基于解析方法和数值模拟的中耳结构动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是生命科学高度发展的时期,力学及结构工程的研究已逐步进入生命科学领域。中耳结构是生命活体中微小复杂的结构,它在声波激励下发生传导振动,将声能转化为机械能传入内耳,这一传声过程是一个集固体动力学、流体动力学于一体的复杂的动力传导过程。目前,由于中耳病变引起的中耳疾病及其传导性耳聋仍是耳科医学中的尚未解决的问题,而单纯医疗手段研究中耳疾患问题未能考虑该结构在传声过程中的动力学行为特征,因此疗效不理想。介于中耳结构的特点----听骨链及软组织(鼓膜、韧带和肌腱)为一体的超精细微小复杂结构。本论文基于力学原理,采用解析分析及数值模拟相结合的方法分析中耳结构。解析方法推导振动骨架的运动方程;数值模拟骨架及软组织整个体系的中耳结构。并在前人有限元的基础上,引入新的数值方法-----自然单元法进行数值模拟,克服了有限元模拟生物体软组织的超弹性大变形出现的单元网格畸变和缠结问题。使粘弹性超弹性的耳生物体能更为准确的模拟分析。其主要工作如下:
     1、从机理上分析中耳结构振动骨架系统的力学特征及物理规律,采用变分原理,推导了鼓膜、听骨链及人工听骨的运动方程。并通过与实验数据的对比,验证了方程的正确性。通过运动方程得到参数变化的物理规律,其中以弹性模量变化对中耳振动信息(镫骨底板的振幅)影响最为敏感。进一步为数值模拟提炼参数优化打下基础。
     2、采用Voronoi图中的边元素代替图中体元素构造插值函数,提高了自然单元法的计算效率。在积分方案中采用背景网格积分,并借助有限元方法中确定积分点个数方法确定最小积分点数。在布置积分点时采用内松外密的布点方案。最后采用分片试验、算例对本文方法进行验证,验证结果表明本方法正确,具有可靠的精度。
     3、推导了三维自然单元法动力学问题的离散格式,并采用中心差分和Newmark常平均加速度法相结合的第一种积分格式对离散格式进行解耦,得到每个自由的解耦递推式,进一步提高了自然单元法在求解动力学问题的计算效率。通过算例验证本文推导的自然单元法的动力学离散格式和解耦算法的正确性。
     4、应用自然单元法模拟骨架及包括软组织(鼓膜、韧带及肌腱等)在内的中耳整体结构的声音传导动力学行为。则结果显示:自然单元法在使用较少的结点的情况下,就可以反映出声波引起中耳结构振动的波的特性;自然单元法模拟生物软组织,特别是超弹性(大变形)的韧带优于有限元法。计算结果较有限元法更与实际(实验)吻合。
     5、通过对中耳整体结构的模拟分析,得到较单个构件解析方程分析中更进一步的认识,由解析方程得到的结论“弹性模量降低,振幅增大”是有条件的和范围的。在鼓膜带动听骨链的传导运动中,听骨链的弹性模量变化符合解析方程得到的结论;但由于鼓膜刚度过小将无法带动锤骨产生有效的振动,则当鼓膜弹性模量小到一定值时,镫骨位移振幅反而会减小。
     6、基于以上的解析模型及数值模型,针对临床医学常见的中耳病变问题,如鼓膜穿孔、听骨链断裂、人工听骨接入方式以及接入位置等问题,用声音传导过程中各部件的动力学行为特征诠释其病变机理------鼓膜穿孔和听骨链断裂都出现在应力或位移最大位置;人工听骨接在鼓膜凸位置其传音效果最理想。
     7、应用数值模拟分析典型的中耳病变---鼓室硬化导致听力下降的机理及其手术治疗效果。采用弹性模量增大刻画软组织(韧带及肌腱等)的硬化,采用解除软组织与颞骨的连接模拟切除硬化软组织的治疗。模拟结果显示切除某些硬化韧带可以恢复听骨运动,使声能更有效传入内耳。
     本课题的解析方程、数值模型、以及理论分析的研究成果从力学与生物结构交叉研究的视角为传导性耳聋手术研究提供理论基础;是力学及结构分析原理渗透到生命活体的研究领域里的一个初步尝试。
The life science is highly developped in the 21th century, the research of mechanics and structure engineering has entered in life science gradually. Middle ear structure is a fine and complex structure in life body. It generates transmission vibration in acoustic motivation, and transforms acoustic energy into kinetic energy to afferent inner ear. This is a set of power transmission process involving solid dynamics and hydrodynamics theory. At present, middle ear diseases and conduction deafness which are caused by middle ear lesions aren’t still solved in ear medical science. However, due to the dynamics behavior in the process of human hearing transmission is not taken into account when middle ear diseases are studied by medical treatment only, treatment effect isn’t fine. The paper research middle ear by analytical method and numerical simulation based on mechanics theory because middle ear structure is complex structure including ossicular chain and soft tissue(tympanic membrane, ligaments and tendons)。The motion equation of vibration framework is derived by analytical method; it is simulated by numerical method that whole system of middle ear structure includes skeleton and soft tissue. A new numerical method----- natural element method (NEM) is introduced, and overcomes the shortcomings which are element cell distortion and entanglement in simulating hyperelastic large deformation of soft tissue in living body by finite element method. Ear life body of viscoelasticity and hyperelasticity can be well simulated. Main contents of the article are as follows:
     1. The mechanical vibration characteristics and physical laws of the middle ear vibration system are analyzed from the view of mechanism. the motion equations of tympanic membrane(TM) ossicular chain and artificial ossicles are derived by the variation principle. The correctness of the motion equations are verified by the comparison with experimental results. Physical laws of parameter variation are gained by the motion equations. Elastic modulus change is the most sensitive to effect of vibration information in middle ear structure (the displacement of stapes footplate). It is the basis of parameter optimization in numerical simulation.
