鼻咽癌鸡胚绒毛尿囊膜移植瘤模型的建立及其在肿瘤生物学行为研究上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是我国高发的恶性肿瘤,而广西是全国鼻咽癌的第二高发区。在过去二十年中,广西的鼻咽癌发病率及死亡率几乎无明显改善。建立鼻咽癌体内动物实验模型是研究鼻咽癌的重要手段,也是我们急需解决的课题之一。目前常用的鼻咽癌动物模型是裸鼠移植瘤模型,其实验条件相对较高,且实验周期长,费用昂贵。而鸡胚绒毛尿囊膜(CAM)模型以简单、方便、价廉、快速等优点已日益成为肿瘤研究工作者常用的一个活体模型。我们的目的是建立基于鸡胚绒毛尿囊膜的高效、实用、经济的鼻咽癌体内动物实验模型,为将来进一步研究鼻咽癌细胞的浸润转移机制、抗肿瘤药物筛选、临床前期评价乃至肿瘤个体治疗方案等建立技术平台。
     经过反复摸索,我们对建立该移植瘤模型的方法和条件进行了优化:根据鸡胚孵化特点,确定实验的开始时间为鸡胚孵至第8日龄时,最迟的终止时间为鸡胚孵至第14日龄;确定以“开窗法”为我们获取CAM的方法;以硅胶圈为我们接种肿瘤细胞的载体;完善并熟练掌握了鸡胚“开窗”的技术,使鸡胚“开窗”成功率接近100%;确定鼻咽癌细胞的最佳接种细胞数。通过以上条件的优化,我们成功建立和完善了鼻咽癌鸡胚CAM移植瘤模型
     同时,我们发现,鼻咽癌细胞在CAM移植瘤形成的过程中可诱导宿主新生血管形成,形成的新生血管以移植瘤为中心呈放射状的排列。我们探索了通过测算尿囊膜/血管面积比来定量研究新生血管的方法,并发现,随着接种细胞数的增多,新生血管也增多。我们构建了标记GFP的鼻咽癌细胞株,接种于CAM,通过激光共聚焦显微镜观察GFP标记的鼻咽癌细胞的侵袭行为。通过此模型我们可观察到癌细胞浸润并突破基底膜及血道转移的早期过程。我们还探讨了CAM模型用于研究鼻咽癌细胞远处转移的可行性。通过绝对定量real-time荧光定量PCR检测人β-globin基因,我们在接种鼻咽癌细胞5天的鸡胚心肺组织内检测到了微量的人癌细胞。在此基础上,我们验证了两株不同转移潜能鼻咽癌细胞株的远处转移能力差异,并证实CAM模型可以用于肿瘤转移能力的预测。
     总之,本研究首次建立了鼻咽癌鸡胚绒毛尿囊膜移植瘤模型,并从形态学、分子生物学等方面阐述该活体模型应用于鼻咽癌新生血管的定量研究、鼻咽癌早期浸润侵袭的生物学行为的观察以及鼻咽癌远处转移潜能的评价。本课题工作为进一步开展鼻咽癌的肿瘤生物学相关研究奠定了良好的工作基础,提供了良好的技术平台。
Nasopharyngeal carcinoma(NPC)is a common neoplasm in China, and the incidence of nasopharyngeal carcinoma in GuangXi province is the second high incidence in China. In the past two decades, the incidence and mortality of NPC in GuangXi show no significant change. Nasopharyngeal carcinoma specimen collection is difficult, for two reasons:on the one hand, it is due to the insidious anatomical position of NPC so that there is difficulty in obtaining clinical samples. On the other hand, NPC patients generally don't been carried out surgical treatment, resulting in a very small amount of clinical biopsy specimen. These all are bad to carry out research on the biological behavior of NPC. Therefore, the establishment of animal model of NPC in vivo is an important means of NPC investigation, and also is one of the issues we need to be resolved. The most commonly used animal model of NPC is nude mouse xenograft tumor model which requeste high experimental condition, long experimental cycle and high cost. The chick embryo chorioallantoic membrane (CAM) model with its simple, convenient, inexpensive and rapid has increasingly become a commonly used model for living by tumor researchers. Our aim is to create in vivo animal models of NPC based on the CAM which would become a technology platform for our further study on invasion and metastasis mechanism, anticancer drug screening, pre-clinical evaluation and even individual cancer treatment.
