石油污染土壤的田间作物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以玉米Zea mays、棉花Sorghum bicolor、高粱Gossypium hirsutum、冬小麦Triticum aestivum和花生Arachis hypogaea 5种田间作物为研究对象,模拟自然条件,通过室内盆栽试验研究0%、1%、5%和10% 4个不同浓度石油污染处理对这5种作物生理生化的影响。通过测定作物幼苗生长情况和一些土壤的生物化学指标,从受试作物中筛选适宜修复石油污染土壤的植物,以期为石油污染土壤的植物修复提供理论依据。主要结论如下:
     1)各处理的试验土,其pH均大于8,且含盐量在0.37%-0.45%,属盐碱土(滨海盐渍土)。
     2)受试作物在10%处理下发芽率均达67%以上。石油烃的暴露水平越高,高粱、花生和冬小麦的发芽率越高,种子萌发时间越短。花生和冬小麦在0%和1%处理下的发芽率低,故本论文着重研究玉米、高粱和棉花这3种作物。
     3)幼苗生长初期(10d),高浓度的石油污染(5%和10%)对玉米、高粱和棉花的生长均有促进作用,后期则促进了玉米和高粱的生长而明显抑制了棉花的生长。随着土壤石油烃浓度的升高,玉米和高粱的根长增大,棉花的根长和根冠比降低。作物的根长与幼苗株高呈极显著的正相关性。
     4)棉花两个时期(50 d和90 d)的丙二醇(MDA)含量均随石油烃浓度的升高而增加;除玉米外,叶片中超氧化物歧化酶(SOD)活性均随石油烃污染浓度增大而显著增大;玉米和高粱的过氧化物酶(POD)活性和抗坏血酸过氧化物酶(AsA-Apx)活性随石油污染的加重呈明显的下降趋势,而棉花的AsA-Apx活性呈现相反趋势;玉米叶片中的抗氧化酶活性与株高呈显著负相关;受试作物叶片中的细胞色素P450含量与株高呈极显著的负相关性。
     5)随土壤中石油烃浓度的升高,3种供试作物的根际土壤呼吸强度随之加强;石油污染对土壤中脱氢酶、多酚氧化酶和脂肪酶的活性多表现为刺激作用,对脂肪酶活性的影响最小。土壤脱氢酶的活性与石油污染浓度呈显著正相关。
     6)棉花和高粱可以较好地适应盐碱化与石油的双重胁迫,在较短生长期内对石油有一定的降解效果。玉米虽生长周期短但对石油烃的降解有较大的贡献。
5 field crops (Zea mays, Sorghum bicolor, Gossypium hirsutum, Triticum aestivum and Arachis hypogaea) planted in contaminated soils were observed at 4 pollution concentration levels (a serial petroleum concentration of 0,1%,5%and 10% by dry weight) in greenhouse pot experiments. Analyze seeding growth and serials biochemical indexes of soil, in order to identify remediation plants from these field crops and provide theoretical basis for the phytoremediation of petroleum-contaminated soil. The main results were as follows:
     1) The T-Salt of tested soils were between 0.37% and 0.45%, and the pH were all higher than 8. So they were all saline-sodic soils.
     2) The germination rates of the field crops were higher than 67%in the treatment of 10%. With the increase of the concentration of petroleum, the germination rates of sorghum, peanut and winter wheat were all increased and the germination time of seeds were short. Peanut and winter wheat had lower germination rates the treatment of 0%and 1%. The responses of seeding growth and so on of maize, sorghum and cotton to petroleum contamination were emphatically studied in the next experiments.
     3) During the seedling growth initial stage (10d), high concentrations of petroleum (5% and 10%) might improve the growth of maize, sorghum and cotton. Then during later stage, high concentrations of petroleum improved the growth of maize and sorghum, but obviously stunted the growth of cotton. The root elongations of maize and sorghum were increased with the increase of the concentrations of petroleum, but the root elongation and root/shoot ratio of cotton were appeared contrary trends. The root elongation had significant positive correlation with plant height.
