荞麦中D-手性肌醇分离提取与纯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荞麦(Fagopyrum esculemum Moench)是一种适于在冷凉气候下生长的短季蓼科(polygonacoae)作物。植物分类学主要有苦荞(Fagopyrum tataricum Gaert)和甜荞(Fagopyrum esculentum Moench)两个品种。荞麦富含高生物价的蛋白质、维生素、矿物质元素、黄酮类化合物等,具有多种生物功能,如降血糖、降血脂、抗癌、抗氧化及清除自由基等。研究发现,荞麦种子中含有少量D-手性肌醇单体及大量的D-手性肌醇衍生物-荞麦糖醇(Fagopyritol),能有效地调节血糖,改善糖尿病人(特别是Ⅱ型糖尿病人)症状。
     D-手性肌醇(D-chiro-inositol,DCI)是肌醇立体异构体,它作为新一代胰岛素受体促敏剂,能有效地促进胰岛素功能,降低血糖、血甘油三酯水平等。进一步研究发现:D-手性肌醇在唯一的降血糖激素-胰岛素的信号传导过程中发挥极为重要的作用,当体内缺乏足够的D-手性肌醇时,会导致胰岛素抵抗现象。因此,补充D-手性肌醇可提高机体组织对胰岛素的敏感性,消除胰岛素抵抗,从根本上调节机体的生理机能和代谢平衡,从而降低糖尿病的发生率。
     本研究首先采用三种不同的提取方法对荞麦中D-手性肌醇粗提工艺进行研究,包括不同溶剂提取法、微波法、超声波法。通过对不同提取方法的工艺条件进行研究,分别确定出最佳的工艺条件。实验结果表明,采用不同溶剂提取荞麦中D-手性肌醇时,乙醇作为溶剂提取效果最好,乙醇提取的最佳工艺条件:温度30℃,乙醇浓度50%,料液比1:20,时间1.5h,进行二级提取荞麦中D-手性肌醇的含量达到4.95mg/g;采用微波法提取荞麦中D-手性肌醇,经单因素及正交试验确定最佳工艺条件:微波功率245W,微波加热时间120s,乙醇浓度80%,料液比1:30,此时D-手性肌醇的含量达到5.11mg/g;采用超声波法时,确定最佳工艺条件:乙醇浓度50%,料液比1:15,提取时间30min,浸提温度50℃,此时D-手性肌醇的含量为5.19mg/g。通过比较三种不同的提取方法对D-手性肌醇提取效果影响,确定采用超声波法提取时,荞麦中D-手性肌醇提取效果最好。
     在荞麦中D-手性肌醇粗提工艺基础上,为进一步提高荞麦提取物中D-手性肌醇的含量,去除提取物中可溶性碳水化合物及其它杂质。本研究采用两种不同方法作用于荞麦提取物进行研究。方法一采用不同种类微生物发酵荞麦提取物,增加荞麦籽粒水溶液中D-手性肌醇及其衍生物的含量,同时减少提取物中总糖含量,本研究采用酿酒酵母、毛霉、大肠杆菌、蜜蜂生球拟酵母、米曲霉、枯草芽孢杆菌、解酯假丝酵母、黑曲霉接种于荞麦提取物中进行培养,并跟踪测定提取物中各种成分的含量变化。结果表明,采用米曲霉培养5天后,荞麦提取液中D-手性肌醇含量达到6.07mg/g,且总糖含量降低较大,减少约53%,综合考虑为最符合条件的提取组分。采用活性炭柱层析纯化样品,D-手性肌醇及糖醇类物质可吸附于活性炭柱,然后进行梯度洗脱,经高效液相色谱法测定D-手性肌醇的纯度达到31.8%。此方法既简化D-手性肌醇纯化工艺,又可减少纯化过程中有机溶剂的使用量,降低生产成本。
     方法二利用萌芽及酸水解方法提高荞麦中D-手性肌醇含量,荞麦中D-手性肌醇大部分以衍生物的形式存在。荞麦籽粒经萌芽后,D-手性肌醇单体含量明显增加,提高约8倍。因此,本研究采用萌芽后荞麦籽粒作为后续试验材料。酸水解使荞麦中D-手性肌醇衍生物-荞麦糖醇转化为D-手性肌醇,明显提高荞麦中D-手性肌醇的含量。同时大部分碳水化合物转化为不溶性副产物,有利于简化D-手性肌醇的纯化过程。实验结果表明,荞麦中D-手性肌醇最佳提取工艺为:HCl浓度为9N,温度为95℃,时间为18h,料液比为1:10。在此条件下,提取物中D-手性肌醇含量达到62.5mg/g,达到未萌芽、水解前提取含量的15倍左右。D-手性肌醇提取物纯化过程,用等体积水溶解,加入2倍体积95%乙醇,70℃搅拌1h,充分反应后,取出冷却至15℃,得到D-手性肌醇沉淀固体。所得沉淀物,D-手性肌醇纯度较低,可用适量的水溶解,加入乙醇溶液,通过反复的加热和冷却处理,进行重结晶。经多次的重结晶处理,D-手性肌醇的含量达到432.92mg/g。
Buckwheat which belongs to the Polygonaceace family adapts to cool, moist climates and short growingseason. Plant taxonomy mainly has two varities of Fagopyrum tataricum Gaert and Fagopyrum esculentumMoench. Buckwheat contains high biological value protein, vitamin, mineral, flavanoid and so on.Buckwheat contains many biological functions, such as degrade blood sugar, degrade blood fat, anticancer,antioxygen and eliminate free radical. Research discovers that buckwheat seed contains little DCImonomer and lots of DCI derivate- Fagopyritol. It can effectually regulate blood sugar and amelioratediabetic (especiallyⅡtype diabetic) symptom.