     By repeating exploration, we optimized the methods and conditions of establishing the xenograft model. According to the characteristics of embryo hatching we determined that the starting time of the experiment is the eighth day after hatching and the latest termination time is the fourteenth day after hatching. We established the "window method" for CAM methods and silicone ring for the inoculating carrier in CAM. We have improved and mastered the chick embryo "window" technology, so that chick "window" success rate close to 100%. We also explored and determined the best seeded number of nasopharyngeal carcinoma cells. With Optimization of the above conditions, we successfully established and perfected the chick CAM tumor model of nasopharyngeal carcinoma.
     Meanwhile we found that NPC cells also induce angiogenesis when they form xenograft in CAM, and the new blood vessels arrange radially toward to the center of tumor. By quantitative vessel area/chorioallantoic membrane ratio it was found that neovascularization increased with the increase in the number of inoculated cells. We constructed GFP labeled NPC cells and inoculated them in CAM. Then we observed invasion behavior of these GFP labeled NPC cells by using laser confocal microscope. With this model we can observed the tumor cells invasion, breaking through the basement membrane and early stage of blood metastasis. We also discussed the feasibility that CAM model is used to study distant metastasis of NPC cells. By detecting humanβ-globin gene with absolute quantitative real-time fluorescence quantitative PCR method, we detected small amounts of human tumor cells within the heart and lung tissue of inoculated 5-day chicken embryo. On this basis, we verified the distant metastasis difference between the two nasopharyngeal carcinoma cell lines with different metastatic potential, and confirmed that CAM model can be used for prediction of tumor metastasis.
     In conclusion, this study established a NPC chick embryo chorioallantoic membrane transplantation tumor model for the first time, and evaluated its application on NPC angiogenesis quantitative study in vivo, observation of early invasion behavior and anticipation of the distant metastasis potential from the morphology, molecular biology and other aspects.
     Our study work has laid a good working basis and provide a good platform for further work on NPC biology research.
引文
[1]Lo K W, Huang D P. Genetic and epigenetic changes in nasopharyngeal carcinoma[J]. Semin Cancer Biol,2002,12(6):451-462.
    [2]Tao Q, Chan A T. Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments[J]. Expert Rev Mol Med,2007,9(12):1-24.
    [3]Mcdermott A L, Dutt S N, Watkinson J C. The aetiology of nasopharyngeal carcinoma[J]. Clin Otolaryngol Allied Sci,2001,26(2):82-92.
    [4]Takigawa M, Enomoto M, Nishida Y, et al. Tumor angiogenesis and polyamines:alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro[J]. Cancer Res,1990,50(13):4131-4138.
    [5]Ribatti D, Raffaghello L, Pastorino F, et al. In vivo angiogenic activity of neuroblastoma correlates with MYCN oncogene overexpression[J]. Int J Cancer,2002,102(4):351-354.
    [6]Marzullo A, Vacca A, Roncali L, et al. Angiogenesis in hepatocellular carcinoma:an experimental study in the chick embryo chorioallantoic membrane[J]. Int J Oncol,1998,13(1):17-21.
    [7]Palczak R, Splawinski J. Angiogenic activity and neovascularization in adenocarcinoma of endometrium[J]. Int J Gynaecol Obstet,1989,29(4): 343-357.
    [8]Morgan B A, Izpisua-Belmonte J C, Duboule D, et al. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations[J]. Nature,1992,358(6383):236-239.
    [9]Vargas A, Zeisser-Labouebe M, Lange N, et al. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems[J]. Adv Drug Deliv Rev,2007,59(11):1162-1176.
    [10]Chen Z, Wang W, Zhou H, et al. Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs[J]. J Virol,2010,84(1):44-51.
    [11]Ma W, Brenner D, Wang Z, et al. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV[J]. J Virol, 2010,84(4):2122-2133.
    [12]Lindsay D S, Sundermann C A, Blagburn B L. Cultivation of Cryptosporidium baileyi:studies with cell cultures, avian embryos, and pathogenicity of chicken embryo-passaged oocysts[J]. J Parasitol,1988, 74(2):288-293.