     4) With the increase of the concentrations of petroleum, the contents of malondialdehyd (MDA) in cotton leaves were increased during two stages (50d and 90d), the activities of superoxide dismutase (SOD) were significantly increased except maize, and the activities of peroxidase (POD) and ascorbate peroxidase (AsA-Apx) in were decreased in maize and sorghum leaves. The activities of antioxidant enzymes in maize leaves were significantly negative correlated to the plant height. The cytochrome P450 contents in leaves had significant negative correlation with plant height.
     5) The existence of petroleum pollution had not limited the activities of edaphon, but mostly stimulated the activity of three kinds of soil enzymes (dehydrogenase, polyphenoloxidase and lipase in soils). The stimulation to the lipase was the smallest. The activity of soil-dehydrogenase had significant positive correlation with petroleum concentrations.
     6) Test field crops planted in petroleum-contaminated soils showed high petroleum degradation rate within short growth period. Sorghum and cotton could fit in with the both stresses of salinization and petroleum pollution, thus displaying the potential of remedying petroleum contaminated soils. Maize had shorter growth cycle but made greater contribution to the degradation of petroleum hydrocarbon.
引文
[1]陆秀君,郭书海,孙清等.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报,2003,34(1):63-67.
    [2]蔡士悦.农田土壤污染治理对策与监测管理指标[J].农业环境与发展,1986,(3):78-79.
    [3]董克虞.污水灌溉对冬小麦的影响及环境经济分析[J].农业环境保护,1989,8(1):10-15.
    [4]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004,22-42.
    [5]魏树和,周启星.有机污染环境植物修复技术[J].生态学杂志,2006,25(6):716-721.
    [6]沈德中.污染环境生物修复[M].北京:化学工业出版社,2002.62.
    [7]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2004.
    [8]程国玲,李培军.石油污染土壤的植物与微生物修复技术[J].环境工程学报,2007,1(6):91-96.
    [9]孙庆峰,余仁焕.石油污染土壤处理技术研究的进展[J].国外金属矿选矿,2002,(12):4-9.
    [10]吕志萍,程龙飞.石油污染土壤中石油含量对玉米的影响[J].油气田环境保护,2001,11(1):36-37.
    [11]宋玉芳,周启星,宋雪英等.石油污灌土壤污染物的残留与生态毒理[J].生态学杂志,2004,23(5):61-66.
    [12]Franco M A, Vinas L, Soriano J A,Armas D, Gonzalez J J. Spatial distribution and ecotoxic-ity of petroleum hydrocarbons in sediments from the Galicia continental shelf (N W Spain) after the Prestige oil spill [J]. Marine Pollution Bulletin,2006,53:260-271.
    [13]曹云者,施烈焰,李丽和等.石油烃污染场地环境风险评价与风险管理[J].生态毒理学报,2007,2(3):265-272.
    [14]钱署强,刘铮.污染土壤修复技术介绍[J].化工进展,2000,4:10-20.
    [15]王庆仁,刘秀梅,崔岩山等.土壤与水体有机污染的生物修复及其应用研究进展[J].生态学报,2001,21(1):159-163.
    [16]Aatry A R, Euis G M. Bioremediation:An effective remedied alternative for petroleum hydrocarbon contaminated soil [J]. Environ. Prog.,1992,11:312-318.
    [17]蔺昕,李培军,台培东.石油污染土壤植物-微生物修复研究进展[J].生态学杂志.2006,25(1):93-100.
    [18]张旭,李广贺,黄巍.石油烃污染土层生物修复模拟实验研究[J].清华大学学报(自然科学版),2000,40(11):106-108.
    [19]周启星,宋玉芳,孙铁珩.生物修复研究与应用进展[J].自然科学进展,2004,14(7):721-728.
    [20]Ford C Z, Sayler G S, Burlage R S. Containment of a genetically engineered microorganism during a field bioremediation application [J]. Appl. Microb. Biotechnol.,1999,51:397-400.
    [21]Chaineau C H, Morel J L, Oudot J. Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings [J]. Environ. Sci. Technol.,1995,29:1615-1621.
    [22]Chaineau C H, Morel J L, Oudot J. Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize[J]. Environ. Qual.,2000,29:569-578.
