TMX基因与先天性肥厚性幽门狭窄易感性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     先天性肥厚性幽门狭窄(congenital hypertrophic pyloric stenosis, CHPS)是新生儿常见的消化道先天性畸形,其发病率具有种族、性别和地区差异,男性较多,占90%以上。多合并有其他先天性疾病。主要临床症状为出生后15~25天,于进食后10~30 min出现频繁呕吐胃内容物,无胆汁;体检于中上腹部可扪及橄榄样包块。主要原因在于幽门部肌肉肥厚所致的幽门管腔狭窄及胃出口的梗阻。目前病因及发病机理不清,研究表明其发病与遗传及环境因素有关。先后有学者认为染色体16p12-p13位点、一氧化氮合酶(NOS1)基因、胃动素基因与其发病相关,但未获更多证据支持。最近国外学者通过全基因组扫描分析,认为瞬时受体电位离子通道蛋白6(transient receptor potential channel 6, TRPC6)可能为CHPS的易感基因。
     以上研究基本是针对国外人群进行的,尚无我国的相关深入研究。故本研究先通过对307例住院CHPS患者进行临床数据的回顾性分析,研究其临床发病特点;然后选择19个核心家系(患者和父母双亲),进行全基因组芯片扫描,初步探索其发病相关基因位点;再扩大样本,采用测序的方法进行基因分型,针对初步确定的候选基因位点(TMX基因的多态性位点rs7161242及rs7160810)进行无关个体的病例-对照分析及核心家系的传递不平衡检验(Transmission/Disequilibrium Test,TDT),进一步验证其与CHPS的关系,并利用生物信息学方法,研究多态性位点的不同基因型对基因的结构及功能的影响;最后采用免疫组化方法,研究多态性位点所在的TMX基因在CHPS患者幽门平滑肌组织中的表达。
     第一部分中国汉族人群先天性肥厚性幽门狭窄临床特征
     目的:探讨中国汉族人群先天性肥厚性幽门狭窄(CHPS)的临床发病特点,为诊断、治疗,以及遗传易感基因研究和流行病学调查提供依据。
     方法:对307例CHPS住院患儿的病历资料进行回顾性总结和分析,观察项目包括患儿性别、发病年龄、体重变化、入院时电解质及动脉血气情况、B超检查结果及合并其他先天性疾病情况。将发病10天内治疗者列为早期组,而超过10天者列为晚期组,比较这两组动脉血气、电解质及日平均体重增加的差别。
     结果:307例患儿中男性262例,女性45例,发病年龄1~351天,去掉离散程度较大者6例,其余301例平均发病年龄23.8±13.0天。患儿出生体重1.6~4.5kg,平均3.24±0.44kg;只有1对同卵双胞胎同时患病;合并其它先天性疾病共62例(20.2%),前二位的是心血管和消化系统的先天性异常。幽门环肌B超厚度3~8mm,平均5.4±1.1mm。早期组日平均体重增加明显大于晚期组,而低钾血症、低氯血症及高碳酸血症发生率明显低于晚期组(P<0.05);血钠与血pH值无显著性差异。
     结论:中国汉族人群CHPS以男性为主,发病年龄为3~5周,幽门环肌厚度5.4±1.1mm,合并其它先天性疾病比例较高,但家庭聚集发病少见。对于在出生后3~5周内出现持续性呕吐患儿,应高度警惕CHPS,并应尽快诊治,以减少低氯低钾性碱中毒的发生,避免病情进一步恶化。
     第二部分CHPS核心家系的全基因组芯片扫描分析
     目的:从全基因组范围内探索CHPS发病相关基因。
     方法:对由19个患儿及父母组成的核心家系,采用Affymetrix公司的SNP 6.0基因芯片进行全基因组芯片扫描,并用golden helix 6.4软件包的FBAT模块进行分析,搜索与CHPS发病相关的基因及位点,对所发现的有显著性意义的位点,进一步根据基因的功能及P值,选择候选基因。
     结果:以p值达10-5为判定标准,总共发现105个SNP位点,通过初步筛选,发现位于硫氧还蛋白相关跨膜蛋白1基因(thioredoxin-related transmembrane protein 1,TMX)上的多态性位点rs7161242与中国汉族人群CHPS发病相关联。
     结论:TMX基因的rs7161242位点与中国汉族人群CHPS发病相关联。
     第三部分TMX基因与先天性肥厚性幽门狭窄遗传易感性的关联研究
     目的:探索TMX多态性位点rs7161242[c.492T>G]及rs7160810[c.648G>A]与CHPS发病的相关性。方法:应用PCR及测序的方法,对多态性位点rs7161242及rs7160810进行基因分型,对22个核心家系进行TDT分析,进一步对31例CHPS患儿与60名正常对照采用病例-对照研究,来探索这两个SNP位点与CHPS发病的相关性,并利用在线软件对这两个SNP位点进行生物信息分析,研究其多态性与TMX基因结构与功能之间的关系,进一步利用免疫组化方法来研究TMX基因表达与CHPS发病的关系。
     结果:测序结果验证了芯片扫描的准确性,未发现新的突变位点;患儿、父母及正常对照者组内这两个多态性位点的Hardy-Weinberg平衡检验均P>0.05,TDT检验提示多态性位点rs7161242的G等位基因及rs7160810的A等位基因的均与CHPS发病相关,其P值分别为2.0×10-4和5.699×10-5;连锁不平衡分析结果提示:这两个位点的r2为0.757,D'值为0.893,成紧密连锁。病例-对照研究提示rs7160810位点A等位基因纯合子患病风险明显增加(OR=3.932,95%CI:1.545~10.006, x 2 =8.924,P=0.012);rs7161242位点G等位基因纯合子患病风险明显增加(OR=4.222,95%CI:1.655~10.772, x 2=9.630,P=0.002)。在线分析发现多态位点rs7161242位于第6外显子剪接受点(acceptor site)区域内,会导致熵值和自由能的改变。rs7161242位点的TT基因型的最大熵低于GG基因型(-19.55 VS -22.22),所转录的RNA的二级结构的自由能也低于GG基因型;rs7160810位点GG基因型的最大熵也低于AA基因型,所转录的RNA的二级结构的自由能也低于AA基因型,提示rs7161242位点的GG基因型及rs7160810位点的AA基因型相对不稳定,且其转录的mRNA也相对不稳定。免疫组化结果提示TMX基因在幽门平滑肌细胞膜和细胞浆表达,未发现在细胞核中表达。采用Image-Pro Plus 6.0(IPP)图像分析系统测量阳性细胞平均光密度值(IOD mean,MOD),半定量分析发现TMX基因在CHPS患儿幽门部平滑肌的表达量明显弱于正常对照者(0.117±0.033 VS 0.229±0.044,P<0.001)。
     结论:
     1、TMX基因的多态性位点rs7161242[c.492T>G]及rs7160810[c.648G>A]与中国汉族人群CHPS发病密切相关。rs7161242位点GG基因型及rs7160810位点AA基因型是CHPS患病的危险因素。
     2、TMX基因的两个多态性位点rs7161242[c.492T>G]及rs7160810[c.648G>A]会影响RNA的二级结构。
     3、TMX基因在平滑肌细胞膜及细胞浆中表达,未发现在细胞核中表达。
     4、TMX基因在CHPS患儿的幽门环形肌中表达显著低于正常对照。
Part one: Clinical Features of CHPS in Chinese Han population
     Objective: To explore clinical features of Congenital Hypertrophic Pyloric Stenosis(CHPS) in Chinese Han population,and to provide the evidence for diagnosis, treatment and epidemiological investigations.