     2. In order to improve the computational efficiency of natural element method, interpolating function is constructed by edge element of Voronoi figure which replaces body elements. Integration method of background cell is applied in integral scheme, and the minimum number of integral point is determined by the method which is applied on FEM. Integral points is arranged by the demand that points are close in edge of integral domain and loose in center of integral domain.Finally, examples ( patch test etc) verify the method and moreover the results prove it correct and reliable accuracy.
     3. The Discrete form of dynamics problems of three-dimensional NEM is obtained, apply No 1 integral form which is composed of centered difference and Newmark average acceleration .Decoupled recursion is obtained, and furthermore improves the computational efficiency that NEM solves dynamics problems. The examples verify the currency of natural element method discrete format and decoupling algorithm.
     4. Dynamics action of sound transmission in whole system of middle ear structure including skeleton and soft tissue is simulated by NEM. Results show that NEM simulates the character that sound wave leads to vibration of middle-ear structure with little points in simulation computing; NEM simulates soft tissue in life body, especially hyperelastic large deformation of ligaments is well simulated than finite element method. Calculation results are well concord of experiments than those of finite element method.
     5. Because middle ear structure is simulated and analyzed, the better knowledge of analytical equation is obtained compared with that of single component, the conclusion—“elastic modulus is reducing and the displacement is increasing”which is gained by analytical equation is condition and range. Change of elastic modulus in ossicular chain is accordance with the conclusion of analytical equation in transmission motion which TM drives ossicular chain. But stiffness of TM is too little and can not drive malleus motion, displacement of stapes is reducing when elastic modulus of TM reduces fixed value.
     6. Based on the above analytical model and numerical model, according to middle ear diseases of clinical medicine---- TM perforation , ossicular chain fracture, connecting method of artificial ossicular and connecting location of artificial ossicular, pathological theory is explained by dynamics action of every component in sound transmission-----location of TM perforation and ossicular chain fracture is appeared the maximum location of stress and strain, and its sound transmission is the best when artificial ossicular is connected to TM umbo.
     7.Typical middle ear disease is simulated and analyzed by numerical simulation------ the mechanism and treatment outcome of which tympanosclerosis result in hearing loss is operated. Hardening of soft tissue (ligaments and tendons) is described by increasing elastic modulus, removal of Hardening tissue is described by deleting connections of soft tissue and temporal bone. The results showed ossicular motion can be recovered by resecting hardening ligaments and sound power is leaded in inner ear.
     The numerical model, analytic equation and the results of theoretical analysis can provide a theoretical reference for surgical research on conductive hearing loss from the view of crossing research of mechanics and biological structure. This is the preliminary attempt which mechanics and principle of structural analysis has entered into the research field of life body.
引文
[1] MasonJA,HemnannKR.Universal infan the aring sereening by automated anditory brainstem response measurement. Pedlatrics,1998:101(2):221一228.
    [2]孟扬,陈仲欣,孙学敏.关节盘锤骨韧带的形态结构及功能[J].中华口腔医学杂志,1990,25(6):326-328.
    [3]邓亚新,陈文文,孙琴,曹钰霖.镫骨耳硬化症伴锤骨上韧带骨化二例报告[J].听力学及言语疾病杂志,1996,4(1):46-48.
    [4] Ryuichi Aibara, Joseph T. Welsh, Sunil Puria, Richard L. Goode. Human middle-ear sound transfer function and cochlear input impedance, Hearing Research, 2001, 152(1): 100-109.
    [5] Susan E. Voss, John J. Rosowski, Saumil N. Merchant, William T. Peake, Middle-ear function with tympanic-membrane perforations.II. A simple model[J]. J. Acoust. Soc. Am, 2001, 110 (3): 1445-1452.
    [6] Alexander M. Huber, Christoph Schwab, Thomas Linder, Sandro J. Stoeckli, Mattia Ferrazzini, Norbert Dillie, Ugo Fisch. Evaluation of Eardrum Laser Doppler Interferometry as a Diagnostic Tool, Laryngoscope, 2001, 111(1): 501-507.