    [23]刘五星,骆永明,滕应等.石油污染土壤的生物修复研究进展[J].土壤,2006,38(5):634-639.
    [24]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [25]Anderson T A, Guthrie E A, Walton BT. Bioremediation in the rhizophere, plant roots and associated microbes clean contaminated soil[J]. Environ. Sci. Technol.,1993,27:2630-2636.
    [26]Anderson T A. Bioremediation through Rhizosphere Technology[M]. Washington:DC Amer Chemi Soci,1993,71-157.
    [27]丁克强,骆永明,刘世亮等.黑麦草对土壤中苯并[a]芘动态变化的影响[J].土壤学报,2004,41(3):348-353.
    [28]Zhang X X, Cheng S P, Zhu C J et al. Microbial PAH-degradation in soil:Degradation pathways and contributing factors[J]. Pedo-sphere,2006,12(2):151-156.
    [29]Flue Gas Desulfurization Performance and Experoment on Coal-fired plant[M]. IEACoal Research(England),1997.
    [30]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.
    [31]Gao Y Z, Zhu L Z. Phytoremediation and its models for organic contaminated soils [J]. Journal of Environmental Science,2003,15:302-310.
    [32]Lin Q, Mendelsson IA. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands[J]. Ecol. Eng.,1998,10:263-274.
    [33]Binet P, Portal J M, Leyval C. Dissipation of 3.6-ring polycyclic aromatic hydrocarbons in the rhizospere of ryegrass[J]. Soil Biology & Biochemistry,2000,32:2011-2017.
    [34]Schwab A P, Banks M K. Phytoremediation of petroleum contaminated soils [A]. In:Adriano DC. ed. Bioremediation of Contaminated Soils[C]. Madison:American Society of Agronomy, 1999.
    [35]Pulford I D, Watson C. Phytoremediation of heavy metal-contaminated land by trees-A review[J]. Environment International,2002,1032:1-12.
    [36]孙铁珩,宋玉芳.土壤污染的生态毒理诊断[J].环境科学学报,2002,22(6):689-695.
    [37]王春丽.石油污染土壤中丛枝菌根菌的分布及其对石油的降解效应[D].山东农业大学,2005.
    [38]田侠.石油河老君庙段土壤石油污染及修复植物筛选研究[D].西北师范大学,2006.
    [39]谢重阁.环境中石油污染物的分析技术[M].北京:中国环境科学出版社,1987,2-96.
    [40]Greene L C. Protocols for short term toxicity screening of hazardous waste sites (1998/600 /3-88/029) [S]. Washington D C:US Environmental Protection Agency (EPA),1998.
    [41]Ogboghodo I A, Iruaga E K, Osemwota I O, et al. An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types-forcados light and escravos light [J]. Environmental Monitoring and Assessment,2004, 96:143-152.
    [42]MailaM P, Cloete T E. Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil [J]. International Biodeterioration & Biodegradation,2002,50:107-113.
    [43]Adam G, Duncan H. Influence of diesel fuel on seed germination[J]. Environment Pollution, 2002,120:363-370.
    [44]Lin D H, Xing B S. Phytotoxicity of nanoparticles:Inhabition of seed germination and root growth [J]. Environmental Toxicology,2007,150:243-250.
    [45]Smith M J, Flowers T H, Duncan H J, et al. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues [J]. Environmental Pollution,2006,141(3):519-525.
    [46]齐永强,王红旗.微生物处理土壤石油污染的研究进展[J].上海环境科学,2002,21(3):117-180.
    [47]李小利,刘国彬,许明祥等.土壤石油污染对植物苗期生长和土壤呼吸的影响[J].水土保持学报,2007,21(3):95-98,127.
    [48]卢丽丽.石油污染土壤的植物修复研究[D].西安建筑科技大学,2008.
    [49]李方敏,姚金龙,王琼山.修复石油污染土壤的植物筛选[J].中国农学通报,2006,22(9):429-431.
    [50]彭胜巍,周启星,张浩等.8种花卉植物种子萌发对石油烃污染土壤的响应[J].环境科学学报,2009,29(4):786-790.
    [51]许端平,王波.土壤中石油烃类污染物对高粱玉米生长的影响研究[J].矿业快报,2006,12:28-30.