     Methods: Three hundred and seven hospitalized patients with CHPS were retrospectively reviewed, and data including patient's sex, onset age, body weight, other coexisting congenital defects, pyloric muscle thickness evaluated by ultrasonograph, serum electrolytes concentration and results of arterial blood gas analysis on admission were collected. The patients were divided into two groups according to the duration between first onset and admission: less than or equal to 10 days (early group)and more than 10 days(later group).Results of the arterial blood gas analysis, serum electrolyte concentration and average daily weight gain were compared between the two groups.
     Results: There were 262 males and 45 females in 307 patients, and the onset age ranged between 1 and 351 days. After 6 extreme cases were excluded, the mean onset age of the remaining 301 cases was 23.8±13.0 days. The birth weight ranged between 1.6 and 4.5kg, and the mean weight was 3.24±0.44kg. Coexisting congenital defects were found in 62 cases(20.2%).Pyloric muscle thickness ranged between 3 and 8 mm,and the mean was 5.4±1.1mm. For the early group, the rates of hypokalemia, hypochloraemia and hypercapnia were significantly lower than those of late group, while the daily weight increase was significantly greater.
     Conclusions: In Chinese Han population, the onset age of CHPS is 3~5 weeks. The mean pyloric circular muscle thickness is 5.4±1.1mm, and 20% of the patients are accompanied with other congenital difects. Infants with persistent vomiting at the age of 3~5 weeks should be suspected with CHPS, and be diagnosed as soon as possible.
     Part two: A whole-genome scan for CHPS in nuclear families
     Objective: To Explore the genetic risk factors of CHPS by whole genome scan.
     Methods: The study cohort comprised 19 nuclear families. Peripheral blood samples were collected and genomic DNA was extracted. A genome-wide scan was performed using Affymetrix Genome-Wide Human SNP6.0 array. Statistical analysis was performed by using family-based association test (FBAT) with golden helix 6.4 package.
     Results: One hundred and five of CHPS-related SNP loci with p values from magnitude of 10-5 were found and SNP loci whose genotypes in parents were not in agreement with Hardy-Weinberg equilibrium were excluded.and according to the possible functions of genes and P values, we found polymorphism locus rs7161242 in TMX gene was associated with CHPS.
     Conclusions: Polymorphism locus rs7161242 might be associated with CHPS in Chinese Han population, and TMX gene is a candidate gene for CHPS.
     Part three: The association of TMX gene single nucleotide polymorphism with Congenital Hypertrophic Pyloric Stenosis
     Objective: To investigate the association of TMX gene single nucleotide polymorphism loci rs7161242 and rs7160810 with CHPS,and to explore the role of TMX gene in the pathogenesis of CHPS.
     Methods: In 31 CHPS patients and 60 normal controls as well as 22 CHPS nuclear families, the polymorphic loci rs7161242 and rs7160810 were genotyped with PCR and sequencing method. TDT and Chi-square test were performed for family based and case-control study, respectively. Online softwares were used to predict RNA secondary structure and to study relationships between structures and functions.Immunohistochemical assay was employed to study TMX expression in pyloric circle muscle.
     Results: Genotypic distributions of the two polymorphic loci in all three groups(patients, normal control and proband’s parents) were in conformity with Hardy-Weinberg equilibrium(P>0.05).There were significant preferential transmission of G allele of rs7161242 from the parents to affected offspring (transmission disequilibrium test, TDT: x 2= 13.76, P = 2.0×10-4) and A allele of rs7160810 from the parents to affected offspring (TDT: x 2=16.2, P=5.699×10-5). Strong linkage disequilibrium was found between the two loci with r2 being 0.757 and D' value being 0.893.Case-control study indicated the frequencies of GG genotype and G allele of rs7161242 were significantly higher in CHPS group than those in controls(70.97% vs 36.67% and 83.87% vs 61.67%, respectively), and GG genotype increased risk for CHPS (OR=4.222,95%CI:1.655~10.772,P=0.002). The frequencies of AA genotype and A allele of rs7160810 were significantly higher in CHPS group than those in controls(70.96% vs 38.33% and 83.87% vs 36.67%, respectively), and AA genotype increased risk for CHPS (OR=3.932,95%CI:1.545~10.006,P=0.012).Online analysis indicated that polymorphic locus rs7161242 was located in exon 6 splice acceptor site, which will change entropy and free energy. The maximum entropy of genotype TT was lower than that of genotype GG in rs7161242 (-19.55 VS -22.22), and free energy of RNA secondary structure of TT was also lower than that of genotype GG. The maximum entropy of genotype GG was lower than that of genotype AA in rs7160810, and the free energy of RNA secondary structure was also lower than that of genotype AA. These data indicated genotype GG in rs7161242 and genotype AA in rs7160810 are relatively unstable. Through immunohistochemical assay, we found TMX gene was expressed at the cell membrane and cytoplasm in smooth muscle, and no expression was found in nucleus. Mean optical density of positive cells calculated by semi-quantitative analysis suggested that TMX gene expression was significantly weaker in pylorus smooth muscle in CHPS patients than that in normal controls (0.132±0.062 VS 0.213±0.029, P<0.05).
