复变量无网格方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程中的数值方法,如有限元法和边界元法等目前已取得了很大成功。但是,这些方法网格的形成和存在对其应用也造成了一定的困难。目前正在发展的无网格方法可以彻底或部分地消除网格,是当前科学和工程计算方法研究的热点,也是科学和工程计算发展的趋势。
     本文针对移动最小二乘法存在的病态性、精度和效率问题,提出了复变量移动最小二乘法,其优点是其试函数中所含的待定常数减少了,可有效地提高求解效率;讨论了复变量移动最小二乘法的基函数,得到了基于正交基函数的复变量移动最小二乘法的公式,其优点是在构造形函数时不会形成病态方程组,求解精度更高;在此基础上提出了复变量无网格方法,具有配点少、精度高、计算速度快的优点;对复变量无网格方法,讨论了权函数、基函数、节点影响域大小和节点分布密度对其求解精度的影响,得到了新的结论;针对裂纹问题,本文提出了扩展的复变量无网格方法,利用裂纹尖端位移场的解析解来扩展复变量无网格方法的基函数,可以较好地解决含裂纹的问题,提高了复变量无网格方法求解裂纹问题的精度;针对无网格方法难以处理边界条件的问题,本文提出了复变量无网格方法与有限元法的耦合法,提出了新的耦合逼近函数,解决了以前相关的耦合方法存在的问题,可提高求解精度;本文用所提出的复变量无网格方法对混凝土构件进行了允许开裂的非线性分析,并提出了适用于在无网格方法中裂缝处理的点弥散域方法,计算结果表明用复变量无网格方法解决非线性混凝土问题是可行的。
    
    西安理工大学博士学位论文
     本文对复变量移动最小二乘法和复变量无网格方法的一系列创新性的研究工作,
    将促进无网格方法的研究和发展,也为无网格方法的工程应用提供了更为有效的方
    法。
    关键词:复变量移动最小二乘法,复变量无网格方法,扩展的复变量无网格方法,复
     变量无网格方法与有限元法祸合,非线性混凝土问题
     才一、
The numerical methods in engineering such as FEM (finite element method) and BEM (boundary element method) have been successfully used. But the existence and formation of mesh in these methods also cause some difficulties when they are used. The meshless method being presently developed will wholly or partially eliminate the mesh. This method is the hot point and recent trend in the study of engineering calculation.With the problems like ill-conditioning, precision and efficiency involved in moving least-square approximation, the moving least-square approximation with complex variables is presented in this paper. The advantage of the moving least-square approximation with complex variables shows that the number of the undetermined constants in the trial function is decreased, therefore the solving efficiency is increased. Meanwhile, The basis function of the moving least-square approximation with complex variables is discussed in this paper, and the formula based on the orthogonal basis function for the moving least-square approximation with complex variables is obtained. And the advantage of the method reveals that the ill-conditioning equation system won't be formed when the shape functions are obtained. As a result, the solving precision gets much better. With this basis, the meshless method with complex variables is given in this paper, and this method has the following advantages such as less distribution nodes, higher precision as well as faster calculation. To the meshless method with complex variables, the influences of the weight function, basic function, the influence domain of the node as well as the distribution density of nodes to the
    