    [7] Sunil Puria etal. Measurements of human middle ear forward and reverse acoustics: Implications for otoacoustic emissions[J]. J. Acoust. Soc. Am. 2003, 113 (5): 2773-2789.
    [8] Urban B. Willi. Middle-ear Mechanics: The Dynamic Behavior of the Incudo-Malleolar Joint and its Role During the Transmission of Sound [J],2003,PhD.
    [9] Erdo?an UNUR, HarunüLGER, Nihat EK?NC?, MORPHOMETRICAL AND MORPHOLOGICAL VARIATIONS OF MIDDLE EAR OSSICLES IN THE NEWBORN[J]. Erciyes T?p Dergisi (Erciyes Medical Journal), 2002, 24 (2): 57-63.
    [10] Thomas Rodt et al. Virtual endoscopy of the middle ear:experimental and clinical results of a standardised approach using multi-slice helical computed tomography[J]. Eur Radiol, 2002, 12(1): 1684–1692.
    [11] John I. Lane . Paul Lindel Robert J. Witte, David R. DeLon Colin L. W. Driscoll, Middle and Inner Ear:Improved Depiction with Multiplanar Reconstruction of Volumetric CT Data[J]. RG,2006, 26(1):115-125.
    [12]孙捷,张华,巩若箴,王海波.中耳仿真内镜成像的临床应用研究[J].临床耳鼻咽喉科杂志,2006, 20(16):732-734.
    [13] Reza Masteri Farahani, Mehrdad Nooranipour. Anatomy and anthropometry of human stapes[J]. American Journal of Otolaryngology–Head and Neck Medicine and Surgery, 2008, 29(1): 42– 47.
    [14] Rolf Quam, Yoel Rak. Auditory ossicles from southwest Asian Mousterian sites[J]. Journal of Human Evolution, 2008, 54(1): 414-433.
    [15] Huayue Chen, Toshihiko Okumurab, Shoichi Emura, Shizuko Shoumura. Scanning electron microscopic study of the human auditory ossicles[J]. Annals of ANATOMY, 2008, 190(1): 53-58.
    [16]孟扬陈仲欣孙学敏,关节盘锤骨韧带的形态结构及功能,中华口腔医学杂志,1990, 25(6):326-328
    [17] Richard L Goode et al,NEW KNOWLEDGE ABOUT THE FUNCTION OF THE HUMAN MIDDLE EAR:DEVELOPMENT OF AN IMPROVED ANALOG MODEL,THE AMERICAN JOURNAL OF OTOLOGY,1994,15(2):145-154
    [18]邓亚新陈文文孙琴曹钰霖,镫骨耳硬化症伴锤骨上韧带骨化二例报告,听力学及言语疾病杂志,1996, 4(1):46-48
    [19] Ryuichi Aibara Joseph T. Welsh Sunil Puria Richard L. Goode, Human middle-ear sound transfer function and cochlear input impedance, Hearing Research ,2001,152 :100-109
    [20] Susan E. Voss John J. Rosowski Saumil N. Merchant William T. Peake, Middle-ear function with tympanic-membrane perforations.II. A simple model, J. Acoust. Soc. Am. ,2001,110 (3):1445-1452
    [21] Alexander M. Huber Christoph Schwab Thomas Linder Sandro J. Stoeckli Mattia Ferrazzini Norbert Dillie Ugo Fisch, Evaluation of Eardrum Laser Doppler Interferometry as a Diagnostic Tool, Laryngoscope , 2001,111:501-507
    [22] Erdo?an UNUR HarunüLGER Nihat EK?NC?, MORPHOMETRICAL AND MORPHOLOGICAL VARIATIONS OF MIDDLE EAR OSSICLES INTHE NEWBORN, Erciyes T?p Dergisi (Erciyes Medical Journal),2002, 24 (2) 57-63
    [23] Thomas Rodt et al, Virtual endoscopy of the middle ear:experimental and clinical results of a standardised approach using multi-slice helical computed tomography, Eur Radiol ,2002,12:1684–1692
    [24]赵守琴Goode RL,可调节式人工砧骨的颞骨实验研究,耳鼻咽喉一头颈外科,2002,9(3):164-167
    [25]赵守琴夏艳芳郭继周沈钧贤,人工中耳在体纯音传输特性的实验研究,中华耳鼻咽喉科杂志,2001, 36(3):193-195
    [26] TAKUJI KOIKE et al,FIXATION OF THE ANTERIOR MALLEAR LIGAMENT:DIAGNOSIS AND CONSEQUENCES FOR HEARING RESULTS IN STAPES SURGERY,Ann Otol Rhinol Laryngol,2003,112:348-355
    [27]Fei Zhao, Takuji Koike, JieWang, Hans Sienz, Rhys Meredith. Finite element analysis of the middle ear transfer functions and related pathologies. Medical Engineering & Physics . 2009, 31:907–916
    [28] M. Patrick Feeney Chris A. Sanford, Age effects in the human middle ear: Wideband acoustical measures, J. Acoust. Soc. Am. 2004,116 (6):3546-3558