     Conclusions: The polymorphism loci rs7161242 and rs7160810 in TMX gene are associated with CHPS in Chinese Han population, with genotype GG in rs7161242 and AA in rs7160810 being risk factors. rs7161242 G allele and rs7160810 A allele might interfere with the stability of RNA secondary structure. TMX is expressed at the smooth muscle cell membrane and cytoplasm, and no expression is found in nucleus. TMX gene expression is significantly weaker in pylorus smooth muscle of CHPS than that in normal controls. TMX gene is a candidate gene for CHPS.
引文
[1] Pedersen RN, Garne E, Loane M, et al. Infantile hypertrophic pyloric stenosis: a comparative study of incidence and other epidemiological characteristics in seven European regions. J Matern Fetal Neonatal Med, 2008, 21(9): 599-604.
    [2] Doyle D, O'Neill M, Kelly D. Changing trends in the management of infantile hypertrophic pyloric stenosis--an audit over 11 years. Ir J Med Sci, 2005, 174(2): 33-35.
    [3] Gotley LM, Blanch A, Kimble R, et al. Pyloric stenosis: a retrospective study of an Australian population. Emerg Med Australas, 2009, 21(5): 407-413.
    [4] Hernanz-Schulman M. Infantile hypertrophic pyloric stenosis. Radiology, 2003, 227(2): 319-331.
    [5] Maheshwari P, Abograra A, Shamam O. Sonographic evaluation of gastrointestinal obstruction in infants: a pictorial essay. J Pediatr Surg, 2009, 44(10): 2037-2042.
    [6] Hernanz-Schulman M, Sells LL, Ambrosino MM, et al. Hypertrophic pyloric stenosis in the infant without a palpable olive: accuracy of sonographic diagnosis. Radiology, 1994, 193(3): 771-776.
    [7]李明星,杜一华,周静. B超诊断先天性肥厚性幽门狭窄的价值-附15例报告.泸州医学院学报,2000,23(4):297-298.
    [8]高岩冰,齐春英,崔广和,等.超声对先天性肥厚性幽门狭窄的诊断价值.中华全科医学,2009,7(1):89-91.
    [9]姜知任,胡春荣,贾洪升.高频超声对先天性肥厚性幽门狭窄的诊断价值.中国超声医学杂志,2008,24(6):555-556.
    [10]姚大陆.高频超声对先天性肥厚性幽门狭窄的诊断价值.吉林医学,2006, 11:1353.
    [11] McVay MR, Copeland DR, McMahon LE, et al. Surgeon-performed ultrasound for diagnosis of pyloric stenosis is accurate, reproducible, and clinically valuable. J Pediatr Surg, 2009, 44(1): 169-172.
    [12] Shaoul R, Enav B, Steiner Z, et al. Clinical presentation of pyloric stenosis: the change is in our hands. Isr Med Assoc J, 2004, 6(3): 134-137.
    [13] Oakley EA, Barnett PL. Is acid base determination an accurate predictor of pyloric stenosis? J Paediatr Child Health, 2000, 36(6): 587-589.
    [14] Beasley SW,Hudson I,Yuen HP,et al. Influence of age, sex, duration of symptoms and dehydration of serum electrolytes in hypertrophic pyloric stenosis. Aust Paediatr J, 1986, 22(3): 193-197.
    [15] Breaux CW, Jr., Hood JS, Georgeson KE. The significance of alkalosis and hypochloremia in hypertrophic pyloric stenosis. J Pediatr Surg, 1989, 24(12): 1250-1252.
    [16] Papadakis K, Chen EA, Luks FI, et al. The changing presentation of pyloric stenosis. Am J Emerg Med, 1999, 17(1): 67-69.
    [17] Wang J, Waller DK,Hwang LY,et al. Prevalence of infantile hypertrophic pyloric stenosis in Texas, 1999-2002. Birth Defects Res A Clin Mol Teratol, 2008, 82(11): 763-767.
    [18] MacMahon B. The continuing enigma of pyloric stenosis of infancy: a review. Epidemiology 2006; 17(2):195-201.
    [19]张利兵,胡廷泽.先天性幽门肥厚性狭窄合并胃前壁广泛肌层缺损一例.中国修复重建外科杂志, 2003;17(1):29.
    [20]戴兴冬,周长轩,广贤.先天性肥厚性幽门狭窄合并全小肠扭转1例报告.吉林医学.1996,17(1):46-47.
    [21]余雷,成琦.先天性肥厚性幽门狭窄的合并畸形.中华小儿外科杂志. 2002;23(10):396.
    [22]蔡继富,姜爱萍.新生儿先天性膈疝伴肥厚性幽门狭窄一例.新生儿科杂志.1998;13(3):146.
    [23] Tennakoon J, Koh TH, Alcock G. Pyloric stenosis in a newborn baby with polycystic kidneys. J Perinatol, 2007, 27(2): 125-126.
    [1] Carter CO. The inheritance of congenital pyloric stenosis. Br Med Bull, 1961,17: 251-254.
    [2] Cui W, Ma CX, Tang Y, et al. Sex differences in birth defects: a study of opposite-sex twins. Birth Defects Res A Clin Mol Teratol, 2005, 73(11): 876-880.
    [3] Habbick BF, To T. Incidence of infantile hypertrophic pyloric stenosis in Saskatchewan, 1970-85. CMAJ, 1989, 140(4): 395-398.
    [4] Lammer EJ, Edmonds LD. Trends in pyloric stenosis incidence, Atlanta, 1968 to 1982. J Med Genet, 1987, 24(8): 482-487.
    [5] Rasmussen L, Green A, Hansen LP. The epidemiology of infantile hypertrophic pyloric stenosis in a Danish population, 1950-84. Int J Epidemiol, 1989, 18(2): 413-417.
    [6] Walpole IR. Some epidemiological aspects of pyloric stenosis in British Columbia. Am J Med Genet, 1981, 10(3): 237-244.