     DCI is the stereo-isomer of inositol, as a new generation insuline acceptor which can effectuallypromote insulin function, degrade blood sugar, triglyceride level and so on. Further reserch discovers: DCIhas an important effect on the unique single conduction process of degrading blood sugar hormone-insulin.When vivo defects enough DCI, it can result in insulin resistance phenomenon. Therefore supplying withDCI can improve organism soma to insulin sensitivity and eliminate insuline resistance. Fundamental DCIaccommodates organism physiological functions and metabolic balance, so it degrades diabetic incidence.
     In this study, adopting three kinds of extraction methods for researching extraction technology of DCI,methods include different solvents extraction method, microwave method and supersonic wave method.Research technology conditions with different extraction methods and definite optimal technologycondition. Experimental result indicates, when adopting different solvents extract DCI from buckwheat,solvent as alcohol has the best effect. The optimal technology condition: temperature 30℃, alcoholconcentration 50%, solid-liquid ratiol:20, time 1.5h, progress second order extraction, the highest yield ofDCI is 4.95mg/g; When microwave method extract DCI from buckwheeat, mono-factor and orthogonalexperiment that determine the optimal technology condition: microwave power 245W, microwavewarm-up time 120s, alcohol concentration 80%, solid-liquid ratio 1:30, the DCI content achieves5.09mg/g; When adopting supersonic wave method extract, the optimal technology condition, alcoholconcention 50%, solid-liquid ratio 1:15, extraction time 30min, extraction temperature 50℃, the DCIcontent achieves 5.19mg/g. Three different extraction methods is compared with influence to DCIextraction. Then determine the best effect for extracting DCI with supersonic method.
     At the base of extracting crudely DCI from buckwheat, in order to improve DCI content in buckwheatextraction and reduce soluble carbohydrate and other impurities. The research adopts two differentmethods for buckwheat extraction.The first method adopts different kind microbes to ferment buckwheatextraction. The method can increase DCI and its derivation content in buckwheat seed solution, while itreduces sugar content in extraction. The research adopts Saccharomyces cerevisia, Mucor, Bacterium coli, Torulopsis apicola, Aspergillus oryzae Bacillus subtilis, Candida mycoderma, Black mold that inoculate inbuckwheat extraction. Determine content change of various compotent with tracing. Culturing withAspergillus oryzae for five days, the DCI content in buckwheat extraction that increases to 6.07mg/g, whilesugar content decrease 53%. It is the fittest condition of extraction composition for synthetic consideration.Adopting activated carbon column chromatography to purify sample, DCI and some sugar alcoholmaterials can adsorb to activated carbon column, then using gradient elution. Sample determines withHPLC, DCI content achieve 31.8%. The method can simply DCI techology of purifying, reduce solventdosage in purified process and degrade production cost.
     The second method adopts sprout and acid hydrolysis method to improve DCI content in buckwheat,mostly DCI exists with derivation pattern. With sprouting buckwheat seed, DCI monomer contentincreased obviously, as eight times as before. Therefore the research uses sprouting buckwheat seed ascontinual experimental material. Acid hydrolysis causes DCI derivation invertion to DCI, obviouslyelevates DCI content in buckwheat: Meanwhile mostly carbohydrate invert to insoluble by-product, andmake simply for DCI purity procession. Experimental result indicates, the optimal technology of DCI: HClconcention 9N, temperature 95℃, time 18h, solid-liquid ratio 1: 10. At this condition, the DCI content ofextraction arrive to 62.5mg/g, about fifteen times with nonsproutand acid hydrolysis. Purify procession ofextraction that dissolves with same volume, adds 95% alcohol of two times volume, stirs 1 hour forsufficient reaction at 70℃, cools to 15℃, and gets DCI precipitate. The DCI purity of precipitate is lower,so the process that dissolves the precipitate and adds alcohol solution. Repetat heat and cool treatment,progress of recrystallization. After several recrystal treatments, the DCI content achieves 432.92mg/g.