    solving precision are studied in this paper, and some new conclusions are obtained. To the problem of crack, the enriched meshless method with complex variables is presented in this paper. By using the analysis solution of displacements at the tip of a crack, the basis function of meshless method with complex variables will be enriched, and the precision that the meshless method with complex variables used to solve the crack problems will be increased. Since the meshless method can't deal with the boundary conditions well, so the coupling of meshless method with complex variables and finite element method is presented in this paper. And the new coupling approximation function is discussed. The problems existed in the old coupling methods are solved, and the solving precision also will be increased. Moreover, The nonlinear analysis to the concrete member allowed to crack is carried with the meshless method with complex variables proposed in this paper. The method of nodal diffusion domain which is suitable for the treatment of cracks in the meshless method is shown. And the calculations prove that it is very well to deal with the nonlinear concrete problems by using meshless method with complex variables.A series of creative studies for the moving least-square approximation with complex variables as well as the meshless method with complex variables are carried out in this paper. These studies will promote the development of meshless method, and at the same time the study on the meshless method is available for the application in engineering.
引文
[1] Zienkiewicz O C. The finite element method (Third edition). McGraw-Hill, 1977
    [2] 嵇醒,臧跃龙,程玉民.边界元进展及通用程序.上海:同济大学出版社,1997
    [3] Belytschko T et al. Meshless method: An overview and recent developments. Comp Methods Appl Mech engrg, 139, 1996: 3-47
    [4] Li Shaofan, Liu W K. Meshfree and particle methods and their applications. Applied Mechanics Review, 55, 2002: 1-33
    [5] Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astron J, 8(12), 1977: 1013-1024
    [6] Lancaster P Salkauskas K. Surfaces generated by moving least square methods. Math comput, 37, 1981: 141-158
    [7] Babuska I., Melenk J M., The partition of unity method. Int. J. Numer. Meth. Engrg, 40, 1997: 727-758
    [8] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int J Numer Methods Engrg, 20, 1995: 1081-1106
    [9] Nayroles B et al. Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech, 10, 1992: 307- 318
    [10] Belytschko T et al. Element-free Galerkin methods. Int J Numer Methods Engrg, 37, 1994: 229-256
    [11] Duarte C A, Oden J T. Hp clouds-a meshless method to solve boundary-value problems. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics, University of Texas at Austin. 1995
    
    [12] Onarte E. A finite point method in computational mechanics. Int. J. Numer. Methods Engrg., 39, 1996: 3839-3866
    [13] Atluri S N, Zhu T L. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics 22, 1998: 117-127
    [14] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problemsin elasto-statics. Computational Mechanics, 25, 2000: 169-179
    [15] Atluri S N, Zhu T L. New concepts in meshless methods. International Journal for Numerical Method in Engineering 47(1-3), 2000: 537-556
    [16] Atluri S N, Kim H G et al. A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation(LBIE)methods. Computational Mechanics 24, 1999: 348-372
    [17] Liu W K. Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle. Comput Methods Appl Mech Engrg, 139, 1996:91-157
    [18] Liu W K, Chen Y J. Wavelet and multiple scale reproducing kernel methods.Int. J.Numer. Methods Fluids, 21, 1995: 901-931
    [19] Chen W. New RBF Collocation methods and kernel RBF with applications. In: Meshfree methods for partial differential equations (Griebel M and Schweitzer M A Eds.), Vol.1, Springer Verlag, 2000
    [20] Idelsohn S R, Onate E, Calvo N, Del Pin F. The meshless finite element method. Int J Numer Methods Engrg, 58, 2003: 893-912
    [21] Hao S, Park H S, Liu W K. Moving particle finite element method. Int. J. Numer. Methods Eng., 53(8), 2002: 1937-1958
    
    [22] Atluri S N, Sladek J et al. The local boundary integral equation(LBIE)and it's meshless implementation for linear elasticity . Computational Mechanics 25, 2000:180-198
    [23] Zhu T, Zhang J D, Atluri SN. A local boundary integral equation(LBIE)method in computational mechanics, and a meshless discretization approach . Computational Mechanics 21, 1998: 223-235
    [24] Zhu Tulong, Zhang Jindong, Atluri S N. A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems. Engineering Analysis with Boundary Elements, 23, 1999: 375-389
    [25] Zhu T, Zhang J-D, Atluri S N, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics, 22, 1998: 174-186
    [26] Mukherjee Y X,Mukherjee S. The boundary node method for potential problems. Internatioal Journal for Numerical Methods in Engineering 40, 1997: 797-815
    [27] Kothnur V S, Mukherjee S, Mukherjee Y X. Two dimensional linear elasticity by the boundary node method. International Journal of solids and Structures 36, 1999: 1129-1147
    [28] Chati M K. Mukherjee S, Mukherjee Y X. The boundary node method for three-dimensional linear elasticity . International Journal for Numerical Methods in Engineering 46, 1999: 1163 -1184
    [29] Mandar K. Chati and Subrata Mukherjee The boundary node method for three-dimensional problems in potential theory. Int. J. Numer. Meth. Engng. 47, 2000: 1523-1547
    [30] Chati M K. Mukherjee S, Paulino G H. The meshless hypersingular boundary node for three-dimensional potential theory and linear elastic problems. Engineering analysis with boundary elements, 25, 2001: 639-653
    [3
    