    [29] Stephen Chad Kanick, STUDIES ON MATHEMATICAL MODELING OF MIDDLE EAR GAS EXCHANGE, BS in Chemical Engineering, West Virginia University, 2002,MD
    [30] Cara E. Stepp Susan E. Voss, Acoustics of the human middle-ear air space, J. Acoust. Soc. Am,2005, 118 (2):861-871
    [31]马芙蓉,Alex Hube,Thomas Linder,Heidi Felix ,Anita Pollak,镫骨赝附体与砧骨长脚之间连接状态对声音传导的影响,中国耳鼻喉头颈外科,2006,4月-第13卷第4期;227-231
    [32] Rong Z. Gan Chenkai Dai Mark W. Wood, Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission, J. Acoust. Soc. Am,2006, 120 (6):3799-3810
    [33]Nitin.P.Daphalapurkar,ChenkaiDai, Rong Z. Gan, Hongbing Lu. Characterization of the linearly viscoelastic behavior of human tympanic membrane bynanoindentation. J O U R N A L O F T H E M E C H A N I C A L B E H AV I O R O F B I O M E D I C A L M AT E R I A L S , 2 0 0 9, 2:8 2 -9 2
    [34] Rong Z. Gan, Tao Cheng,Chenkai Dai,and Fan Yang. Finite element modeling of sound transmission with perforations of tympanic membrane. J. Acoust. Soc. Am. 2009,126(1): 243–253
    [35] Tao Cheng·Rong Z. Gan. Mechanical properties of anterior malleolar ligament from experimental measurement and material modeling analysis. Biomech Model Mechanobiol ,2008,7:387–394
    [36] Gang Huang, Nitin P. Daphalapurkar, Rong Z. Gan, Hongbing Lu. A Method for Measuring Linearly Viscoelastic Properties of Human Tympanic Membrane Using Nanoindentation[J] Journal of Biomechanical Engineering, 2008, 130(1): 014501-1~014501-7.
    [37] Tao Cheng, Rong Z. Gan. Experimental measurement and modeling analysis on mechanical properties of tensor tympani tendon[J]. Medical Engineering & Physics, 2008, 30(1): 358–366.
    [38] Lu Hongbing, Luo Huiyang, Dai Chenkai, Gan RongZ.The young's modulus of human eardrum at high strain rates[A]. Society for Experimental Mechanics-11th International Congress and Exhibition on Experimental and Applied Mechanics, 2008, 2(1): 896-899.
    [39] John I. Lane . Paul Lindel Robert J. Witte, David R. DeLon Colin L. W. Driscoll, Middle and Inner Ear:Improved Depiction with Multiplanar Reconstruction of Volumetric CT Data, RG,2006, 26(1):115-125
    [40]王斌综述戴春富审校,听骨链修复材料及其术后排出的影响因素,听力学及言语疾病杂志,2OO6, 14(2):150-152
    [41]孙捷张华巩若箴王海波,中耳仿真内镜成像的临床应用研究,临床耳鼻咽喉科杂志,2006, 2O(16):732-734
    [42]韩雷综述,中耳听力学实验建模简述,听力学及言语疾病杂志,2OO6, 14(4):312-315
    [43]张志钢郑亿庆陈穗俊刘翔, 2种不同直径活塞小柱对早期听力结果的影响,临床耳鼻咽喉头颈外科杂志,2007年7月21(13):586-587
    [44] Stefan Stenfelt, Middle ear ossicles motion at hearing thresholds with airconduction and bone conduction stimulation, J. Acoust. Soc. Am. , 2006,119(5):2848-2858
    [45] Tao Cheng Rong Z. Gan, Mechanical Properties of Stapedial Tendon in Human Middle Ear, Journal of Biomechanical Engineering,2007,129:913-918
    [46] Susan E. Voss William T. Peake, Non-ossicular signal transmission in human middle ears:Experimental assessment of the“acoustic route”with perforated tympanic membranes, J. Acoust. Soc. Am. , 2007,122 (4):2135-2153
    [47]吴佩娜葛润梅王正敏王晓茜蒙翠原崔勇傅敏陈良嗣,锤骨一前庭桥接术在镫骨外科中的应用,临床耳鼻咽喉头颈外科杂志,2007,21(17):791-793
    [48]王正敏,耳外科新进展,中国眼耳鼻喉科杂志,2007,7(1):1-2
    [49] Chenkai Dai Tao Cheng Mark W. Wood Rong Z. Gan, Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: Experiment and modeling, Hearing Research ,2007,230 : 24–33
    [50] Robert Mills Mphil FRCS Marek Zadrozniak, The motion of conventional and novel total ossicular replacement prostheses during changes in static pressure, Otolaryngology–Head and Neck Surgery ,2007,137: 762-765
    [51] Jont B. Allen Patricia S. Jeng Harry Levitt, Evaluation of human middle ear function via an acoustic power assessment, Journal of Rehabilitation Research & Development,2005,42(5):63-78