    [52]Odjegba V J, Sadiq A O. Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of A maranthus hybridusL. [J]. The Environmentalist,2002,22:23-28.
    [53]Amadi A, Dickson A, Moate G. Remediation of oil polluted soils:Ⅰ. Effect of organic nutrient supplements on the performance of maize (Zea maysL.) [J]. Water, Air, and Soil Pollution, 1993,66:59-76.
    [54]刘继朝,张燕平,邹树增.土壤石油污染对植物种子萌发和幼苗生长的影响[J].水土保持通报,2009,29(3),123-126.
    [55]Merkl N, Schultze-kraft R, Infante C. Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soil[J]. Water, Air and Soil Pollution,2005, 165(1-4):195-209.
    [56]宋雪英,宋玉芳,孙铁珩等.石油污染土壤植物修复后对陆生高等植物的生态毒性[J].环境科学,2006,27(9):1866-1871.
    [57]李春荣,王文科,曹玉清等.石油污染土壤的生态效应[J].农业环境科学学报2007,26(5):1929-1932.
    [58]陈国胜,张甬元,陈宜瑜等.鲫鱼肝脏中CYPIAI的诱导作为沉积物中二嗯英的毒理学指标的研究[J].中国环境科学,1997,17(3):264-267.
    [59]朱必凤,马海燕.鲫鱼肝微粒体芳烃羟化酶指示多环芳烃对水体污染的研究[J].中国环境科学.1995,15(2):153-156.
    [60]宋玉芳,周启星,宋雪英等.土壤环境污染的生态毒理学诊断方法研究进展[J].生态科学,2002,21(2):182-186.
    [61]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    [62]Debus R, Hund K. Development of analytical methods for the assessment of ecotoxicological relevant soil contamination [J]. Chemosphere,1997,35(1/2):239-261.
    [63]李听馨,宋玉芳,杨道丽等.小麦细胞色素P450作为土壤污染生物标记物的研究[J].环境化学,2006,25(3):283-287.
    [64]赵先军,傅庆林,丁能飞等.盐胁迫对两种茄子的生长和离子吸收的影响[J].浙江农业学报,2008,20(3):186-189.
    [65]李合生.植物生理生化实验原理合技术[M].北京:高等教育出版社,2000.
    [66]陆秀君,许有博,李常猛等.石油烃污染对三种灌木植物生理及叶绿素荧光参数的影响[J].北方园艺2009,(8):27-30.
    [67]徐勤松,施国新,王学等.镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究[J].水生生物学报,2006,30(1):107-112.
    [68]郑福丽,江丽华,刘兆辉等.宋效宗石油污染物对油菜产量品质及生理指标的影响[J].中国农学通报,2009,25(19):279-282.
    [69]王月明,李红梅,董建恩.石油污染物对小白菜生物量、生理指标的影响[J].山东农业科学,2008,6:78-80.
    [70]宋雪英,宋玉芳,孙铁珩.柴油污染土壤对小麦种子萌发及幼苗生长的生态毒性效应.农业环境科学学报,2006,25(3):554-559.
    [71]Riffaldi R, Levi-Minzi R, Cardelli R, et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil[J]. Water, Air, and Soil Pollution,2006,166: 43-51.
    [72]Stotzky F. Quantifying the metabolic activity of microbes in soil [A].Hurst C J, Knudsen G R, McInerney M J, et al. Manual of Environmental Microbiology[M]. Washington D C: American Society for Microbiology,1997,453-458.
    [73]张丽莉,陈利军,刘桂芬等.污染土壤的酶学修复研究进展[J].应用生态学报,2003,14(12):2342-2346.
    [74]魏丹.土壤酶对改土培肥和土壤有机污染物的净化作用[J].黑龙江农业科学,1999,(4):48-50.
    [75]勾影波,苏永春.东北高寒地区麦田土壤酶活性的季节变化与环境因素关系的研究[J].生态学杂志,1996,15(4):63-65.
    [76]Dhruva K J,Sharma G D, Mishra R R. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation[J]. Soil Biol. Biochem,1992,8:761-767.