    [13]Tallen G, Farhangi S, Tamannai M, et al. The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells[J]. Oncol Res,2009,18(2-3):95-105.
    [14]Subauste M C, Kupriyanova T A, Conn E M, et al. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems[J]. Clin Exp Metastasis,2009,26(8):1033-1047.
    [15]Nap A W, Dunselman G A, Griffioen A W, et al. Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane[J]. Fertil Steril,2005,83(3):793-795.
    [16]Al R. The avian embryo:structural and functional development.[Z]. New York:The Macmillan Company,1960.
    [17]Auerbach R, Kubai L, Knighton D, et al. A simple procedure for the long-term cultivation of chicken embryos[J]. Dev Biol,1974,41(2): 391-394.
    [18]鲍恩东,陈万芳.鸡胚免疫系统器官组织学变化观察[J].中国兽医科技,1996,26(2):26-27.
    [19]Kunzi-Rapp K, Genze F, Kufer R, et al. Chorioallantoic membrane assay: vascularized 3-dimensional cell culture system for human prostate cancer cells as an animal substitute model[J]. J Urol,2001,166(4):1502-1507.
    [20]Mousa S S, Mousa S S, Mousa S A. Effect of resveratrol on angiogenesis and platelet/fibrin-accelerated tumor growth in the chick chorioallantoic membrane model[J]. Nutr Cancer,2005,52(1):59-65.
    [21]郑秀海,王曙光,倪嘉,等.人胆管癌鸡胚移植瘤模型的建立及其生物学特性的研究[J].第三军医大学学报,2003,25(9):757-759.
    [22]杨丽华,王凯峰,周轶萍,等.人卵巢癌鸡胚尿囊膜血管生成模型的建立[J].现代妇产科进展,2003,12(6):407-409.
    [23]阿斯楞,仝林虎,苏秀兰.肿瘤血管生成的分子机制[J].内蒙古医学杂志,2006,38(3):235-238.
    [24]李杰恩,黄光武.鼻咽癌血管生成与复发转移的关系初探[J].实用癌症杂志,2000,15(2):119-120.
    [25]Foote R L, Weidner N, Harris J, et al. Evaluation of tumor angiogenesis measured with microvessel density (MVD) as a prognostic indicator in nasopharyngeal carcinoma:results of RTOG 9505[J]. Int J Radiat Oncol Biol Phys,2005,61(3):745-753.
    [26]Su C, Na M, Chen J, et al. Gene-viral cancer therapy using dual-regulated oncolytic adenovirus with antiangiogenesis gene for increased efficacy [J]. Mol Cancer Res,2008,6(4):568-575.
    [27]Ribatti D, Nico B, Vacca A, et al. The gelatin sponge-chorioallantoic membrane assay[J]. Nat Protoc,2006,1(1):85-91.
    [28]Thompson W D, Campbell R, Evans T. Fibrin degradation and angiogenesis:quantitative analysis of the angiogenic response in the chick chorioallantoic membrane[J]. J Pathol,1985,145(1):27-37.
    [29]Kirchner L M, Schmidt S P, Gruber B S. Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis[J]. Microvasc Res,1996,51(1):2-14.
    [30]杨丽华,王凯峰,周铁平,等.鸡胚尿囊膜模型血管生成定量指标的研究[J].昆明医学院学报,2004,25(2):21-24.
    [31]Cubitt A B, Heim R, Adams S R, et al. Understanding, improving and using green fluorescent proteins[J]. Trends Biochem Sci,1995,20(11): 448-455.
    [32]冷雷,刘腾飞,黄仲曦,等.鼻咽癌淋巴结转移动物模型的建立及其转移相关标签基因的筛选[J].南方医科大学学报,2008,28(9):1519-1522.
    [33]Liu T, Ding Y, Xie W, et al. An imageable metastatic treatment model of nasopharyngeal carcinoma[J]. Clin Cancer Res,2007,13(13):3960-3967.
    [34]Garcia-Closas M, Egan K M, Abruzzo J, et al. Collection of genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash[J]. Cancer Epidemiol Biomarkers Prev,2001,10(6):687-696.
    [35]Ossowski L, Reich E. Experimental model for quantitative study of metastasis [J]. Cancer Res,1980,40(7):2300-2309.