    [52] Chenkai Dai Mark W. Wood Rong Z. Gan, Combined effect of fluid and pressure on middle ear function, Hearing Research ,2008, 236:22–32
    [53] Rinze A. Tange Wilko Grolman, An analysis of the air-bone gap closure obtained by a crimping and a non-crimping titanium stapes prosthesis in otosclerosis, Auris Nasus Larynx,2008, 35 :181–184
    [54] Reza Masteri Farahani Mehrdad Nooranipour, Anatomy and anthropometry of human stapes,American Journal of Otolaryngology–Head and Neck Medicine and Surgery ,2008, 29 :42– 47
    [55] Rolf Quam Yoel Rak, Auditory ossicles from southwest Asian Mousterian sites, Journal of Human Evolution ,2008, 54:414-433
    [56] Justin Tenney Moisés A. Arriaga Douglas A. Chen Rebecca Arriaga NewOrleans, Pittsburgh, Enhanced hearing in heat-activated-crimping prosthesis stapedectomy, Otolaryngology–Head and Neck Surgery ,2008,138: 513-517
    [57] Manohar Bance MSc FRCSC Alfredo Campos, How does prosthesis head size affect vibration transmission in ossiculoplasty?,Otolaryngology–Head and Neck Surgery ,2007,137: 70-73
    [58] Huayue Chen Toshihiko Okumurab Shoichi Emurac Shizuko Shoumurad, Scanning electron microscopic study of the human auditory ossicles, Ann Anat,2008,190: 53—58
    [59] J.R.M. Aerts J.J.J. Dirckxa R. Pintelon, Measurement of non-linear distortions in the vibration of acoustic transducers and acoustically driven membranes, Optics and Lasers in Engineering,2008
    [60] E. W. Abel R. M. Lord R. P. Mills, MAGNETIC RESONANCE MICROIMAGING IN THE MEASUREMENT OF THE OSSICULAR CHAIN FOR FINITE ELEMENT MODELLING, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998 , 20(6):3170-3172
    [61] E W Abel R M Lord,A FINITE-ELEMENT MODEL FOR EVLUATION OF MIDDLE EAR MECHANICS,2001 Proceeding of the 23rd Annual EMBS International Conference,2110-2112
    [62] Q. Sun R. Z. Gan K.-H. Chang K. J. Dormer, Computer-integrated finite element modeling of human middle ear, Biomechan Model Mechanobiol ,2002,1:109– 122
    [63] Mattia Ferrazzini, VIRTUAL MIDDLE EAR: A DYNAMIC MATHEMATICAL MODEL BASED ON THE FINITE ELEMENT METHOD, SWISS FEDERAL INSTITUTE OF TECHNOLOGY,2003,Ph.D
    [64] RONG Z. GAN BIN FENG QUNLI SUN, Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission, Annals of Biomedical Engineering, 2004, 32 (6):847–859
    [65] Michael R. Stinson Gilles A. Daigle, Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal, J. Acoust. Soc. Am,2005,118 (4):2405-2411
    [66] F Gentil RM Natal Jorge AJM Ferreira MPL Parente M Moreira EAlmeida, BIOMECHANICAL STUDY OF MIDDLE EAR, COMPLAS VIII,2005,1-4
    [67] Xuelin Wang Tao Cheng Rong Z. Gan, Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear, J. Acoust. Soc. Am, 2007, 122 (2):906-917
    [68] Li Qi W. Robert J. Funnell W. Robert J. Funnell. A nonlinear finite-element model of the newborn middle ear. J. Acoust. Soc. Am., July 2008,124 (1): 337–347
    [69] Eros Comunello, AldovonWangenheim, VilsonHeckJunior, CristinaDornelles, SadySelamenCosta. A computational method for the semi-automated quantitative analysis of tympanic membrane perforations and tympanosclerosis, Computers in Biology and Medicine, 2009, 39:889 -- 895
    [70] Kenji Homma,Yu Du, Yoshitaka Shimizu, Sunil Puria. Ossicular resonance modes of the human middle ear for bone and air conduction. J. Acoust. Soc. Am, 2009,125(2): 968–979
    [71] CHIA-FONE LEE PEIR-RONG CHEN WEN-JENG LEE JYH-HORNG CHEN TIEN-CHEN LIU, COMPUTER AIDED THREE-DIMENSIONAL RECONSTRUCTION AND MODELING OF MIDDLE EAR BIOMECHANICS BY HIGH-RESOLUTION COMPUTED TOMOGRAPHY AND FINITE ELEMENT ANALYSIS, Biomed Eng Appl Basis Comm, 2006, 18: 214-221.