引文
[1] Steadman K. J., Burgoon M. S., Schuster R. L. et al. Fagopyritols, D-chiro-inositol and other soluble carbohydrates in buckwheat seed milling fractions [J]. J. Agric. Food Chem., 2000, 48 (7):2843-2847.
    [2] Kathryn J. Steadman. Purification and molecular structure of two digalactosyl D- chiro- inositols and two trigalactosyl D-chiro-inositols from buckwheat seeds [J]. Carbohydrate Research, 2001, 331:19-251.
    [3] 赵钢,唐宇,王安虎等.中国的荞麦资源及其药用价值.中国野生植物资源,2001,20(2):31-32.
    [4] 张以忠,陈庆富.荞麦研究的现状与展望[J].种子,2004,23(3):39-42.
    [5] 徐宝才,肖刚,丁霄林.色谱法分析检测苦荞籽粒中的可溶性糖(醇)[J].色谱,2003,2l(4):410-413.
    [6] 李丹,丁霄霖.荞麦生物活性成分的研究进展-荞麦蛋白质结构、功能及食品利用(1).西部粮油科技,2000,25(5):30-33.
    [7] 尹礼国,钟耕,刘雄等.荞麦营养特性生理功能和药用价值研究进展.粮食与油脂,2002,(5):32-34.
    [8] 董永利.荞麦籽粒蛋白质营养评价研究田.陕西农业科学,2000,(7):6-8.
    [9] 杨继民,郭柏寿,陈鹏.荞麦种子蛋白质研究.陕西农业科学,2001,(9):4-6.
    [10] 丁文军,柴之芳,钱琴芳等.铬的代谢和葡萄糖耐量因子的研究.微量元素与健康研究,1997,14(2):53-55.
    [11] 高铁祥,游秋云.复方苦荞麦对Ⅰ型糖尿病大鼠治疗作用的实验研究.中国中医药科技,2003,10(1):15-17.
    [12] 王峰峰,秦小兵,王明正等.苦荞麦对大鼠血糖、血脂的影响.中国中西医结合杂志,1995,15(5):296-297.
    [13] Metabolism in the Rat: A Defect in chiro-Inositol Synthesis from myo-Inositol and an Increased Incorporation of chiro-[3H]Inositol into Phospholipid in the GotoKakizaki (GK) Rat.Molecules Cells, 1998, (8):301-309.
    [14] The expert committee on the diagnosis and classification of diabetes mellittls. RePort of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 1997, 20:1183.
    [15] American diabetes association:clinical practice recommendations 2003. Diabetes Care, 2003, 26(suppl 1 ): S1-S156.
    [16] Reaven G.M.Role of insulin resistance in human disease. Diabetes, 2002, 37:1595.
    [17] Ortmeyer, H.K.; Larner, J.; Hansen, B.C. Effects of D-chiro-Inositol Added to a Meal on Plasma Glucose and Insulin in Hyperinsulinemic Rhesus Monkeys. Obesity Res., 1995, 3 (Suppl4): 605S-608S.
    [18] Larner J. D- chiro- inositolits functional role in insulin and its deficit in insulin resistance [J]. Int J Exp Diabetes Res., 2002, 3(1):47-60.
    [19] Bressler R.Johnson D.G. Pharmacological regulation of blood glucose levels in non-insulin dependent diabetes melltus.Arch Intern Med., 1997, 157:836.
    [20] AhrenB, Landin201soonM, Jansson PA, et al .Inhibition of diPePtidyl PePtidase24 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type Ⅱ diabetes .Clin Endocrinol Metab.,2004, 89(5):2078-2084.
    [21] Han Shuying.Effect of total flavones of buckwheat seed onlowering serum lipid,glucose and anti-lipid perocidation [J].Chinese Pharmacological Bulletin, 2001, (6):694-696.
    [22] B. Day Oomah et al. Flavonoids and Antioxidative Activities in Buckwheat[J]. J.Agric. Food Chem., 1996, 44:1746-1750.
    [23] Kitabayashi, H.;Ujihara, A.;Hirose, T.;Minami, M.On the Genetic Differences for Rutin Content in Tartary Buckwheat, Fagopyrum taaricum Gaertn.Breeding Sci., 1995, 45:189-194.
