无铅压电陶瓷Na_(0.5)K_(0.5)Nb_xTa_((1-x))O_3 的制备、掺杂及电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆钛酸铅(PZT)基压电陶瓷由于其优异的压电性能在生产和生活中有着广泛的应用。但是这类材料含有大量Pb元素,使得该类材料的应用受到极大的限制,因此,开发新型高性能无铅压电陶瓷意义重大。碱金属铌钽酸基压电材料由于具有无毒和高压电性能等优点,受到各国学者的重视。本文详细的研究了熔盐法制备Na_(0.5)K_(0.5)NbxTa(1-x)O3 (x=0.3~0.7)系压电陶瓷的工艺条件,寻找出性能最佳的组分,并探讨了A位(稀土元素,碱金属)和B位(过渡金属)掺杂对材料压介电性能的影响,发现经过掺杂改性的陶瓷材料的部分电性能可以和PZT相媲美。
     本文系统地研究了熔盐法合成Na_(0.5)K_(0.5)NbxTa(1-x)O3 (x=0.3~0.7)及其掺杂样品的工艺条件,研究发现反应原料在850℃,保温4小时,熔盐(NaCl-KCl)与原料质量比为1:1时,可获得单相的Na_(0.5)K_(0.5)NbxTa(1-x)O3 (x=0.3~0.7)及其掺杂样品。在此基础上研究了粉体样品的相组成,颗粒的微观形貌和陶瓷材料的压介电性能。研究结果表明:烧结条件为1100℃烧结,保温40分钟,极化条件为在120℃油浴中加热20分钟,极化场强为4kv/mm时,陶瓷样品的压介电性能最佳。
     对Na_(0.5)K_(0.5)NbxTa(1-x)O3 (x=0.3~0.7)以及A位(稀土元素,碱金属)和B位(过渡金属)掺杂样品的压介电性能测试结果表明:当Nb和Ta原子比为1:1时,材料具有最佳压介电性能,材料的几个重要性能参数分别为:εr=83.2,tanδ=0.0096,d33=152pc/N,TC=700℃。在此基础上研究了A位和B位掺杂对陶瓷材料压介电性能的影响,当CuO的掺杂量为1.0mol%时,陶瓷具有较好的压介电性能:εr=220,tanδ=0.01, d33=170pc/N;对于稀土离子(La3+、Nd3+、Sm3+)掺杂体系,当Sm3+的含量为2.0mol%时,性能较佳:εr=133.4,d33=158pc/N。Li+的掺杂样品中当Li+含量为8.0mol%时,εr达到260.1。并进一步研究A,B位同时掺杂对材料压介电性能的影响,发现Sm3+和Cu2+掺杂量分别为2.0mol%和1.0mol%时,陶瓷样品性能参数为εr=345.6 ,tanδ=0.011,d33=254pc/N,Tc=690℃,可以看出该陶瓷样品的部分电性能已接近固溶体Pb(Zr,Ti)O3(PZT)基压电材料的性能。
     最后,本文简单介绍了压电陶瓷材料介质极化的类型,结合测试数据讨论了频率和温度对介电性能的影响,并运用Clausius-Mosotti方程结合离子极化率计算了介电常数。结果表明:当测试频率小于40000Hz时,介电常数及介电损耗均随频率的增加而减小。介电常数的计算值与实测值有较大的偏差,导致这一结果的可能原因是计算时未考虑内电场的作用。
Although Pb(Zr, Ti)O3 (PZT)-based piezoelectric ceramics have excellent piezoelectric performance, their applications are limited to some extent, due to the high content of Pb. So the exploitation of high performance lead-free piezoelectric ceramics have great sense. In the field of lead-free piezoelectric ceramics, alkali metal niobate and tantalum-based materials have large potentials to become the next generation piezoelectric ceramics because of their no toxicity and high performance.