    [72] Rong Z. Gan Xuelin Wang, Multifield coupled finite element analysis for sound transmission in otitis media with effusion, J. Acoust. Soc. Am. ,2007,122 (6):3527-3538
    [73] John P. Vard Daniel J. Kelly Alexander W. Blayney Patrick J. Prendergast, The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface, Medical Engineering & Physics ,2008,30 :154–163
    [74] Takuji Koike Hiroshi Wada Toshimitsu Kobayashi, Modeling of the human middle ear using the finite-element method, J. Acoust. Soc. Am.,2002, 111 (3):1306-1317
    [75] John P. Vard Daniel J. Kelly Alexander W. Blayney Patrick J. Prendergast,The influence of ventilation tube design on the magnitude of stress imposed at the implant/tympanic membrane interface, Medical Engineering & Physics ,2008,30 :154–163
    [76]黄新生,姚文娟等.人工听骨传声特性的有限元分析[J].中国临床医学,2008,15(2):236-238.
    [77]黄新生,姚文娟等.不同材料镫骨赝复体术后听力效果的有限元分析[J].复旦学报(医学版),2008,35( 6 ):815-818.
    [78]谢晓凤,黄新生,姚文娟等.镫骨赝附体与砧骨长突连接方式对声音传导的有限元分析[J].中国临床医学,2008, 15(3):397-399.
    [79]姚文娟,李晓青,李武,黄新生.中耳病变及人工镫骨形体研究[J].医用生物力学,2009,24(2): 118-122.
    [80]姚文娟,李武,付黎杰,黄新生.中耳结构数值模拟及传导振动分析[J].系统仿真学报. 2009,21(3):651-654.
    [81]刘迎曦李生孙秀珍,人耳传声数值模型,力学学报,2008,40(1):107-113
    [82] Yingxi Liu·Sheng Li·Xiuzhen Sun. Numerical analysis of ossicular chain lesion of human ear. Acta Mech Sin,2009, 25:241–247
    [83]李生,刘迎曦,孙秀珍.人耳鼓膜置管数值分析[J].力学与实践,2009,31(2):60-64.
    [84]刘迎曦,李生,孙秀珍.人耳鼓膜病变数值分析[J].医用生物力学,2008,23(4):275-278.
    [85] Enedino Hernandez-Torres Modesto A. Sosa1, Theoretical Study and Computational Simulation of the Tympanic Membrane, Medical Physics: Eighth Mexican Symposium on Medical Physics:182-185
    [86] Albrecht Eiber Christian Breuninger, Mechanical Problems in Human Hearing, PAMM·Proc. Appl. Math. ,2004,4:51-54
    [87] C. Pozrikidis, Boundary-integral modeling of cochlear hydrodynamics, Journal of Fluids and Structures ,2008, 24 :336–365
    [88] G. Molnarka E. M. Miletics and M. Fiicsek. A Mathematical Model for the Middle Ear Ventilation. American Institute of Physics:2008:106-109
    [89] Zhang X., Song K. Z., Lu M. W. et al. Meshless Methods Based on Collocationwith Radial Basis Function. Comput. Mech. 2000, 26(4) : 333-343
    [90]刘欣,朱德懋,陆明万等.基于流形覆盖思想的无网格方法的研究.计算力学学报, 2001,18(1):21~27
    [91]栾茂田,田荣,杨庆等.有限覆盖无单元法在岩土类弱拉型材料接触摩擦问题中的应用.岩土工程学报,2002,24(2):137~141
    [92] Lucy L.B. A numerical approach to the testing of the fission hypothesis. The Astron. J., 1977, 8(12): 1013-1024
    [93] Monaghan J.J. Why particle methods work. SIAM J. Sci. Stat. Comput., 1982, 3(4): 422
    [94] Dyka C. T. Addressing tension instability in SPH methods. Technical Report NRL/MR/6384, NRL, 1994.
    [95] Swegle J. W., Hicks D. L., Attaway S. W. Smoothed particle hydrodynamics stability analysis. J.Comput. Phys., 1995, 116: 123~134.
    [96] Johnson G. R., Beissel S. R. Normalized smoothing functions for SPH impact computations. Int. J. Num. Meth. Eng., 1996, 39:2725~2741.
    [97]张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理. 1996, 13(4): 385~397.
    [98]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理. 1997, 14(2): 155~166.
    [99] Bonet J., Kulasegaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering 2000;47:1189-1214
    [100]Li S., Liu W. K. Numerical simulation of large deformation of thin shell structures using meshfree methods. Comput Mech, 2000,25:102-116
    [101]Vignjevic R., Campbell J., Libersky L. A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput. Methods Appl. Mech. Engrg., 2000, 184: 67~85.
    [102]毛益民,汤文辉.自由表面流动问题的SPH方法数值模拟.解放军理工大学学报(自然科学版),2001,2(5):92-94
    [103]Liew K.M., Ng T.Y., Wu Y.C. Meshfree method for large deformation analysis–a reproducing kernel particle approach. Engineering Structures, 2002,24(5): 543-551.