    [36]Macdonald I C, Schmidt E E, Morris V L, et al. Intravital videomicroscopy of the chorioallantoic microcirculation:a model system for studying metastasis [J]. Microvasc Res,1992,44(2):185-199.
    [37]Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy [J]. J Cell Biol,1997,137(3):767-777.
    [38]Kim J, Yu W, Kovalski K, et al. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay[J]. Cell,1998,94(3):353-362.
    [39]Chambers A F, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick[J]. Cancer Res,1982,42(10):4018-4025.
    [40]Koop S, Schmidt E E, Macdonald I C, et al. Independence of metastatic ability and extravasation:metastatic ras-transformed and control fibroblasts extravasate equally well[J]. Proc Natl Acad Sci U S A,1996,93(20): 11080-11084.
    [41]Fidler I J. Biological behavior of malignant melanoma cells correlated to their survival in vivo[J]. Cancer Res,1975,35(1):218-224.
    [42]Lodish H. molecular cell biology[Z]. W.H.Freeman & Company,2000.
    [1]Morgan B A, Izpisua-Belmonte J C, Duboule D, et al. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations[J]. Nature,1992,358(6383):236-239.
    [2]Vargas A, Zeisser-Labouebe M, Lange N, et al. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems[J]. Adv Drug Deliv Rev,2007,59(11):1162-1176.
    [3]Chen Z, Wang W, Zhou H, et al. Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs[J]. J Virol,2010,84(1):44-51.
    [4]Ma W, Brenner D, Wang Z, et al. The NS segment of an H5N1 highly pathogenic avian influenza virus (HPAIV) is sufficient to alter replication efficiency, cell tropism, and host range of an H7N1 HPAIV[J]. J Virol,2010,84(4):2122-2133.
    [5]Lindsay D S, Sundermann C A, Blagburn B L. Cultivation of Cryptospori-dium baileyi:studies with cell cultures, avian embryos, and pathogenicity of chicken embryo-passaged oocysts[J]. J Parasitol,1988,74(2):288-293.
    [6]Tallen G, Farhangi S, Tamannai M, et al. The inhibitor of growth 1 (ING1) proteins suppress angiogenesis and differentially regulate angiopoietin expression in glioblastoma cells[J]. Oncol Res,2009,18(2-3):95-105.
    [7]Subauste M C, Kupriyanova T A, Conn E M, et al. Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems[J]. Clin Exp Metastasis,2009,26(8):1033-1047.
    [8]Nap A W, Dunselman G A, Griffioen A W, et al. Angiostatic agents prevent the development of endometriosis-like lesions in the chicken chorioallantoic membrane[J]. Fertil Steril,2005,83(3):793-795.
    [9]Al R. The avian embryo:structural and functional development.[Z]. New York:The Macmillan Company,1960.
    [10]Fuchs A, Lindenbaum E S. The two-and three-dimensional structure of the microcirculation of the chick chorioallantoic membrane[J]. Acta Anat (Basel),1988,131(4):271-275.
    [11]Oh S J, Jeltsch M M, Birkenhager R, et al. VEGF and VEGF-C:specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane[J]. Dev Biol,1997,188(1):96-109.
    [12]Wilting J, Neeff H, Christ B. Embryonic lymphangiogenesis [J]. Cell Tissue Res,1999,297(1):1-11.
    [13]Wilting J, Birkenhager R, Eichmann A, et al. VEGF 121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane[J]. Dev Biol,1996, 176(1):76-85.
    [14]Papoutsi M, Tomarev S I, Eichmann A, et al. Endogenous origin of the lymphatics in the avian chorioallantoic membrane [J]. Dev Dyn,2001, 222(2):238-251.
    [15]Funk P E, Thompson C B. Current concepts in chicken B cell development. [J]. Curr Top Microbiol Immunol,1996,212:17-28.
    [16]Davison T F. The immunologists' debt to the chicken[J]. Br Poult Sci, 2003,44(1):6-21.
    [17]Janse E M, Jeurissen S H. Ontogeny and function of two non-lymphoid cell populations in the chicken embryo[J]. Immunobiology,1991,182(5): 472-481.