    [7] Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol, 1997, 11(4): 407-427.
    [8] Shoji H, Suganuma H, Daigo M, et al. Hypertrophic pyloric stenosis in mono-ovular extremely preterm twins after use of erythromycin. Pediatr Int, 2008, 50(5): 701-702.
    [9] Sterling JA, Dion HS, Palavatana C. Hypertrophic pyloric stenosis in twins. J Albert Einstein Med Cent (Phila), 1961, 9: 243-249.
    [10] Macmahon B, McKeown T. Infantile hypertrophic pyloric stenosis: data on 81 pairs of twins. Acta Gerontol (Milano), 1955, 4: 320-329.
    [11] Metrakos JD. Congenital hypertrophic pyloric stenosis in twins. Arch Dis Child, 1953, 28: 351-358.
    [12]刘庆华,姜忠强,王景丽. B超诊断孪生兄弟同患先天性肥厚性幽门狭窄.中国医学影像技术, 2003: 19(8):1029.
    [13]李敬华,阎景铁,陈宏坤,李晓梅.双胞胎新生儿肥厚性幽门狭窄4例.临床小儿外科杂志,2008,7(5):70.
    [14]张利兵,胡廷泽.先天性幽门肥厚性狭窄合并胃前壁广泛肌层缺损一例.中国修复重建外科杂志, 2003;17(1):29.
    [15]戴兴冬,周长轩,广贤.先天性肥厚性幽门狭窄合并全小肠扭转1例报告.吉林医学.1996,17(1):46-47.
    [16]余雷,成琦.先天性肥厚性幽门狭窄的合并畸形.中华小儿外科杂志. 2002;23(10):396.
    [17]蔡继富,姜爱萍.新生儿先天性膈疝伴肥厚性幽门狭窄一例.新生儿科杂志.1998;13(3):146.
    [18] Tennakoon J, Koh TH, Alcock G. Pyloric stenosis in a newborn baby with polycystic kidneys. J Perinatol, 2007, 27(2): 125-126.
    [19] Loh JP, Haller JO, Kassner EG, et al. Dominantly-inherited polycystic kidneys in infants: association with hypertrophic pyloric stenosis. Pediatr Radiol, 1977, 6(1): 27-31.
    [20] Chung E.Infantile hypertrophic pyloric stenosis:genes and environment. Arch Dis Child, 2008, 93(12): 1003-1004.
    [21] Osifo DO, Evbuomwan I. Does exclusive breastfeeding confer protection against infantile hypertrophic pyloric stenosis? A 30-year experience in Benin City, Nigeria. J Trop Pediatr, 2009, 55(2): 132-134.
    [22] Sorensen HT, Skriver MV, Pedersen L, et al. Risk of infantile hypertrophic pyloric stenosis after maternal postnatal use of macrolides. Scand J Infect Dis, 2003, 35(2): 104-106.
    [23] Morrison W. Infantile hypertrophic pyloric stenosis in infants treated with azithromycin. Pediatr Infect Dis J, 2007, 26(2): 186-188.
    [24] Maheshwai N. Are young infants treated with erythromycin at risk for developing hypertrophic pyloric stenosis? Arch Dis Child, 2007, 92(3): 271-273.
    [25] Goldstein LH, Berlin M, Tsur L, et al. The safety of macrolides during lactation. Breastfeed Med, 2009, 4(4): 197-200.
    [26] Ng PC. Use of oral erythromycin for the treatment of gastrointestinal dysmotility in preterm infants. Neonatology, 2009, 95(2): 97-104.
    [27] Capon F, Reece A, Ravindrarajah R,et al. Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16p12-p13 and evidence for genetic heterogeneity. Am J Hum Genet, 2006, 79(2): 378-382.
    [28] Vanderwinden JM, Mailleux P, Schiffmann SN, et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med, 1992, 327(8): 511-515.
    [29] Saur D, Vanderwinden JM, Seidler B, et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophicpyloric stenosis. Proc Natl Acad Sci USA, 2004, 101(6): 1662-1667.
    [30] Mashimo H, Kjellin A, Goyal RK. Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology,2000, 119(3): 766-773.
    [31] Everett KV, Chioza BA, Georgoula C, et al. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet, 2008, 82(3): 756-762.
    [32] Everett KV, Chioza BA, Georgoula C, et al. Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet, 2009. http://www. springerlink. com/ content/ k3h41v38w300v014/.
    [33] Svenningsson A, Lagerstedt K, Omrani MD,et al. Absence of motilin gene mutations in infantile hypertrophic pyloric stenosis. J Pediatr Surg, 2008, 43(3): 443-446.
    [34] Mitchell LE, Risch N. The genetics of infantile hypertrophic pyloric stenosis. A reanalysis. Am J Dis Child, 1993, 147(11): 1203-1211.
    [35] Everett KV, Capon F, Georgoula C, et al. Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16q24. Eur J Hum Genet, 2008, 16(9): 1151-1154.
    [36] Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res, 1998, 8(12): 1229-1231.
    [37] Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280(5366): 1077-1082.
    [38] Mullikin JC, Hunt SE, Cole CG, et al. An SNP map of human chromosome 22.Nature, 2000, 407(6803): 516-520.
    [39] Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 2001, 29(1): 308-311.
    [40] Salisbury BA, Pungliya M, Choi JY, et al. SNP and haplotype variation in the human genome. Mutat Res, 2003, 526(1-2): 53-61.
    [41] Rocha D, Gut I, Jeffreys AJ, et al. Seventh international meeting on single nucleotide polymorphism and complex genome analysis: 'ever bigger scans and an increasingly variable genome'.Hum Genet,2006,119(4): 451-456.
    [42]刘杨,刘英. 2型糖尿病候选基因单核苷酸多态性的研究进展.中国医学科学院学报, 2006:28(2):294-297.
    [43]杨春香,史进方,顾国浩.单核苷酸多态性分析技术在2型糖尿病易感基因研究中的应用特点.中国组织工程研究与临床康复, 2007: 11(13):2559-2562.
    [44]李义,吴国栋,左瑾,等.应用单核苷酸多态性技术筛查2型糖尿病易感基因.中国医学科学院学报, 2005:27(3):274-279.