    [104]Lancaster P., Salkauskas K. Surfaces generated by moving least squares methods. Math. Comput., 1981, 37(155): 141-158
    [105]Nayroles B., Touzot G., Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech.1992, 10:307-318
    [106]Belytschko T., Lu Y., Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256
    [107]Lu Y., Belytschko T., Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113: 397-414
    [108]Zhu T., Zhang J., Atluri S. N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretizaion approach. Comput. Mech., 1998,21: 223-235.
    [109]Atluri S. N. and Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Computer Modeling and Simulation in Engineering, 1998, 3: 187-196.
    [110]Ponthot J. P., Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput Methods Appl Mech Engrg. 1998, 152: 19~46.
    [111]张建辉,邓安福.无单元法(EFG)在筏板基础计算中的应用.岩土工程学报,1999,21(6):691-695
    [112]庞作会,葛修润等.无网格伽辽金法(EFGM)在边坡开挖问题中的应用.岩土力学, 1999, 20(1): 61~64
    [113]庞作会,葛修润,王水林.无网格伽辽金法(EFGM)模拟不连续面.工程地质学报, 2000, 8(3):364-368
    [114]张雄,陆明万,Wegner J L. A 2-D meshless model for jointed rock structures. Int. J. Numer. Methods Engrg., 2000, 47(10): 1649~1661
    [115]李光耀,卡里鲁.弹塑性大变形畸变问题的无网格分析.湖南大学学报(自然科学版),2003,30(1):47-49
    [116]张伟星,庞辉.弹性地基板计算的无单元法.工程力学. 2000, 17(3): 138~144
    [117]Sibson R. A vector identity for the Dirichlet tessellation. MathematicalProceedings of the Cambridge Philosophical Society, 1980, 87(1): 151-155
    [118]Sibson R. A Brief Description of the Natural Neighbor Interpolant, in Interpreting Multivariate Data, Chichester:Wiley, 1981:21–36
    [119]Belikov V. V., Ivanov V. D., Kontorovich V. K., Korytnik S. A., and Semenov A. Yu. The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Computational Mathematics and Mathematical Physics, 1997, 37(1): 9-15.
    [120]Braun J. and Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids, Nature, 1995,376, 655-660
    [121]Sukumar N., Moran B., Belytschko T. The natural element method in solid mechanics, Int. J. Numer. Methods Eng., 1998, 43 (5): 839–887.
    [122]Cueto E., DoblaréM., Gracia L. Imposing essential boundary conditions in the natural element method by means of density-scaledα-shapes, Int. J. Numer. Methods Eng., 2000, 49(4): 519–546.
    [123]Bueche D., Sukumar N. and Moran B. Dispersive Properties of the Natural Element Method, Computational Mechanics, 2000, 25(2/3): 207-219.
    [124]Sukumar N., Moran B., Yu Semenov A., Belikov V.V. Natural neighbor Galerkin methods, Int. J. Numer. Methods Eng., 2001, 50 (1): 1–27
    [125]Idelsohn S. R., ?nate E., Calvo N., Del Pin F. The meshless finite element method. Int.J.Numer.Meth.Engng, 2003;58 :893–912.
    [126]Idelsohn S.R., ?nate E., Del Pin F. A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Computers and Structures,2003, 81:655-671
    [127]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报, 2003, 35(2): 187-193
    [128]Yvonnet J., Ryckelynck D., Lorong P., Chinesta F. A new extension of the natural element method for non-convex and discontinuous domains: the constrained natural element method (C-NEM), Internat. J. Numer. Methods Engrg. 60 (2004) 1451–1474
    [129]朱合华,蔡永昌,李晓军,丁文其.无网格自然邻接点方法在弹塑性分析中的应用.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.406-410
    [130]E.Pe?a,M.A.Martínez,B.Calvo,M.Doblaré, Application of the natural element method to finite deformation inelastic problems in isotropic and fiber-reinforced biological soft tissues, Comput.Methods Appl.Mech.Engrg.,2008, 197:1983–1996
    [131]李武姚文娟朱合华蔡永昌,蒙特卡罗数值积分在自然单元法中的应用,岩土工程学报,2008,30(5):698-704
    [132]江涛,章青,单位分解增强自然单元法计算应力强度因子,工程力学,2009,26(6):52-57
    [133]王宇新;顾元宪;孙明;无网格MPM法在冲击载荷问题中的应用,工程力学, 2006, 23(5), 46-51
    [134]徐小丽,殷祥超,朱福先,无网格法在振动分析中的应用初探,太原理工大学学报,2005.36(6):630-634
    [135]秦雅菲.无单元法及其在薄板自由振动问题中的应用.青岛,青岛建筑工程学院,2003,MD
    [136]李树忱,李术才,朱维申.弹性动力学的无网格流形方法.岩土力学与工程学报,2006,25(1):141-145.
    [137]熊渊博,龙述尧.用局部Petrov-Galerkin法分析薄板自由振动[J].力学季刊,2004,25(4):577-582.