    [18]Marzullo A, Vacca A, Roncali L, et al. Angiogenesis in hepatocellular carcinoma:an experimental study in the chick embryo chorioallantoic membrane[J]. Int J Oncol,1998,13(1):17-21.
    [19]Palczak R, Splawinski J. Angiogenic activity and neovascularization in adenocarcinoma of endometrium[J]. Int J Gynaecol Obstet,1989,29(4): 343-357.
    [20]Takigawa M, Enomoto M, Nishida Y, et al. Tumor angiogenesis and poly amines:alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, inhibits B16 melanoma-induced angiogenesis in ovo and the proliferation of vascular endothelial cells in vitro[J]. Cancer Res,1990,50(13):4131-4138.
    [21]Vacca A, Ria R, Semeraro F, et al. Endothelial cells in the bone marrow of patients with multiple myeloma[J]. Blood,2003,102(9):3340-3348.
    [22]Ribatti D, Raffaghello L, Pastorino F, et al. In vivo angiogenic activity of neuroblastoma correlates with MYCN oncogene overexpression[J]. Int J Cancer,2002,102(4):351-354.
    [23]Wilting J, Christ B, Bokeloh M. A modified chorioallantoic membrane (CAM) assay for qualitative and quantitative study of growth factors. Studies on the effects of carriers, PBS, angiogenin, and bFGF[J]. Anat Embryol(Berl),1991,183(3):259-271.
    [24]Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane[J]. Microvasc Res,1994,47(1):31-40.
    [25]Ribatti D, Roncali L, Nico B, et al. Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane[J]. Acta Anat (Basel), 1987,130(3):257-263.
    [26]Ribatti D, Nico B, Vacca A, et al. The gelatin sponge-chorioallantoic membrane assay[J]. Nat Protoc,2006,1(1):85-91.
    [27]Kirchner L M, Schmidt S P, Gruber B S. Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis[J]. Microvasc Res,1996,51(1):2-14.
    [28]杨丽华,王凯峰,周铁平,等.鸡胚尿囊膜模型血管生成定量指标的研究[J].昆明医学院学报,2004,25(2):21-24.
    [29]Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma[J]. Blood,1999,93(9): 3064-3073.
    [30]Mangieri D, Nico B, Benagiano V, et al. Angiogenic activity of multiple myeloma endothelial cells in vivo in the chick embryo chorioallantoic membrane assay is associated to a down-regulation in the expression of endogenous endostatin[J]. J Cell Mol Med,2008,12(3):1023-1028.
    [31]Holash J, Maisonpierre P C, Compton D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF[J]. Science, 1999,284(5422):1994-1998.
    [32]Ribatti D, Raffaghello L, Pastorino F, et al. In vivo angiogenic activity of neuroblastoma correlates with MYCN oncogene overexpression[J]. Int J Cancer,2002,102(4):351-354.
    [33]Kern J, Untergasser G, Zenzmaier C, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib[J]. Blood,2009,114(18): 3960-3967.
    [34]Rous P M J. Tumor implantations in the developing embryo[Z].1911. 56,741.
    [35]Jb M. Transplantability of malignant tumors to embryos of a foreign species[Z].1912874.
    [36]Bh W. The endocrine glands and the development of the chick. I. The effects of thyroid grafts[Z].192467-103.
    [37]Taylor A, Carmichael N, Norris T. A further report on yolk sac cultivation of tumor tissue[J]. Cancer Res,1948,8(6):264-269.
    [38]Karnofsky D A, Ridgway L P, Patterson P A. Tumor transplantation to the chick embryo[J]. Ann N Y Acad Sci,1952,55(2):313-329.
    [39]Dagg C P, Karnofsky D A, Roddy J. Growth of transplantable human tumors in the chick embryo and hatched chick[J]. Cancer Res,1956, 16(7):589-594.
    [40]Kaufman N, Kinney T D, Mason E J, et al. Maintenance of human neoplasm on the chick chorioallantoic membrane[J]. Am J Pathol,1956, 32(2):271-285.
    [41]Ossowski L, Reich E. Experimental model for quantitative study of metastasis. [J]. Cancer Res,1980,40(7):2300-2309.
    [42]Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy [J]. J Cell Biol,1997, 137(3):767-777.
    [43]Kim J, Yu W, Kovalski K, et al. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay[J]. Cell,1998,94(3):353-362.