    [45]罗春英.单核苷酸多态性及其在2型糖尿病易感基因筛选中的应用.广西医学, 2004:26(1):62-65.
    [46]张玉洪,肖谦.单核苷酸多态性在研究糖尿病微血管病变易感基因中的应用.重庆医科大学学报, 2004: 29(1):18-20.
    [47]姜雪,黄志卓,常翠青,等. Plin基因11482 G/A单核苷酸多态性与汉族肥胖青少年有氧锻炼前后BMI变化关系.中国运动医学杂志, 2008: 27(6):719-722.
    [48] Wang X, Cheng S, Brophy VH, et al. A meta-analysis of candidate gene polymorphisms and ischemic stroke in 6 study populations: association of lymphotoxin-alpha in nonhypertensive patients.Stroke,2009,40(3):683-695.
    [49] Kurland L, Liljedahl U, Lind L. Hypertension and SNP genotyping in antihypertensive treatment. Cardiovasc Toxicol, 2005, 5(2): 133-142.
    [50] Staiger H, Machicao F, Fritsche A, et al. Pathomechanisms of type 2 diabetes genes. Endocr Rev, 2009, 30(6): 557-585.
    [51] Lairon D, Defoort C, Martin JC, et al. Nutrigenetics: links between genetic background and response to Mediterranean-type diets. Public Health Nutr, 2009,12(9A): 1601-1606.
    [52] Maeda S. Genetics of diabetic nephropathy. Ther Adv Cardiovasc Dis, 2008, 2(5): 363-371.
    [53] Shastry BS. SNPs: impact on gene function and phenotype. Methods Mol Biol, 2009, 578: 3-22.
    [54] Imyanitov EN. Gene polymorphisms, apoptotic capacity and cancer risk. Hum Genet, 2009, 125(3): 239-246.
    [55] LaFramboise T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res, 2009, 37(13): 4181-4193.
    [56] Grant SF, Hakonarson H. Microarray technology and applications in the arena of genome-wide association. Clin Chem, 2008, 54(7): 1116-1124.
    [57] Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 1993, 52(3): 506-516.
    [58] Sham PC, Curtis D. An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet, 1995, 59(pt 3): 323-336.
    [59] Allison DB, Heo M, Kaplan N,et al. Sibling-based tests of linkage and association for quantitative traits. Am J Hum Genet,1999, 64(6): 1754-1763.
    [60] Rabinowitz D, Laird N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered, 2000,50(4):211-223.
    [61] Horvath S, Xu X, Laird NM. The family based association test method: strategies for studying general genotype--phenotype associations. Eur J Hum Genet, 2001, 9(4): 301-306.
    [62] Yang Q,Xu X,Laird N. Power evaluations for family-based tests of association with incomplete parental genotypes.Genetics,2003,164(1): 399-406.
    [63] Van Steen K, McQueen MB, Herbert A, et al. Genomic screening and replication using the same data set in family-based association testing. Nat Genet, 2005, 37(7): 683-691.
    [64]严卫丽.复杂疾病全基因组关联研究进展—遗传统计分析.遗传, 2008:30(5):543-549.
    [65] Hernanz-Schulman M. Infantile hypertrophic pyloric stenosis. Radiology, 2003, 227(2): 319-331.
    [66]李在玲,王继山.先天性肥厚性幽门狭窄.胡亚荚,江载芳,主编.诸福棠实用儿科学.7版.北京:人民卫生出版社,2003:1308—1310.
    [67] Matsuzaki H, Dong S, Loi H, et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods, 2004, 1(2): 109-111.
    [68] Cardon LR, Bell JI. Association study disigns for complex diseases. Nature Rev, 2001,2(2):91-99.
    [69] Clarke GM, Carter KW, Palmer LJ, et al. Fine mapping versus replication in whole-genome association studies. Am J Hum Gene,2007, 81(11):995-1005.
    [70] Colhoun HM, Mckeigue PM, Smith GD. Problems of reporting genetic associations with complex outcomes. Lancet,2003,361(8):865-872.
    [71] Doyle D, O'Neill M, Kelly D. Changing trends in the management of infantile hypertrophicpyloric stenosis--an audit over 11 years. Ir J Med Sci, 2005, 174(2): 33-35.
    [72] Holmgren A. Thioredoxin. Annu Rev Biochem, 1985, 54: 237-271.
    [73] Berndt C, Lillig CH, Holmgren A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta, 2008, 1783(4): 641-650.
    [74] Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J, 2002, 21(7): 1695-1703.
    [75] De Zoysa M, Pushpamali WA, Whang I, et al. Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp Biochem Physiol B Biochem Mol Biol, 2008, 149(4): 630-639.
    [76] Jimenez A, Zu W, Rawe VY, et al. Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J Biol Chem, 2004, 279(33): 34971-34982.
    [77] Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci, 2005, 26(8): 398-404.
    [78] Sumbayev VV. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys, 2003, 415(1): 133-136.
    [79] Miranda-Vizuete A, Ljung J, Damdimopoulos AE, et al. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem, 2001, 276(34): 31567-31574.
    [80] Miranda-Vizuete A, Sadek CM, Jimenez A, et al. The mammalian testis- specific thioredoxin system. Antioxid Redox Signal, 2004, 6(1): 25-40.
    [81] Su D, Novoselov SV, Sun QA, et al. Mammalian selenoprotein thioredoxin- glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem, 2005, 280(28): 26491-26498.
    [82] Vanderlelie J, Venardos K, Clifton VL, et al. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta, 2005, 26(1): 53-58.
    [83] Matsui M, Oshima M, Oshima H, et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol, 1996, 178(1): 179-185.
    [84] Jakupoglu C, Przemeck GK, Schneider M, et al. Cytoplasmic thioredoxin reductase isessential for embryogenesis but dispensable for cardiac development. Mol Cell Biol, 2005, 25(5): 1980-1988.
    [85] Matsuo Y, Akiyama N, Nakamura H, et al. Identification of a novel thioredoxin-related transmembrane protein. J Biol Chem, 2001, 276(13): 10032-10038.