    [31] 程玉民,陈美娟.弹性力学一种边界积分的无网格法.力学学报,2,2003:181-186
    [32] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. J Compout Phys, 116, 1995: 123-134
    [33] Dyka C T. Addressing tension instability in SPH methods. Technical report NRL/MR/6384, NRL, 1994
    [34] Jhhnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations. Comput Methods Appl Mech Engrg, 139, 1996: 347-373
    [35] Belytschko T, Gu L, Liu Y Y. Fracture and crack growth by element-free Galerkin methods. Model Simul Master Sci Engrg, 2, 1994: 519-534
    [36] Dolbow J., Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech, 23, 1999: 219-230
    [37] Belytschko T., Krongauz Y. et al. Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math, 74, 1996: 111-126
    [38] Krongauz Y., Belytschko T. EFG approximation with discontinuous derivatives. Int. J. Numer. Methods Engrg. 41, 1998: 1215-1233
    [39] Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element free Galerkin methods. Modlling Simul. Mater. Sci. Eng.. 2, 1994: 519-534.
    [40] Lu Y Y., Belytschko T. Element-free Galerkin methods for wave propagation and dynamic fracture. Comput. Methods Appl. Mech. Engrg, 126, 1995: 131-153
    
    [41] Ponthot J P., Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Comput. Methods Appl. Mech. Engrg, 152, 1998: 19-46
    [42] Krysl P., Belytschko T. Analysis of thin shells by element-free Galerkin method. Comput. Mech, 17, 1995: 26-35
    [43] Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 32, 1995: 2547-2570
    [44] Sukumar N, Moran B, Black T, Belytschko T. An element-free Galerkin method for three-dimensional fracture mechanics. Comput. Mech, 20, 1997: 170-175
    [45] Belytschko T, Organ D, Gerlach C. Element-free galerkin methods for dynamic fracture in concrete. Comput. Methods Appl. Mech. Engrg, 187,2000: 385-399
    [46] Xu Y, Saigal S. An Element Free Galerkin analysis of steady dynamic growth of a mode I crack in elastic-plastic materials, International Journal of sounds and structures, 36, 1999: 1045-1079
    [47] Kargarmovin M H, Toussi H E, Faribotz S J. Elasto-plastic element-free Galerkin method. Comput. Mech, 2003
    [48] Bouillard Ph, Seleau S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect, Comput. Methods Appl. Mech. Engrg, 162, 1998: 317-335
    [49] Lee S H, Yoon Y C. An improved crack analysis technique by element-free Galerk. International Journal for Numerical Methods in Engineering, 56, 2003: 1291-1314
    
    [50] Fleming M, Chu Y A, Moran B, Belytschko T. Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40, 1997: 1483-1504
    [51] Beissel S., Belytschko T. Nodal integration of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg, 139, 1996: 49-74
    [52] Smolinski P., Palmer T. Procedures for multi-time step integration of element free Galerkin methods for diffusion problems. Comput. Struct, 77,2000: 171-183
    [53] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method. Computational Mechanics, 19, 1997: 264-270
    [54] Alves M K, Rossi R. A modified element-free Galerkin method with essential boundary conditions enforced by an extended partition of unity finite element weight function. International Journal for Numerical Methods in Engineering 57, 2003: 1523-1552
    [55] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering 40, 1997: 2953-2974
    [56] Krysl P., Belytschko T. ESFLIB: A library to compute the element free Galerkin shape functions. Comput. Methods Appl. Mech. Engrg, 190,2001:2181-2205
    [57] Krysl P., Belytschko T. Element-free Galerkin method Convergence of the continuous and discontinuous shape functions. Comput. Methods Appl. Mech. Engrg, 148, 1997: 257-277
    