    [77]吕桂芬,赵吉,赵利等.应用土壤酶活性评价草原石油污染的初步研究[J].内蒙古大学学报(自然科学版),1997,28(5):687-691.
    [78]Rossel D,Tarradellas J,Bitton G,et al. Use of enzymes in soil ecotoxicology:A case for dehydrogenase and hydrolytic enzymes[A]. In:Tarradellas J, eds. Soil Ecotoxicology[C]. Boca Raton,Florida:CRC-Lewis Publishers,1997,179-197.
    [79]Dinesh R,Dubey PR,Shyam GP. Soil microbial biomass an enzyme activities influenced by organic manure incorporation into soils of a rice-rice system[J]. Agron. Crop Sci., 1998,181:173-178.
    [80]蔺听,李培军,孙铁珩等.石油污染土壤的生物修复与土壤酶活性关系[J].生态学杂志,2005,24(10):1226-1229.
    [81]王靖,张忠智,苏幼明等.石油污染土壤植物修复根际效应研究[J].石油化工高等学校学报,2008,21(2),36-40.
    [82]Nicole Merkl,Rainer Schultze-Kraft, Marianela Arias. Effect of the tropical grass Brachiaria brizantha(Hochst.exA. Rich.) Stapf on microbial population and activity in petroleum contaminated soil[J]. Microbiological research,2006,161(1):80-91.
    [83]王辉,赵春燕,李宝明等.石油污染土壤中细菌的分离筛选[J].土壤通报,2005,36(2),237-239.
    [84]史德青,张建,祝威等.胜利油田含油污泥的植物修复研究[J].环境污染与防治,2008,30(8),52-55.
    [85]许崇彦,刘宪斌,刘占广等.翅碱蓬对石油烃污染的海岸带修复的初步研究[J].安全与环境学报,2007,7(1):37-39.
    [86]张松林,董庆士,周喜滨等.人为石油污染土壤紫花苜蓿田间修复试验[J].兰州大学学报(自然科学版),2008,44(1),47-50.
    [87]曹文钟,晋玉亮,王鹏.油田落地原油污染物对玉米影响的研究[J].农业环境科学学报,2008,27(5):1935-1939.
    [88]刘继朝,崔岩山,张燕平等.狗牙根对石油污染土壤的修复效果研究[J].水土保持学报,2009,23(2),166-168.
    [89]土壤理化分析实验指导书[M].北京林业大学,2002.
    [90]宁雯.石油污染盐碱土壤的微生物修复技术研究[D].中国石油大学,2009,26-28.
    [91]王景升.种子科学与技术[M].沈阳:辽宁科技出版社,1991,367-369.
    [92]Spychalla J P, Desborough S L. Superoxide dismutase, catalase and alpha tocopherol content of stored potato tubers [J]. Plant Physiology,1990,94(3):1214-1218.
    [93]Wu Y X, Von Tiedemann A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley(Hordeum vulgare L.) exposed to ozone[J]. Environmental Pollution,2002,116(1):37-47.
    [94]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiology,1981,22:867-880.
    [95]Tiirkan I, Bor M, Ozdemir F, Koca H. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress[J]. Plant Science,2005, 168(1):223-231.
    [96]赵世杰,许长成,邹琦等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994, 30(3):207-210.
    [97]Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes[J]. Journal of Biological Chemistry,1964,239(7):2370-2378.
    [98]张志良,瞿伟菁.植物生理学试验指导(第三版)[M].北京:高等教育出版社,2003.
    [99]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [100]郑金秀,彭祺,张甲耀等.优势降解菌群生物强化修复石油污染土壤[J].农业环境科学学报,2006,25(5):1212-1216.
    [101]Casida L C,Klem D A,Santoro T. Soil dehydrogenase activity[J]. Soil Science,1964,98: 371-376.
    [102]关松荫.土壤酶及其研究法[M].1986.北京:农业出版社.
    [103]Nyman J A. Effect of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils [J]. Microb. Ecol.,1999,37:152-162.
    [104]Ross D J. Some factors influencing the estimation of dehydrogenase activities of some soils under pasture[J]. Soil biology and biochemistry,1971,3(2):97-110.