定的影响,但Prd29A的影响比较小。受4℃低温诱导后Prd29A启动子可以明显提高外源基因的表达水平。
AFPs have a great potential in improving cold tolerance of cold-sensitive plants. Previously,we showed that transformation with the afp gene allows tobacco plants to synthesize the 36 kD carrot antifreeze protein and enhance their ability to tolerante chilling and freezing tolerance. In this study ,we examined the change in physiological and biochemical process of the wild and transgenic tobacco plants and the relation to cold tolerance.The genetic characteristics of the transgene and the cold tolerance of the T1 plants were also assessed.The main results are as follows:
    Results of Fm/Fv measured after -1℃ stress showed that the photosynthetic machinery of transformed plants was more tolerant to freezing strss than that of wild-type plants after 4℃ acclimation. After cold acclimation (4℃), activities of peroxidase and superoxide dismutase, as well as the protein, proline and soluble carbohydrates contents were higher in tobacco plants transformed with Prd29A-AFP than that transformed with CaMV35S-AFP .It is implied that the differences are probably related with physiology and biochemistry mechanism of different resistance of the two transgenic plants.
    Kanamycin-resistance,PCR and freezing resistance tests of T1 gengeration plants indicated that the foreign afp gene delivered to the progeny according to Mendelian Law of single gene segregation.
    We show here that expression of the afp gene in transgenic plants resulted in improved tolerance to cold stress. However, use of the strong constitutive 35S cauliflower mosaic virus (CaMV) promoter to drive expression of afp also resulted in growth retardation under normal growing conditions. In contrast, expression of afp driven by the stress inducible Prd29A promoter from Arabidopsis gave rise to minimal effects on plant growth while providing an increased tolerance to cold stress condition. The results demonstrated the prospect of using Prd29A- AFP transgenic plants in cold- stressed conditions which will in turn benefit agriculture.
引文
[1] 谢秀杰,贾宗超,魏群,等.抗冻蛋白结构与抗冻机制[J].细胞生物学杂志,2005,27:5-8.
    [2] 费云标,孙龙华,黄涛,等.沙冬青高活性抗性蛋白的发现[J].植物学报,1994,36(8):649-650.
    [3] 卢存福,简令成,匡廷云.低温诱导唐古特红景天细胞分泌抗冻蛋白[J].生物化学与生物物理进展,1998,27(5):555-559.
    [4] 尹明安,崔鸿文,樊代明,等.胡萝卜var.sativus Hoffm Deutschl抗冻蛋白基因的克隆及测 序[J].西北植物学报,2001,21(2):226-231.
    [5] 尹明安,崔鸿文,樊代明,等.胡萝卜抗冻蛋白基因克隆及植物表达载体构建[J].西北农林科技大学学报(自然科学版),2001,29(1):6-10.
    [6] 李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展(综述)[J].热带亚热带植物学报,2000,8(1):70-80.
    [7] 魏令波,江勇,舒念红,等.沙冬青叶片热稳定抗冻蛋白特性分析[J].植物学报,1999,41(8):837-841.
    [8] 江勇,魏令波,费云标,等.分离和鉴定沙冬青抗冻蛋白质[J].植物学报,1999,41(9):967-971.
    [9] 张羽航,鲍时翔,郑学勤,等.脂肪酸饱和酶的研究进展[J].生物技术通报,1998,4:1-8.
    [10] 刘继梅,陈善娜,鄢波,等.不同抗冷性水稻中编码甘油-3-磷酸酰基转移酶的部分cDNA序列比较研究[J].云南植物研究,2000,22(3):317-321.
    [11] 陈杰中,徐春香.植物冷害及抗性生理.福建果树,1998,2:21-23
    [12] 王瑞云,贺润喜.植物抗寒性基因工程研究进展.中国生态农业学,2004,Vol.12 No.1:26-29.
    [13] 黄永芬,汪清胤,付桂荣,等.美洲拟鲽抗冻蛋白基因(afp)导入番茄的研究[J].生物化学杂志,1997,Vol.13,No.4:418-422.
    [14] 陈曦,卢存福.低温诱导及Ca~(2+)信号对胡萝卜悬浮培养细胞抗冻蛋白合成及细胞抗冻能力的影响[J].科学技术与工程,2002,2(3):23-26.
    [15] 简令成,孙龙华,卫翔云,等.从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂的研制[J].植物学通报,1994,11:1-22.
    [16] 卢存福,王红,简令成,等.植物抗冻蛋白研究进展[J],生物化学与生物物理进展,1998,25(3):210-216.
    [17] 马文月.植物冷害和抗冷性的研究进展[J].安徽农业科学,2004,32(5):1003-1006.
    [18] 杨福愉,邢菁如,陈文雯,等.低温处理对玉米线粒体氧化磷酸化和抗氰氧化的影响[J].植物学报,1981.23359-363
    [19] 李富生,何丽莲.植物对非生物胁迫的生理响应及甘蔗抗旱抗寒性研究进展[J].甘蔗,2004,1:31-37.