    [58] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method. Eur. J. Mech. A/Solids, 20, 2001: 327-341
    [59] Duarte C A, Oden J T. An h-p adaptive method using clouds. Comput. Meth. Appl. Mech. Engrg, 139, 1996: 237-262
    [60] Babuska I., Melenk J M. The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Engrg, 139, 1996:289-314
    [61] Chen J S, Pan C, Wu C T, Liu W K. Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Meth. Appl. Mech. Engrg, 139, 1996: 195-227
    [62] Li S, Liu W K. Moving least-square reproducing kernel method (I) Methodology and Convergence. Comput. Meth. Appl. Mech. Engrg, 143, 1997: 113-154
    [63] Li S, Liu W K. Moving least-square reproducing kernel method Part II Fourier analysis. Comput. Meth. Appl. Mech. Engrg, 139, 1996: 159-193
    [64] Chen J S, Yoon S, Wang H P, Liu W K. An improved reproducing kernel particle method for nearly incompressible finite elasticity. Comput. Meth. Appl. Mech. Engrg, 181, 2000: 117-145
    [65] Voth T E, Christon M A. Discretization errors associated with reproducing kernel methods: one-dimensional domains. Comput. Meth. Appl. Mech. Engrg, 190, 2001: 2429-2446
    [66] Liew K M, Ng T Y, Wu Y C. Meshfree method for large deformation analysis-a reproducing kernel particle approach. Engineering structures, 24, 2002: 543-551
    [67] Shangwu X, Liu W K, Cao J, Rodrigues J M C, Martins P A F. On the utilization of the reproducing kernel particle method for the numerical simulation of plane strain rolling. International Journal of Machine Tools and Manufacture, 43, 2003: 89-102
    
    [68] Chen J S, Han W, You Y, Meng X. A reproducing kernel method with nodal interpolation property. International Journal for Numerical Methods in Engineering, 56, 2003: 935-960
    [69] Han W, Meng X. Error analysis of the reproducing kernel particle method. Comput. Meth. Appl. Mech. Engrg, 190, 2001: 6157-6181
    [70] Onarte E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech. 21, 1998:283-292
    [71] Buhmann M D. Radial Basis Functions. Acta Nwnerica, 2000, 1-38
    [72] Franke C, Schaback S. Convergence order estimates of meshless collocation methods using Radial Basis Functions. Advances in Computational Mathematics, 8, 1998: 381-399
    [73] Wu Z M, Hon Y C. Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Engineering Analysis with Boundary Elements, 27, 2003: 73-79
    [74] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Meth. Appl. Mech. Engrg, 191, 2002: 2611-2630
    [75] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 54, 2002: 1623-1648
    [76] Zhang Jianming, Yao Zhenhan, Li Hong. A hybrid boundary node method. International Journal for Numerical Methods in Engineering, 53, 2002: 751-763
    [77] Belytschlo T, Organ D. Coupled finite element-element-free Galerkin method. Comput. Mech. 17, 1995: 186-195
    [7
    
    [78] Hegen D. Element-free Galekin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 135, 1996: 143-166
    [79] Liu GR, Gu YT. Coupling of element-free Galerkin and hybrid boundary element methods using modigied variational formulation. Comput. Mech. 26(2), 2000: 166-173
    [80] Liu G R, Gu Y T. Meshless local petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches. Computational Mechanics, 26, 2000: 536-546
    [81] Antonio Huerta, Sonia Fernadez-Mendez, Enrichment and coupling of the finite element and meshless methods. International Joumal for Numerical Methods in Engineering, 48, 2000: 1615-1636
    [82] Gu Y T, Liu G R. A coupled element-free galerkin /boundary element method for stress analysis of two -dimension solid. Comput. Methods in Appl. Mech. Eng. 190, 2001: 4405-4419
    [83] Rao B N, Rahman S. A coupled meshless-finite element method for fracture analysis. International Journal of Pressure Vessels and Piping, 78, 2001: 647-657
    [84] Xiao Q Z, Dhanasekar M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software, 33, 2002: 507-515
    [85] Chen T, Raju I S. A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems. Comput. Meth. Appl. Mech. Engrg, 192, 2003: 4533 - 4550
    [86] 宋康祖,陆明万,张雄.固体力学中的无网格方法.力学进展,30(1),2000:55-65
    