    [44]Chambers A F, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick[J]. Cancer Res,1982,42(10):4018-4025.
    [45]Macdonald I C, Schmidt E E, Morris V L, et al. Intravital videomicroscopy of the chorioallantoic microcirculation:a model system for studying metastasis[J]. Microvasc Res,1992,44(2):185-199.
    [46]Koop S, Schmidt E E, Macdonald I C, et al. Independence of metastatic ability and extravasation:metastatic ras-transformed and control fibroblasts extravasate equally well[J]. Proc Natl Acad Sci U S A,1996,93(20): 11080-11084.
    [47]Lugassy C, Barnhill R L. Angiotropic melanoma and extravascular migratory metastasis:a review[J]. Adv Anat Pathol,2007,14(3):195-201.
    [48]Hagedorn M, Javerzat S, Gilges D, et al. Accessing key steps of human tumor progression in vivo by using an avian embryo model[J]. Proc Natl Acad Sci U S A,2005,102(5):1643-1648.
    [49]Shioda T, Munn L L, Fenner M H, et al. Early events of metastasis in the microcirculation involve changes in gene expression of cancer cells. Tracking mRNA levels of metastasizing cancer cells in the chick embryo chorioallantoic membrane[J]. Am J Pathol,1997,150(6):2099-2112.
    [50]Koop S, Khokha R, Schmidt E E, et al. Overexpression of metallopro-teinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth[J]. Cancer Res,1994,54(17):4791-4797.
    [51]Koop S, Macdonald I C, Luzzi K, et al. Fate of melanoma cells entering the microcirculation:over 80% survive and extravasate [J]. Cancer Res,1995, 55(12):2520-2523.
    [52]Leibovitz A, Stinson J C, Mccombs W R, et al. Classification of human colorectal adenocarcinoma cell lines[J]. Cancer Res,1976,36(12): 4562-4569.
    [53]Taizi M, Deutsch V R, Leitner A, et al. A novel and rapid in vivo system for testing therapeutics on human leukemias[J]. Exp Hematol,2006,34(12): 1698-1708.
    [54]Dumartin L, Quemener C, Laklai H, et al. Netrin-1 Mediates Early Events in Pancreatic Adenocarcinoma Progression, Acting on Tumor and Endothelial Cells[J]. Gastroenterology,2010.
    [55]Volland S, Kugler W, Schweigerer L, et al. Stanniocalcin 2 promotes invasion and is associated with metastatic stages in neuroblastoma[J]. Int J Cancer,2009,125(9):2049-2057.
    [56]Papoutsi M, Sleeman J P, Wilting J. Interaction of rat tumor cells with blood vessels and lymphatics of the avian chorioallantoic membrane[J]. Microsc Res Tech,2001,55(2):100-107.
    [57]Papoutsi M, Siemeister G, Weindel K, et al. Active interaction of human A375 melanoma cells with the lymphatics in vivo[J]. Histochem Cell Biol,2000,114(5):373-385.
    [58]Cimpean A M, Seclaman E, Ceausu R, et al. VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature[J]. Clin Exp Med,2009.
    [59]Scavelli C, Di Pietro G, Cirulli T, et al. Zoledronic acid affects over-angiogenic phenotype of endothelial cells in patients with multiple myeloma[J]. Mol Cancer Ther,2007,6(12 Pt 1):3256-3262.
    [60]Ribatti D, Alessandri G, Baronio M, et al. Inhibition of neuroblastoma-induced angiogenesis by fenretinide[J]. Int J Cancer,2001,94(3):314-321.
    [61]Marimpietri D, Nico B, Vacca A, et al. Synergistic inhibition of human neuroblastoma-related angiogenesis by vinblastine and rapamycin[J]. Oncogene,2005,24(45):6785-6795.
    [62]Marimpietri D, Brignole C, Nico B, et al. Combined therapeutic effects of vinblastine and rapamycin on human neuroblastoma growth, apoptosis, and angiogenesis [J]. Clin Cancer Res,2007,13(13):3977-3988.
    [63]Pastorino F, Brignole C, Di Paolo D, et al. Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy[J]. Cancer Res,2006,66(20): 10073-10082.