    [1] Doyle D, O'Neill M, Kelly D. Changing trends in the management of infantile hypertrophic pyloric stenosis--an audit over 11 years. Ir J Med Sci, 2005, 174(2): 33-35.
    [2] Shoji H, Suganuma H, Daigo M, et al. Hypertrophic pyloric stenosis in mono-ovular extremely preterm twins after use of erythromycin. Pediatr Int, 2008, 50(5): 701-702.
    [3]张利兵,胡廷泽.先天性幽门肥厚性狭窄合并胃前壁广泛肌层缺损一例.中国修复重建外科杂志;2003;17(1):29.
    [4]戴兴冬,周长轩,广贤.先天性肥厚性幽门狭窄合并全小肠扭转1例报告.吉林医学.1996,17(1):46.
    [5]余雷,成琦.先天性肥厚性幽门狭窄的合并畸形.中华小儿外科杂志. 2002;23(10):396.
    [6]蔡继富,姜爱萍.新生儿先天性膈疝伴肥厚性幽门狭窄一例.新生儿科杂志.1998;13(3):146.
    [7] Tennakoon J, Koh TH, Alcock G. Pyloric stenosis in a newborn baby with polycystic kidneys. J Perinatol, 2007, 27(2): 125-126.
    [8] Matsuo Y, Akiyama N, Nakamura H, et al. Identification of a novel thioredoxin-relatedtransmembrane protein. J Biol Chem, 2001, 276(13): 10032-10038.
    [9] Sanders CR, Myers JK. Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct, 2004, 33:25-51.
    [10] Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 1993, 52(3): 506-516.
    [11] Thomson G. Mapping disease genes: family-based association studies. Am J Hum Genet, 1995, 57(2): 487-498.
    [12] Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet, 1996, 59(5): 983-989.
    [13] Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet, 1995, 57(2): 455-464.
    [14] Hernanz-Schulman M. Infantile hypertrophic pyloric stenosis. Radiology, 2003, 227(2): 319-331.
    [15]李在玲,王继山.先天性肥厚性幽门狭窄.胡亚荚,江载芳,主编.诸福棠实用儿科学.7版.北京:人民卫生出版社,2003:1308—1310..
    [16] Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol, 2009, 169(4): 505-514.
    [17] Schwartz S, Hall E, Ast G. SROOGLE: webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res, 2009, 37(Web Server issue): W189-192.
    [18] Sterling JA, Dion HS, Palavatana C. Hypertrophic pyloric stenosis in twins. J Albert Einstein Med Cent (Phila), 1961, 9:243-249.
    [19] Macmahon B, McKeown T. Infantile hypertrophic pyloric stenosis: data on 81 pairs of twins. Acta Gerontol (Milano), 1955, 4(3): 320-329.
    [20] Metrakos JD. Congenital hypertrophic pyloric stenosis in twins. Arch Dis Child, 1953, 28(141): 351-358.
    [21]刘庆华,姜忠强,王景丽. B超诊断孪生兄弟同患先天性肥厚性幽门狭窄.中国医学影像技术2003;19(8):1029.
    [22]李敬华,阎景铁,陈宏坤,李晓梅.双胞胎新生儿肥厚性幽门狭窄4例.临床小儿外科杂志,2008,7(5):70.
    [23] Vanderwinden JM, Mailleux P, Schiffmann SN, et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med, 1992, 327(8): 511-515.
    [24] Saur D, Vanderwinden JM, Seidler B, et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci U S A, 2004, 101(6): 1662-1667.
    [25] Everett KV, Chioza BA, Georgoula C, et al. Genome-wide high-density SNP-based linkage analysis of infantile hypertrophic pyloric stenosis identifies loci on chromosomes 11q14-q22 and Xq23. Am J Hum Genet, 2008, 82(3): 756-762.
    [26] Everett KV, Chioza BA, Georgoula C, et al. Infantile hypertrophic pyloric stenosis: evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequencing. Hum Genet, 2009. http://www.springerlink.com/content/k3h41v38w300v014/.
    [27] Sham PC, Curtis D. An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet, 1995, 59(Pt 3): 323-336.
    [28] Allison DB, Heo M, Kaplan N, et al. Sibling-based tests of linkage and association for quantitative traits. Am J Hum Genet, 1999, 64(6): 1754-1763.
    [29] Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science, 2002, 296(5576): 2225-2229.
    [30] Holmgren A. Thioredoxin. Annu Rev Biochem, 1985, 54:237-271.
    [31] Matthews JR, Wakasugi N, Virelizier JL, et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res, 1992, 20(15): 3821-3830.
    [32] Miranda-Vizuete A, Ljung J, Damdimopoulos AE, et al. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem, 2001, 276(34): 31567-31574.
    [33] Miranda-Vizuete A, Sadek CM, Jimenez A, et al. The mammalian testis-specific thioredoxin system. Antioxid Redox Signal, 2004, 6(1): 25-40.
    [34] Jimenez A, Zu W, Rawe VY, et al. Spermatocyte/spermatid-specific thioredoxin-3, anovel Golgi apparatus-associated thioredoxin, is a specific marker of aberrant spermatogenesis. J Biol Chem, 2004, 279(33): 34971-34982.
    [35] Su D, Novoselov SV, Sun QA, et al. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J Biol Chem, 2005, 280(28): 26491-26498.
    [36] Vanderlelie J, Venardos K, Clifton VL, et al. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta, 2005, 26(1): 53-58.
    [37] Jakupoglu C, Przemeck GK, Schneider M, et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol, 2005, 25(5): 1980-1988.
    [38] Matsui M, Oshima M, Oshima H, et al. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol, 1996, 178(1): 179-185.
    [39] Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J, 2002, 21(7): 1695-1703.
    [40] De Zoysa M, Pushpamali WA, Whang I, et al. Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp Biochem Physiol B Biochem Mol Biol, 2008, 149(4): 630-639.
    [41] Krause G, Lundstrom J, Barea JL, et al. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J Biol Chem, 1991, 266(15): 9494-9500.
    [42] Lundstrom J, Holmgren A. Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry, 1993, 32(26): 6649-6655.
    [43] Burke-Gaffney A, Callister ME, Nakamura H. Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci, 2005, 26(8): 398-404.