    [24] Nestler, J.E.;Jakubowicz, D.J.;Reamer, P.;Gunn, R.D.;Allan, G. ovula-tory and Metabolic Effects of D-chiro-Inositol in the Polycystic ovary Syndrome.N.Engl.J.Med. 1999, 340:1314-1320.
    [25] Ogawa, K.; Watanabe, T.; Ikeda, Y.; Kondo, S. A New Glycoside, 1D-2-O-α-D-Galacto pyranosyl-chiro-inositol from Jojoba Beans. Carbohydr. Res., 1997, 302:219-221.
    [26] Obendorf.Preaparation of fagopyritols and therefor [P]. U.S.Patent: 6,162,795, 2000.
    [27] Cao zhi jun.Studies on the activity and property of α-D-galactosidase from different source [J].Food Fermeutation industries, 1990, (2):10-17.
    [28] Komienko, A.:Mamera, G.;D.Alarcao, M. Synthesis of a Jojoba Bean Disaccharide. Carbohydr Res., 1998, 310:141-144.
    [29] Szczecinski, P.;Gryff-Keller, A.;Horbowicz, M.;obendorf, R.L.NMR Investigation of the Structure of Fagopyritol B1 from Buckwheat Seeds.Bull.Pol.Acad.Sci.Chem., 1998, 46:9-13.
    [30] 李立明.糖尿病的生存质量研究.中华流行病学杂志,1998,(3):21.
    [31] 李雯霞等.糖尿病治疗状况及并发症现状的调查.江西医学院学报,2004,44:(2)50~56.
    [32] 田浩明,李秀钧.Ⅱ型糖尿病的病因遗传学研究进展.国外医学内分泌学分册,2002,22(2):78-81.
    [33] 韩淑英,贾秀荣,喇万英.荞麦提取物对血脂及脂质过氧化产物丙二醛的影响.华北煤炭医学院学报,2002,4(3):282-283.
    [34] 胡传峰,李立明,陆美琪等.Ⅱ型糖尿病危险因素的非条件Logistic回归分析:中国慢性病预防与控制,2000,8(4):162.
    [35] 姚树桥,戴晓阳,高北陵.应激在糖尿病发生中的作用与机理.中国临床心理学杂志,1995,4:249-252.
    [36] American diabetes association:clinical practice reconnnendations 2003. Diabetes Care, 2003, 26(suppll):S1-156.
    [37] SonS.M., Moon, K.D., Loc, C.Y.Kinetic study of oxalic acid inhibition on enzymatic browing.Journal of Agricultural and Food Chemistry. 2000, 48(6):2011-2014.
    [38] Gura T.Diabetes research:new lead found to a Possible"insulin pill".Science, 1999, 284(5416):886.
    [39] Barnett A.H. Review of basal insulins .Diabet Med., 2003, 20(11):873-885.
    [40] R. Przybylski et al.Antioxidant and Radical-Scavenging Activities of Buckwheat Seed Components [J].JAOCS, 1998, 75(11):1595-1601.
    [41] M. Watanabe.CatechinS as Antioxidants from Buckwheat (Fagopyrum esculelltum Moench) Groats[J]. J .Agric.Food Chem., 1998, 46:839-845.
    [42] 韩志萍,曹艳萍.甜荞麦不同部位总黄酮含量测定.食品研究与开发,2005,26(3):147-149.
    [43] Dubhashi S.S., P.R.Vavia. HPTLC method to study skin permeation of acylovir. Journal of Pharmaceutical and Biomedical Analysis, 2000, 23:1017-1022.
    [44]何丽一编著.平面色谱方法及应用.化学工业出版社:2.
    [45] Lautie J.P., V.Stankovic, G.Sinoquet.Determination of chlormequat in pears by high-Performance thin layer chromatography and high-Performance liquid chromatography with conductimetric detedtion. Analysis, 2000, 28:155-156.
    [46] 曹文明等.荞麦D-手性肌醇提取及其降糖功能研究.粮食与油脂,2006,(3):22-24.
    [47] 陕方等.苦荞不同提取物对糖尿病模型大鼠血糖的影响.中国食品学报,2006,6(4):208-211.
    [48] 林加涵,魏文铃,彭宣宪主编.现代生物学实验(下册)[M].北京:高等教育出版社;海德堡:施普林格出版社.2001,10.
    [49] 陈晓梅等.考马斯亮蓝法蛋白定量标准曲线稳定性观察.中国公共卫生,2006,8(2):380-381.
    [50] 许杰伟.考马斯亮蓝法测定微量蛋白的条件探讨.江西医学检验,2003,10(2):353-354.