    [64]Shen F Z, Wang J, Liang J, et al. Low-dose metronomic chemotherapy with cisplatin:can it suppress angiogenesis in H22 hepatocarcinoma cells?[J]. Int J Exp Pathol,2010,91(1):10-16.
    [65]Yan S, Zhang H, Xie Y, et al. Recombinant human interleukin-24 suppresses gastric carcinoma cell growth in vitro and in vivo[J]. Cancer Invest,2010,28(1):85-93.
    [66]Yalcin M, Bharali D J, Lansing L, et al. Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts[J]. Anticancer Res,2009,29(10):3825-3831.
    [67]Laklai H, Laval S, Dumartin L, et al. Thrombospondin-1 is a critical effector of oncosuppressive activity of sst2 somatostatin receptor on pancreatic cancer[J]. Proc Natl Acad Sci U S A,2009,106(42): 17769-17774.
    [68]Matsumura Y, Shimada K, Tanaka N, et al. Phosphorylation status of fas-associated death domain-containing protein regulates telomerase activity and strongly correlates with prostate cancer outcomes [J]. Pathobiology,2009,76(6):293-302.
    [69]Fidler I J. Biological behavior of malignant melanoma cells correlated to their survival in vivo[J]. Cancer Res,1975,35(1):218-224.
    [70]科学家绘出鸡的基因组序列草图和遗传差异图[J].中国家禽,2004,26(5):40.
    [1]高进.动物肿瘤模型的建立及其标准研讨[J].中国肿瘤生物治疗杂志,1995,2(1):76-79.
    [2]Rogers K S, Walker M A, Helman R G. Squamous cell carcinoma of the canine nasal cavity and frontal sinus:eight cases[J]. J Am Anim Hosp Assoc,1996,32(2):103-110.
    [3]Madewell B R, Priester W A, Gillette E L, et al. Neoplasms of the nasal passages and paranasal sinuses in domesticated animals as reported by 13 veterinary colleges[J]. Am J Vet Res,1976,37(7):851-856.
    [4]Dorn C R, Priester W A. Epidemiologic analysis of oral and pharyngeal cancer in dogs, cats, horses, and cattle[J]. J Am Vet Med Assoc,1976, 169(11):1202-1206.
    [5]田道法,何迎春.转基因技术在鼻咽上皮细胞癌变中医病机研究中的应用[J].怀化医专学报,2006,5(1):1-7.
    [6]肖志强,刘薇.携带EB病毒潜伏膜蛋白基因转基因小鼠的制备[J].生物化学与生物物理进展,1995,22(2):149-154.
    [7]陈志坚,李德锐,等.三株人鼻咽癌Scid小鼠移植瘤的建立及特性研究[J].中华实验和临床病毒学杂志,2001,15(4):324-326.
    [8]Klein G, Giovanella B C, Lindahl T, et al. Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx[J]. Proc Natl Acad Sci U S A,1974,71(12):4737-4741.
    [9]谢良喜,李德锐,林昆,等.三氧化二砷对鼻咽癌BALB/c小鼠移植瘤的放射增敏作用[J].中华放射医学与防护杂志,2005,25(1):49-52.
    [10]陈昕,文庆莲,邓红梅,等.裸鼠不同部位皮下接种鼻咽癌瘤块成瘤特 点比较[J].泸州医学院学报,2006,29(3):242-243.
    [11]李晓华,詹志荣,孙建设,等.鼻咽癌细胞株裸鼠肝异位种植瘤肺转移动物模型的建立[J].江西医学院学报,2008,48(2):32-33.
    [12]Liu X, Li G, Zhang B, et al. [Influence of suppression of Epstein-Barr Virus-encoded latent membrane protein 1 by rAAV vector mediated RNA interference on metastatic ability of nasopharyngeal cancer cells in vivo][J]. Zhonghua Zhong Liu Za Zhi,2009,31(5):324-329.
    [13]Chia M C, Leung A, Krushel T, et al. Nuclear factor-Y and Epstein Barr virus in nasopharyngeal cancer[J]. Clin Cancer Res,2008,14(4):984-994.
    [14]Chia M C, Shi W, Li J H, et al. A conditionally replicating adenovirus for nasopharyngeal carcinoma gene therapy [J]. Mol Ther,2004,9(6):804-817.