    [44] Sumbayev VV. S-nitrosylation of thioredoxin mediates activation of apoptosis signal-regulating kinase 1. Arch Biochem Biophys, 2003, 415(1): 133-136.
    [45] Blank J, Kupke T, Lowe E, et al. The influence of His94 and Pro149 in modulating the activity of V. cholerae DsbA. Antioxid Redox Signal, 2003, 5(4): 359-366.
    [46] Porat A, Lillig CH, Johansson C, et al. The reducing activity of glutaredoxin 3 toward cytoplasmic substrate proteins is restricted by methionine 43. Biochemistry, 2007, 46(11): 3366-3377.
    [47] Kadokura H, Tian H, Zander T, et al. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science, 2004, 303(5657): 534-537.
    [48] Su D, Berndt C, Fomenko DE, et al. A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemistry, 2007, 46(23): 6903-6910.
    [49] Inaba K, Murakami S, Suzuki M, et al. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell, 2006, 127(4): 789-801.
    [50] Dai S, Friemann R, Glauser DA, et al. Structural snapshots along the reaction pathway of ferredoxin-thioredoxin reductase. Nature, 2007, 448(7149): 92-96.
    [51] Wiita AP, Perez-Jimenez R, Walther KA, et al. Probing the chemistry of thioredoxin catalysis with force. Nature, 2007, 450(7166): 124-127.
    [52] Akiyama N, Matsuo Y, Sai H, et al. Identification of a series of transforming growth factor beta-responsive genes by retrovirus-mediated gene trap screening. Mol Cell Biol, 2000, 20(9): 3266-3273.
    [53] Matsuo Y, Nishinaka Y, Suzuki S, et al. TMX, a human transmembrane oxidoreductase of the thioredoxin family: the possible role in disulfide-linked protein folding in the endoplasmic reticulum. Arch Biochem Biophys, 2004, 423(1): 81-87.
    [54] Matsuo Y, Masutani H, Son A, et al. Physical and functional interaction of transmembrane thioredoxin-related protein with major histocompatibility complex class I heavy chain: redox-based protein quality control and its potential relevance to immune responses. Mol Biol Cell, 2009, 20(21): 4552-4562.
    [55] Meng X, Zhang C, Chen J, et al. Cloning and identification of a novel cDNA coding thioredoxin-related transmembrane protein 2. Biochem Genet, 2003, 41(3-4): 99-106.
    [56] Haugstetter J, Blicher T, Ellgaard L. Identification and characterization of a novel thioredoxin-related transmembrane protein of the endoplasmic reticulum. J Biol Chem, 2005, 280(9): 8371-8380.
    [57] Haugstetter J, Maurer MA, Blicher T, et al. Structure-function analysis of the endoplasmicreticulum oxidoreductase TMX3 reveals interdomain stabilization of the N-terminal redox-active domain. J Biol Chem, 2007, 282(46): 33859-33867.
    [58] Sugiura Y, Araki K, Iemura S, et al. Novel thioredoxin-related transmembrane protein TMX4 has reductase activity. J Biol Chem, 2010, 285(10): 7135-7142.
    [59] Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol, 2004, 11(2-3): 377-394.
    [60] Chen XZ, Cao H, Zhang W, et al. Cardioviral RNA structure logo analysis: entropy, correlations, and prediction. J Biol Phys, 2009. http://www.springerlink.com/ content/b131454456712673/.
    [61] Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol, 2006, 16(3): 270-278.
    [62] Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing. RNA, 2008, 14(8): 1463-1469.
    [1] Hernanz-Schulman M. Infantile hypertrophic pyloric stenosis. Radiology, 2003, 227(2): 319-331.
    [2]刘庆华,姜忠强,王景丽. B超诊断孪生兄弟同患先天性肥厚性幽门狭窄.中国医学影像技术2003;19(8):1029.
    [3]张利兵,胡廷泽.先天性幽门肥厚性狭窄合并胃前壁广泛肌层缺损一例.中国修复重建外科杂志;2003;17(1):29.
    [4]戴兴冬,周长轩,广贤.先天性肥厚性幽门狭窄合并全小肠扭转1例报告.吉林医学.1996,17(1):46.
    [5]余雷,成琦.先天性肥厚性幽门狭窄的合并畸形.中华小儿外科杂志.2002;23(10):396.
    [6]蔡继富,姜爱萍.新生儿先天性膈疝伴肥厚性幽门狭窄一例.新生儿科杂志.1998;13(3):146.
    [7] Tennakoon J, Koh TH, Alcock G. Pyloric stenosis in a newborn baby with polycystic kidneys. J Perinatol, 2007, 27(2): 125-126.
    [8] Oue T, Puri P. Smooth muscle cell hypertrophy versus hyperplasia in infantile hypertrophic pyloric stenosis. Pediatr Res, 1999, 45(6): 853-857.
    [9]王练英,刘永煜,李正.先天性肥厚性幽门狭窄病理组织学观察.中华小儿外科杂志.2000;21(2):122.
    [10] Hernanz-Schulman M, Lowe LH, Johnson J, et al. In vivo visualization of pyloric mucosal hypertrophy in infants with hypertrophic pyloric stenosis: is there an etiologic role? AJR Am J Roentgenol, 2001, 177(4): 843-848.
    [11] Vanderwinden JM, Liu H, De Laet MH, et al. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology, 1996, 111(2): 279-288.
    [12]李洁,张宪生,高亚.先天性巨结肠神经生长因子mRNA表达水平的RT-PCR研究.中华小儿外科杂志.1998,19:347-349.
    [13]刘浩,Vanderwinden JM, De Laet MH.神经生长因子受体在先天性巨结肠表达的意义.中华小儿外科杂志,1999,20:12-14.
    [14] Guarino N, Yoneda A, Shima H, et al. Selective neurotrophin deficiency in infantile hypertrophic pyloric stenosis. J Pediatr Surg, 2001, 36(8): 1280-1284.
    [15] Kobayashi H, O'Briain DS, Puri P. Selective reduction in intramuscular nerve supporting cells in infantile hypertrophic pyloric stenosis. J Pediatr Surg, 1994, 29(5): 651-654.
    [16]时宝军,李振东,李洁.国人胚胎及胎儿幽门肌肉神经发育研究[J] .中华小儿外科杂志,1999 ,2 (20):82-84.