    [87] 张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报,20(6),2003:731-741
    [88] 姜弘道,曹国金.无单元法研究和应用现状及动态.力学进展,34(4),2002:526-534
    [89] 张锁春.光滑质点流体动力学(SPH)方法.计算物理,13(4),1996:385-397
    [90] 贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理,14(2),1997:155-166
    [91] Liu X., Lu M W., Zhang X. Numerical analysis of singular problems using the partition of unity method. European Conference on Computational Mechanics (ECCM'99). Munchen, Germany, 1999
    [92] Song K Z., Zhang X. Meshless method based on collocation for elasto-plastic analysis, Proceedings of Internal Conference on Computational Engineering & Science. August, 20-25, 2000, Los Angeles, USA
    [93] Zhang X., Song K Z., Lu M W. Meshless methods based on collocation with radial basis function. Comp. Mech., 26(4), 2000: 333-343
    [94] Xiong Zhang, Xiao-Hu Liu, Kang-Zu Song and Ming-Wan Lu. Least-squares collocation meshless method. Int. J. Numer. Meth. Engrg., 51, 2001: 1089-1100
    [95] 李梅娥,张陵等.再生核质点法研究进展.力学进展,32(4),2002:535-544
    [96] 张雄,胡炜等.加权最小二乘无网格法.力学学报,35(4),2003:425-431
    [97] 张雄,宋康祖,陆明万.紧支试函数加权残值法.力学学报,35(1);2003,:43-49
    
    [98] 娄路亮,曾攀.影响无网格方法求解精度的因素分析。计算力学学报,20(3),2003:313-319
    [99] 蔡永昌,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,35(2),2003:187-193
    [100] 蔡永昌,朱合华.岩土工程数值计算中的无网格方法及其全自动布点技术.岩土力学,24(1),2003:21-24
    [101] 龙述尧,许敬晓.弹性力学问题的局部积分方程方法.力学学报,32(5),2000:566-577
    [102] Zhang X., Lu M W. A 2-D meshless model for jointed rock structures. Int. J. Numer. Methods Engrg., 2000, 47(10): 1649-1661
    [103] 寇晓东,周维垣.应用无单元法近似计算拱坝开裂。水利学报,10.2000:28-35
    [104] 张伟星,庞辉.弹性地基板计算的无单元法.工程力学,17(3),2000:138-144
    [105] 庞作会,葛修润.无网格伽辽金法在边坡开挖问题中的应用.岩土力学,20(1),1999:61-64
    [106] 陈建,吴林志,杜善义.采用无单元计算含边沿裂纹功能梯度材料板的应力强度因子.工程力学,17(5),2000:139-144
    [107] 曾清红,卢德唐.无网格方法求解稳定渗流问题,计算力学学报,20(4),2003:440-445
    [108] 郭隽,陶智.非线性问题的MPS无网格算法.北京航空航天大学学报.29(1),2003:83-86
    [109] 张延军,王思敬.有限元与无网格伽辽金耦合法分析二相连续多孔介质.计算物理,20(2),2003:142-146
    [110] 娄路亮,曾攀等.应力高梯度问题的无网格分析.应用力学学报,19(2),2002:121-124
    [111] 袁振,李子然等.无网格法模拟复合型疲劳裂纹的扩展.工程力 学,19(1),2002:25-28
    [1
    
    [112] 龙述尧.用无网格局部Petrov—Galerkin法分析非线性地基梁.力学季刊,23(4),2002:547-551
    [113] 李卧东,谭国焕等.无网格法在弹塑性问题中的应用.固体力学学报,22(4),2001:361-367
    [114] 李卧东,陈晓波。无网格法在断裂力学中的应用.岩石力学与工程学报,20(4),2001:462-466
    [115] 庞作会,朱岳明.无网格伽辽金法(EFGM)求解接触问题.河海大学学报:自然科学版,28(4),2000:54-58
    [116] 庞作会,葛修润.无网格伽辽金法(EFGM)模拟不连续面.工程地质学报,8(3),2000:364-368
    [117] 庞作会,葛修润.对无网格伽辽金法(EFGM)的两点补充.岩石力学与工程学报,18(5),1999:581-584
    [118] 夏道行,吴卓人,严绍宗,舒五昌.实变函数论与泛函分析(下册).北京:高等教育出版社,1979
    [119] Timoshenko S. P., Goodier J. N. Theory of elasticity (Third edition), McGraw-Hill Inc., 1970
    [120] Rao B N, Rahman S. An Enriched Meshless Method for Nonlinear Fracture Mechanics. International Journal for Numerical Methods in Engineering, 2004, 59:0001-0027
    [121] Dolbow J. An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics, Ph.D thesis of Northwest University, USA, 1999
    [122] Daux C., Moes N., Dolbow J., Sukumar N., Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Meth. Engrg, 48, 2000:1741-1760
    [123] Dolbow J., Moes N., Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Comput. Meth. Appl. Mech. Engrg, 190, 2001:6825-6846
    [1
    