    [20] 王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459~465.
    [21] 王荣富.植物抗寒指标的种类及其应用[J].植物生理学通讯,1987,(3):49-55.
    [22] 孙清鹏,许煌灿,张方秋,等.低温胁迫对大叶相思和马相思某些生理特性的影响[J].林业科学研究,2002,15(1):34-40.
    [23] 冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究,2002,15(2):197-202.
    [24] 孙清鹏,许煌灿,张方秋,等.低温胁迫对大叶相思和马相思某些生理特性的影响[J].林业科学研究,2002,15(1):34-40.
    [25] 李美如,刘鸿先,王以柔,等.植物细胞中的抗寒物质及其与植物抗冷性的关系[J].植物生理学通讯,1995,31(5):328-334.
    [26] 陈少欲.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):86-90.
    [27] 罗正荣.植物激素与抗寒力的关系[J].植物生理学通报,1989,(3):1-5.
    [28] 王洪春,汤章城,苏维埃,等.水稻干胚膜脂肪酸组分差异性分析[J].植物生理学报,1980,6(3):225-236.
    [29] 李晶,李杰,关英芝,等.逆境诱导型启动子rd29A的克隆及植物表达载体的构建[J].植物研究,2004,1:111-114.
    [30] 黎明,李福秀,马焕成,等.香木莲对短时低温胁迫处理的生理生态响应[J].北方园艺,2006(1):37-39.
    [31] 冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,4:14-18
    [32] 张党权,谭晓风,仲健,等.胡萝卜抗冻蛋白的快速与高效纯化[J].中南林学院学报,2005,8:27-30.
    [33] 范云,刘兵,王宏斌,等.胡萝卜抗冻蛋白基因的克隆及其在E.coli中的表达[J].中山大学学报(自然科学版),2002,3:52-55.
    [34] 石乔东.甘蓝型油菜BCNA1基因启动子在转基因烟草中对GUS基因表达的调控[J].植物生理学报,2001,27(4):313320.
    [35] 白斌,张金文,郭志鸿,等.rd29A启动子克隆及对低温响应的研究[J].甘肃农业大学学报,2006.6:249~254.
    [36] 赵凤云,王晓云,赵彦修,等.转入盐地碱蓬谷胱甘肽转移酶和过氧化氢酶基因增强水稻幼苗对低温胁迫的抗性[J].植物生理与分子生物学学报,2006,32(2):231-238.
    [37] 李新玲,杨传平,曲敏,等.rd29A启动子的克隆及提高烟草抗逆性的研究[J].分子植物育种,2007,Vol.5,No.1,37-42.
    [38] 赵恢武,陈杨坚,胡鸢雷,等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616-619.
    [39] 吴纯清.CBF_3和COR15α基因对烟草抗寒性的影响.中国优秀硕士学位论文全文数据库,2006.
    [40] 焦芳婵,毛雪,李润植.转基因改良植物的胁迫耐性[J].生物技术通讯,2001,12(2):137.
    [41] 傅桂荣,陈瑛,刘关君,等.美洲拟鲽抗冻蛋白基因(afp)导入番茄酯酶和过氧化物酶同工酶分析[J].北方园艺,1998,1:6-7.
    [42] 张钰,吴加林,黄永芬,等.转美洲拟鲽抗冻蛋白基因(afp)番茄过氧化物酶、过氧化氢酶、超氧化物歧化酶活性测定[J].哈尔滨师范大学自然科学学报,1998 Vo 1.14,No.4:11-14.
    [43] 傅桂荣,张初,赵晓祥,等.转美洲拟鲽抗冻蛋白基因(afp)番茄的叶片电导率测定[J].生物技术,1997,7(5):7-8.
    [44] 金建凤,高强,陈勇,等.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高[J].细胞生物学杂志,2005,27:73-76.
    [45] 周玮,周波,杨雪,等.转SOD基因烟草中SOD酶活力对逆境的耐性及其遗传学特征[J].广西植物,2006,3,26(2):200-203
    [46] 甄伟,陈溪,孙思洋,等.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展,2000,12:1104-1108.
    [47] 焦德茂,李霞,黄雪清,等.转PEPC基因水稻的光合CO2同化和叶绿体荧光特性[J].科学通报,2001,5:414-418.
    [48] 徐琼芳,田芳,陈孝,等.转基因抗虫小麦中sgna基因的遗传分析及抗虫性鉴定[J].作物学报,2004,Vol.30,No.5:475-480.
    [49] 赵昕,徐香玲.转几丁质酶基因烟草后代的遗传分析[J].首都师范大学学报(自然科学版),2004,Vol.25,No.1:51-54.