    [15]Yu M C, Nichols P W, Zou X N, et al. Induction of malignant nasal cavity tumours in Wistar rats fed Chinese salted fish[J]. Br J Cancer,1989,60(2): 198-201.
    [16]陈主初.实验性大鼠鼻咽癌的病变观察[J].中国病理生理杂志,1990,6(6):442-445.
    [17]吴四海,俞晨杰.鼻咽癌移植瘤动物模型的建立及其肿瘤生物学特性观察[J].齐齐哈尔医学院学报,2007,28(18):2183-2184.
    [18]张兴焦伟周微雅.人鼻咽癌肝转移灶裸小鼠移植瘤模型(CNT-1)建立及特性研究[Z].1995.17,10-12.
    [19]姚运红,黄剑.人低分化鼻咽癌克隆株体内传代过程中生物学特性的变化[J].肿瘤,1997,17(1):34-37.
    [20]Liu T, Ding Y, Xie W, et al. An imageable metastatic treatment model of nasopharyngeal carcinoma[J]. Clin Cancer Res,2007,13(13):3960-3967.
    [21]冷雷,刘腾飞,黄仲曦,等.鼻咽癌淋巴结转移动物模型的建立及其转移相关标签基因的筛选[J].南方医科大学学报,2008,28(9):1519-1522.
    [22]Gilligan K J, Rajadurai P, Lin J C, et al. Expression of the Epstein-Barr virus BamHI A fragment in nasopharyngeal carcinoma:evidence for a viral protein expressed in vivo[J]. J Virol,1991,65(11):6252-6259.
    [23]Seto E, Ooka T, Middeldorp J, et al. Reconstitution of nasopharyngeal carcinoma-type EBV infection induces tumorigenicity[J]. Cancer Res,2008, 68(4):1030-1036.
    [24]Cheung A K, Lung H L, Ko J M, et al. Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma[J]. Proc Natl Acad Sci U S A,2009,106(34):14478-14483.
    [25]Mai H Q, Zeng Z Y, Feng K T, et al. Therapeutic targeting of the endothelin a receptor in human nasopharyngeal carcinoma[J]. Cancer Sci, 2006,97(12):1388-1395.
    [26]Li J H, Chia M, Shi W, et al. Tumor-targeted gene therapy for nasopharyn-geal carcinoma[J]. Cancer Res,2002,62(1):171-178.
    [27]Alajez N M, Shi W, Hui A B, et al. Targeted depletion of BMI1 sensitizes tumor cells to P53-mediated apoptosis in response to radiation therapy[J]. Cell Death Differ,2009,16(11):1469-1479.
    [28]周蓉蓉,陈嘉,肖志强.ElA基因对人鼻咽癌动物模型放射增敏的实验研究[J].中南大学学报:医学版,2009,34(8):744-751.
    [29]吴敬波,文庆莲,范娟,等.拓扑替康对鼻咽癌放射增敏的体内实验[J].中国耳鼻咽喉头颈外科,2007,14(2):82-85.
    [30]徐洁洁,姚堃,俞晨杰,等.EB病毒潜伏膜蛋白2A诱导细胞毒性T细胞抗鼻咽癌的体内外实验[J].中华耳鼻咽喉头颈外科杂志,2006,41(1):54-59.
    [31]陈轶,李宁.鼻咽癌高温固化瘤苗免疫动物在高压氧暴露下的实验研究 [J].现代保健:医学创新研究,2008,5(21):8-10.
    [32]Tang F, Wang D, Duan C, et al. Berberine inhibits metastasis of nasopharyngeal carcinoma 5-8F cells by targeting Rho kinase-mediated Ezrin phosphorylation at threonine 567[J]. J Biol Chem,2009,284(40): 27456-27466.
    [33]林慧韫,李步洪,谢树森.血啉甲醚和癌光啉在鼻咽癌动物模型中的荧光特性[J].中国激光医学杂志,2009,18(2):69-73.
    [34]Lui V W, Yau D M, Wong E Y, et al. Cucurbitacin I elicits anoikis sensitization, inhibits cellular invasion and in vivo tumor formation ability of nasopharyngeal carcinoma cells[J], Carcinogenesis,2009,30(12): 2085-2094.