    [124] Anderson T L. Fracture Mechanics: Fundamentals and applications (First Ed.). CRC Press, 1999
    [125] 程玉民,沈祖炎,彭妙娟.加权残数和有限元耦合法解弹性力学问题.土木工程学报,33(4),2000
    [126] Cheng Yumin, Peng Miaojuan. The Coupling Method of Boundary and Finite Elements for a Nonlinear Problem of Structural Engineering, in: Theory and Applications of Boundary Element Methods, (Zhenhan Yao and M. Tanaka eds.), International Academic Publishers, 1998
    [127] T. Von Karman. The Engineer Grapples with Nonlinear Problems, Bulletin of the American Mathematical Society, 1940, 46(8), 615-683
    [128] Bathe K. J. and Wilson E. L; Numerical Methods in Finite Element Analysis, Prentice-Nill, Inc, 1976
    [129] Zienkiewicz O C. and Morgan K. Finite Element and Approximation, John Wiley & Sons, Inc, 1983
    [130] Owen D R. J Hinton E; Finite Element in plasticity, Theory and Practice, Pineridge Press, 1982;
    [131] 殷有泉.固体力学非线性有限元引论,北京:北京大学出版社,1986
    [132] 黄克智.非线性连续介质力学,清华大学出版社,1989
    [133] 周维恒.高等岩石力学,水利水电出版社,1990
    [134] 董哲仁.钢筋混凝土非线性有限元法原理及应用,中国铁道出版社,1993
    [135] 董毓利.混凝土非线性力学基础,建筑工业出版社,1997
    [136] 江见鲸.钢筋结构非线性有限元分析,陕西科学技术出版社,1994
    
    [137] 殷有泉,张宏.岩土系统弹塑性应力变形分析稳定性分析的NOLM程序,见:地质研究论文集(第三集),北京大学出版社,1985
    [138] 匡震邦,非线性连续介质力学基础,西安交通大学出版社,1989
    [139] 王仁,梁北援,等.巷道大变形的粘性流体有限元分析,力学学报,1985.17
    [140] 兰腊保,王仁.倒转褶皱的弹塑性有限元模型,见:地质力学研究论文集(第三集),北京大学出版社,1985
    [141] 杨菊生,揽生瑞,李九红,等.混凝土三轴非线性比例加载试验与结构开裂分析,见:结构工程与振动研究报告集(陈志鹏,江见鲸主编),清华大学出版社,2000,23—35
    [142] 杨菊生,李九红,郭永重等.混凝体结构非线弹性损伤有限元分析研究,《结构工程与振动研究报告集》(陈志鹏,江见鲸主编),清华大学出版社,2000,36—45
    [143] 李九红,揽生瑞,杨菊. Three-Dimensional Nonlinear FEA under Cracking of Concrete Structure, International Symposium on New Development in Concrete science and Technology, Nanjing, 1995: 713-718
    [144] 揽生瑞,杨菊生. The Space structural of blast furnace, International Conference on Mechanics of Solids and Materials Engineering, Singaper, 1995
    [145] 许汉铮,杨菊生.混凝土结构三维弹塑性开裂分析,工程力学(增刊),Vol.1,1996:400-404
    [146] 杨菊生,李九红,郭永重. The Damage Cracking Model of Brittle Material in Numerical Analysis, Computer Method and Advances in Geomechanics, Vol. 3, Ninth International Conference of the Association for Computer Method and Advances in Geomechanics, 1997
    