    [17] Mulholland MW, Romanchuk G, Lally K, et al. Nerve growth factor promotes neurite outgrowth in guinea pig myenteric plexus ganglia. Am J Physiol, 1994, 267(4 Pt 1):G716-722.
    [18]张海兰,王练英.先天性肥厚性幽门狭窄卡哈尔间质细胞和突触的免疫组织化学研究.中华小儿外科杂志.2003;24(1):20-22.
    [19] Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg, 1995, 30(11): 1535-1543.
    [20] Vanderwinden JM, Liu H, Menu R, et al. The pathology of infantile hypertrophic pyloric stenosis after healing. J Pediatr Surg, 1996, 31(11): 1530-1534.
    [21] MacMahon B. The continuing enigma of pyloric stenosis of infancy: a review. Epidemiology, 2006, 17(2): 195-201.
    [22] Capon F, Reece A, Ravindrarajah R, et al. Linkage of monogenic infantile hypertrophic pyloric stenosis to chromosome 16p12-p13 and evidence for genetic heterogeneity. Am J Hum Genet, 2006, 79(2): 378-382.
    [23] Chung E, Coffey R, Parker K, et al. Linkage analysis of infantile pyloric stenosis and markers from chromosome 9q11-q33: no evidence for a major gene in this candidate region. J Med Genet, 1993, 30(5): 393-395.
    [24] Heller A, Seidel J, Hubler A, et al. Molecular cytogenetic characterisation of partial trisomy 9q in a case with pyloric stenosis and a review. J Med Genet, 2000, 37(7): 529-532.
    [25]郑淑芳,李拥军.母子染色体异常与先天性肥厚性幽门狭窄分析.中国优生与遗传杂志.1999,7(6):47.
    [26] Rajab A, Heathcote K, Joshi S, et al. Heterogeneity for congenital generalized lipodystrophy in seventeen patients from Oman. Am J Med Genet, 2002, 110(3): 219-225.
    [27] Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol, 2003, 38(5): 421-430.
    [28] Braegger CP, Schwobel M, Kanel J, et al. Tetrahydrobiopterin in the treatment of infantile hypertrophic pyloric stenosis. Biochem Mol Med, 1997, 62(1): 101-105.
    [29] Kusafuka T, Puri P. Altered messenger RNA expression of the neuronal nitric oxide synthase gene in infantile hypertrophic pyloric stenosis. Pediatr Surg Int, 1997, 12(8): 576-579.
    [30] Huang LT, Tiao MM, Lee SY, et al. Low plasma nitrite in infantile hypertrophic pyloric stenosis patients. Dig Dis Sci, 2006, 51(5): 869-872.
    [31] Abel RM. Hunterian Lecture. The ontogeny of the peptide innervation of the human pylorus with special reference to understanding the aetiology and pathogenesis of infantile hypertrophic pyloric stenosis. Ann R Coll Surg Engl, 2000, 82(6): 371-377.
    [32] Sheth NP. A possible role of the plasmalemmal cytoskeleton, nitric oxide synthase, and innervation in infantile hypertrophic pyloric stenosis. Pediatr Surg Int, 2000, 16(1-2): 152.
    [33] Gentile C, Romeo C, Impellizzeri P, et al. A possible role of the plasmalemmal cytoskeleton, nitric oxide synthase, and innervation in infantile hypertrophic pyloric stenosis. A confocal laser scanning microscopic study. Pediatr Surg Int, 1998, 14(1-2): 45-50.
    [34] Abel RM, Bishop AE, Dore CJ, et al. A quantitative study of the morphological and histochemical changes within the nerves and muscle in infantile hypertrophic pyloric stenosis. J Pediatr Surg, 1998, 33(5): 682-687.
    [35] Castro A, Mearin F, Gil-Vernet JM, et al. Infantile hypertrophic pyloric stenosis and achalasia: NO-related or non-related conditions? Digestion, 1997, 58(6): 596-598.
    [36] Lefebvre RA. Nitric oxide in the peripheral nervous system. Ann Med, 1995, 27(3): 379-388.
    [37] Michel T. Nitric oxide synthesis in infantile hypertrophic pyloric stenosis. N Engl J Med, 1992, 327(23): 1690-1691.
    [38] Vanderwinden JM, Mailleux P, Schiffmann SN, et al. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med, 1992, 327(8): 511-515.
    [39]李明磊,施诚仁,李敏,等.一氧化氮在先天性肥厚性幽门狭窄肥厚肌中的改变.徐州医学院学报. 1996;16(2):144,148.
    [40] Huang PL, Dawson TM, Bredt DS, et al. Targeted disruption of the neuronal nitric oxide synthase gene. Cell, 1993, 75(7): 1273-1286.
    [41] Abel RM, Dore CJ, Bishop AE, et al. A histological study of the hph-1 mouse mutant: an animal model of phenylketonuria and infantile hypertrophic pyloric stenosis. Anat Histol Embryol, 2004, 33(3): 125-130.
    [42] Saur D, Vanderwinden JM, Seidler B, et al. Single-nucleotide promoter polymorphismalters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc Natl Acad Sci U S A, 2004, 101(6): 1662-1667.
    [43] Chung E, Curtis D, Chen G, et al. Genetic evidence for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric stenosis. Am J Hum Genet, 1996, 58(2): 363-370.
    [44] Soderhall C, Nordenskjold A. Neuronal nitric oxide synthase, nNOS, is not linked to infantile hypertrophic pyloric stenosis in three families. Clin Genet, 1998, 53(5): 421-422.
    [45] Lagerstedt-Robinson K, Svenningsson A, Nordenskjold A. No association between a promoter NOS1 polymorphism (rs41279104) and Infantile Hypertrophic Pyloric Stenosis. J Hum Genet, 2009, 54(12): 706-708.
    [46] Mashimo H, Kjellin A, Goyal RK. Gastric stasis in neuronal nitric oxide synthase-deficient knockout mice. Gastroenterology, 2000, 119(3): 766-773.
    [47] Mitchell LE, Risch N. The genetics of infantile hypertrophic pyloric stenosis. A reanalysis. Am J Dis Child, 1993, 147(11): 1203-1211.