    [138]熊渊博,曾纪杰.用局部Petrov-Galerkin方法分析弹性杆振动问题[J].湖南理工学院学报(自然科学版),2004,17(1):61-64.
    [139]Zhou L,Zheng W X.Moving least square Ritz method for vibration analysis of plates[J].Journal of Sound and Vibration,2006,290:968-990.
    [140]Dai K Y,Liu G R,Lim K M,et al.A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates[J].Journal of Sound and Vibration,2004,269:633-652.
    [141]Liu G R,Chen X L.A mesh-free method for static and free vibration analysis of thin plates of complicated shape[J].Journal of Sound and Vibration,2001,241(5):839-855.
    [142]Fan S C,Sheng N.Meshless formulation using NURBS basis functions foreigenfrequency changes of beam having multiple open-cracks[J].Journal ofSoundand Vibration,2004,269:781-793.
    [143]Chen Y P,Lee J D,Eskandarian A.Dynamic meshless method applied to nonlocal crack problems[J].Theoretical and Applied Fracture Mechanics,2002,38:293-300.
    [144]Wang Y H,Li W D,Tham L G,et al.Parametric study for an efficient meshlessmethod in vibration analysis[J].Journal of Sound and Vibration,2002,255(2):261-279.
    [145]李卧东,陈胜宏.无单元法在结构动力分析中的应用[J].武汉大学学报(工学版),2003,36(2):15-19.
    [146]李卧东,陈胜宏.结构振动分析中的无网格方法[J].计算力学学报,2003,20(6):756-763.
    [147]Liu G R,Gu Y T.A local point interpolation method for static and dynamicanalysis of thin beams[J].Computer Methods in Applied Mechanics and Engineering,2001,190:5515-5528.
    [148]Ferreiraa A J M,Batrab R C.Natural frequencies of orthotropic,monoclinic and hexagonal plates by a meshless method[J].Journal of Sound and Vibration,2005,285:734-742.
    [149]Qian L F,Batra R C,Chen L M.Free and forced vibrations of thick rectangularplates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin(MLPG)method[J].Computer Modeling in Engineering&Sciences,2003,4:519-534.
    [150]Ferreiraa A J M,Batrab R C,Roque C M C,et al.Natural frequencies of functionally graded plates by a meshless method[J].Composite Structures,2006,75:593-600.
    [151]Qian L F,Batra R C,Chen L M.Static and dynamic deformations of thick functionally graded elastic plate by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method[J].Composites Part B—Engineering,2004,35:685-697.
    [152]PD.Dr,Norbert Dillier.VIRTUAL MIDDLE EAR: A DYNAMIC MATHEMATICAL MODEL BASED ON THE FINITE ELEMENT METHOD. for the degree of Doctor of Technical Scienc
    [153] Ogale SB, Mabajan SB, Dutt S, etal. Fate of middle ear implants. Auris NasusLarynx, 1997, 24: 151-157
    [154]余力生.听骨链重建材料的历史与现状[J]. Chinese Journal of Otology. 2008(3): 362-364.
    [155]Schwager K.Titanium as a biomaterial for ossicular replacement:results after implantation in the middle ear of the rabbit.Eur Arch Otorhinolaryngol,1998,255:396-401.
    [156]Dornhoffer JL Hearing results with the Domhoffer OSSicular replacement prostheses.Laryngoscope,1998,108 (4 Pt 1):531- 536.
    [157] Wenjuan Yao,Xin-Sheng Huang, Li-Jie Fu, Transmitting Vibration of Artificial Ossicle[J].International Journal of Nonlinear Sciences and Numerical Simulation,2008,9(2):131-139.
    [158]Goode RL, Rosenbaum ML, Maniglia AJ.the history and development of the implantable hearing aid. Otolaryngol Clin North Am, 1995, 28: 1-16.
    [159]O'Connor KN, Puria S.Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones. Journal of the Acoustical Society of America, 2006, 120(3):1517-28.
    [160]张官萍崔涛巫爱霞李永奇,听骨检测实验装置,中国生物医学工程学报,2006,25(4):507-509
    [161]张官萍崔涛巫爱霞李永奇,中耳机械模型的建立及听骨赝复物传音特性的研究,中华耳鼻咽喉头颈外科杂志,2007,42(2):130-134
    [162]黄选兆,汪吉宝.实用耳鼻咽喉科学[M].北京:人民卫生出版社,1998:860-862.
    [163]李学佩,郑溶华.耳解剖与临床[M].北京:北京大学医学出版社,2007
    [164]Holzapfel, G.A., 2000. Nonlinear Solid Mechanics. , John Wiley, New York.
    [165] Mendis, K.K., Stalnaker, R.L. and Advani, S.H.. A constitutive relationship for large deformation finite element modelling of brain tissue. Journal of Biomechanical Engineering: Transactions of the ASME , 1995,117: 279–285.
    [166]王国鹏,龚树生.鼓室硬化研究现状[J].中华耳鼻咽喉头颈科杂志,2007,42(1):548-550.