    [147] 揽生瑞,杨菊生. Nonlinear FEM of Arch Dams—Ⅰ: Constitutive Relationship, Advances in Engineering software, Vol.28, 1997
    [148] 揽生瑞,杨菊生. Nonlinear FEM of Arch Dams—Ⅱ: Nonlinear Analysis, Advances in Engineering software, Vol. 28, 1997
    [149] 杨菊生,李九红,刘华;脆性材料损伤—破坏耦合模型,岩石力学与工报,17,1998,749—754
    [150] 李九红,杨菊生;岩体损伤—弹塑性非线性有限元分析,岩石力学与工程学报,19(1),1999,707—711
    [151] Balmer G. G.. Shearing Strength of Concrete Under High Triaxial Stress-Computation of Mchr's Envelope as a curve, Bur. Reclam. Struct. Res. Lab. Rep. Sp-23, 1949
    [152] Drucker D C. A Definition of stable Inelastic Material, J. Appl. Mech, Vol. 26; ASME Trans, Vol. 81, 1995
    [153] Bresler B, Pister K S. Strenghth of Concrete under Combined Stress, J. Am. Coner. Inst, Vol. 55, 1958
    [154] Willam K J, Warnke E P. Constitutive Model for the Triaxial Behavior of Concrete, Int. Assoc. Eng. Sem, 1974
    [155] Ottosen N S. Failure and Elasticity of Concrete, Dan. Atom. Energy Comm. Res. Estab. Ris Eng Dept. Ris-M-1801, Roskilole, Denmark, July, 1975
    [156] Hsieh S S, Ting E C, Chen W F. An Elastic Fracture Model for Concrete, Proc. 3d Eng. Mech. Div. Spec. Conf. ASCE., Austin, Tex, 1979
    [157] 过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究,土木工程学报,3,1991
    [158] 俞茂宏.双剪应力强度理论研究,西安交通大学出版社,1988
    [159] 俞茂宏.双剪理论及其应用,科学出版社,1998
    
    [160] 江见鲸,贺小岗;混凝体木构关系的现状与展望,工程力学,1993年增刊
    [161] Darwin D, Pecknold D A. Nonlinear Biaxial Stress strain Law for Concrete, ASCE Vol. 103, EM2, April 1997
    [162] Kupfer H, Gerstle K H. Behavior of Concrete under Biaxial stresses, ASCE, Vol.99 EM4, Aug. 1973
    [163] Ottosen N S. Constitutive Model for short-time Loading of Concrete, ASCE, Vol. 105, EM1, 1977
    [164] Gerstle K H. Simple Formulation of Biaxial Concrete Behavior, ACI. J. Jan-Feb. 1981
    [165] Stankowski T, Gerstle K H. Simple Formulation of Concrete Behavior under Multiaxial Load Histories, ACI J. March-April 1985
    [166] Chen W F. Plasticity in Reinforced Concrete, Mc Graw-Hill, 1982
    [167] 韩大健.塑性、断裂及损伤力学在建立混凝土结构模型中的应用,力学与实践,10(1),1998
    [168] Hsieh S S, Ting E C and Chen W F. A Plastic-Frecture Model for Concrete, Int. J. Solids structure, 18(3), 1982
    [169] Hen D J and Chen W F. A No uniform Hardening Plasticity Model for Concrete Material, Mechanics of Materials, No. 4, 1985
    [170] Vermeer P A and Borst R. Non-associated Plasticity for soils, Concrete and Rock, HERON, ACI J. March 1976
    [171] 董毓川,谢和平,等。高压混凝土损伤结构模型,力学与实践,No,6,1996
    [172] Valanis K C. theory of Viscoplasticity without a Yield Surface, Archiwum Mechaning Stocssowanej, Vol. 23, 1971
    [173] Bazant E P, Bhat D R Endochronic Theory of Indelsticity and Failure of Concrete, ASCE, Vol. 102, EM4, Aug 1976
    
    [174] 叶献国,三轴高压混凝土强度子变形试验研究,清华大学硕士论文,1988
    [175] Lan shengrui, Ynag Jusheng. Regional Cracking Model in FEA of Reinforced Concrete, International Sympusium of Concrete Engineering (Nanjing, China) , Vol. 3, 1991
    [176] 李九红,混凝土三轴试验与允许开裂的三维非线性有限元分析,西安理工大学硕士论文,1994