    [50] 蒋冬花,郭泽建.转隐地蛋白基因烟草的抗病性及遗传分析[J].植物病理学报,200333(3):237-242.
    [51] 王关林,李铁松,方宏筠,等.番茄转果聚糖合酶基因获得抗寒植株[J].中国农业科学,2004,37(8):1193-1197.
    [52] 金万梅,董静,尹淑萍,等.冷诱导转录因子CBF1转化草莓及其抗寒性鉴定[J].西北植物学报,2007,27(2):223-227.
    [53] Urrutia M E. Plant thermal hysteresis proteins[J]. Bioehem Biophys Acta, 1992, 1121(1): 199-206.
    [54] Worrall D. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science, 1998,282:115-117.
    [55] Duman J G. Thermal hysteresis protein activity in bacteria fungi and phylogenetically diverse plants[J]. Cryobiology, 1993, 30(3): 322-328.
    [56] Duman J G. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweetnightshade Solanum dulcamara[J]. BBA, 1994,1206: 129-135.
    [57] Hon W H. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L) leaves[J]. Plant physiol, 1994, 104(3): 971-980.
    [58] Antikainen M. lmmunolocalization of antifreeze proteins in winter rye leaves crowns and roots by tissueprinting[J]. Plant Physiol, 1996,110: 845-857.
    [59] Hon W C. Antifreeze proteins in winter rye are similar to pathogenesis-related protein[J]. Plant Physiol, 1995,109: 879-889.
    [60] Griffith M. Antifreeze proteins produced endogenously in winter rye leaves[J]. Plant Physiol., 1992,100(2): 593-596.
    [61] Meyer K. A leueine-rich repeat protein of carrot that exhibits antifreeze activity[J]. FEBS Letters, 1999,447: 171-178.
    [62] Boyer J.S. Plant productivity and environment. Science, 1982, 218:443-448.
    [63] Wada H. Enhancement of chilling tolerance of a cyannobacterium by genetic manipulation of fatty aciddesaturation[J]. Nature, 1990,347: 200-203.
    [64] Wolter FP. Chilling sensivity of Arabidopsis thaliana with genetically engineered membrane liquids[J]. EMBO J EurMol Biol Organ, 1992,11(13): 4685-4692.
    [65] Kodama H. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring lowtemperature tolerance to young tobacco leaves[J]. Plant Physiology, 1995,107(4): 1177-1185.
    [66] Los D. Cloning of a temperature-dependent expression of desaturase desA gene in Synechoeysti PCC6803[J]. FEBS, 1993, 318(1): 57-60.
    [67] Raymond J A, DeVries A L. Absorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA, 1977, 74: 2589-2593.
    [68] Wen D, Laursen R A. A model for binding of an antifreeze polypeptide to ice. Biophys J, 1992, 63: 1659-1662.
    [69] Zhu R-H (朱仁华). Low Temperature Biology of Ocean. Beijing. Ocean Press, 1984, 216-224.
    [70] Georges F, Saleem M, Cutler A. J. Design and cloning of a synthesis gene for the flounder antifreeze protein and its expression in plant cells. Gene, 1990,91 (2) :159~165.
    [71] Hightower R, Cathy B, Ranela D. Expression of antifreeze proteins in transgenic plants. Plant Mol. Biol, 1991, 17 (5):1013~1021.
    [72] Meza~Basso L, Alberd M. Plant Physiol. 1986, 82:733-738.
    [73] Seandalios J G. Oxygen stress and superoxide dismutases. Plant Physiol, 1993,101:7-12.
    [74] Purvis A C, Shewfelt RL. Does the alterative pathway ameliorate chilling injuryin sensitive plant tissues[J]. Physiol Plant, 1993,88:712-718.
    [75] Lyons J M. Chilling injury in plants[J]. Ann Rev Plant Physiol, 1973,24:445- 466.
    [76] QiangLiu, MieKasuga, Yohsakuma. Two transcription factors, DREB1 and DREB2, with an EREBPP2 DNA binding domain in drought-andlow-temperature-responsivegene expression respectively in Arabidopsis. PlantCell, 1998,10:1391-1406.
    [77] WilsonK, LongD, SwinbumeJ. A dissociation insertion cause asemi-dominant mutation that in crease expression of TINY, an Arabidopsis gene relatedto APETALA2. PlantCell, 1996, 8:659-671.
    [78] MieKasuga, QiangLiu, KazuoShinozaki. Improving plant drought, salt, and freezing to lerance by genetrans ferofasing lestress-inducibletrans criptionfactor. NatureBiotechnology, 1999,17:287-291.
    [79] Xu Wen-li, Liu Mei-qin, Shen Xin, Lu Cun-fu. Expression of a Carrot 36 kD Antifreeze Protein Gene Improves Cold Stress Tolerance in Transgenic Tobacco. Forestry Studies in China, 2005, 7(4): 11-15.