     In the current study, sodium potassium niobate-based piezoelelctric ceramics were successfully prepared by molten solten meothod, and then the preparation conditions such as synthesis temperature, systhesis time and the ratio of assistant molten agent against the starting materials were systematically studied. Rare earth, alkali and transition metal element were used to enhance the piezoelectric performance of the ceramics. It has been found that a series of the composition Na_(0.5)K_(0.5)NbxTa (1-x) O3 (x=0.3~0.7) and their doped ceramics can be obtained after prosessing at 850℃for 4 hours. To study the piezoelectric properties of the samples, the ceramics were processed according to the route: being sintered at 1100℃in air for 40 minutes, being handled in silicon oil at 120℃for 20 minutes, being polarized in the electric field 4kv/mm.
     In this paper, the piezoelectric and dielectric properties of the composition Na_(0.5)K_(0.5)NbxTa (1-x) O3 (x=0.3~0.7) and their doped ceramics were investigated. The measurement of piezoelectric and dielectric propterties reveals that two propterties are better when the atom ratio of Nb against Ta is 1:1 andεr, tanδ, d33 and TC are 83.2, 0.0096, 152pC/N and 700℃, respectively; for rare earth doped samples, the substitution of Sm3+ element has more marked effect on the enhancement of poizoelectric and dielectric performance ,εr and d33 for Sm 2.0mol% sample are 133.4 and 158pC/N, respectively; for Cu2+ 1.0mol% doped sample, two properties are better andεr, tanδand d33 are 220, 0.011, 170pC/N respectively. When Li+ doped amout is 8.0mol%,εr can reach 260.1. With consideration of improvement of two properties, the substitution of A postion element together with B were done, it is found that when the Sm3+ and Cu2+ contentare 2.0mol% and 1.0mol%,εr ,tanδ, d33and Tc are345.6, 0.011, 254pC/N and 690℃, respectively ,which can be comparable to PZT.
     At last, we simply introduce the type of polarization of piezoelectric ceramics. By combination of experiment results, the effects of frequency and temperature on diezoelectric performance are discussed and then dielectric constants are theoretically calculated by Clausius-Mosotti equation with polarization of ions. The results show that when the frequency is below 40000Hz,εr and tanδdecreasd with increasing frequency. The calculated values deviated from experimental values larger; the possible reason is that we can not consider the effect of inner electric field in the calculation process.
引文
1干福熹,信息材料.天津大学出版社, 2000:200~222
    2徐郑,倪宏伟.现代功能陶瓷.国防工业出版社, 1998:106~187
    3赵连泽.新型材料学导论.南京大学出版社, 2000:67~88
    4洪学鵾.六方层状类钙钛矿铌钽酸盐的制备结构与性能研究.武汉理工大学硕士论文, 2003:22~34
    5王评初,罗豪庚,李东林等. PMN-PT精细陶瓷在性能及相变方面的特点.无机材料学报, 2001,16 (1):56~62
    6 Seung-Eek Park and Thomas R. Shrout . Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals. J. Appl. Phys. 1997, 82(4):1804~1811
    7肖定全.关于无铅压电陶瓷及其应用的几个问题.电子原件与材料, 2004,11:62~65
    8初宝进,李国荣,江向平等. Na1/2Bi1/2Ti03-BaTi03系陶瓷压电性及弛豫相变研究.无机材料学报, 2000,15 (5):815~821
    9马晋毅,谢道华,吴裕功等. NBT NaNb03-BaTi03无铅压电材料的研究.压电与声光, 2003, 25(4):303~307
    10 E. M. Sabolsky, A. R. James, and G. L. Messing,etal. Piezoelectric Properties <001>Textured Pb(Mg1/3Nb2/3)03-PbTiO3 Ceramics. Applied Physics Letters. 2001, 78(17): 2551~2553
    11方俊鑫,殷之文.电介质物理学.科学出版社, 1998:23~45
    12曾汉民等,高技术新材料要览.中国科学出版社. 1993:65~69
    13赁敦敏,肖定全,朱建国.无铅压电陶瓷的研究与进展.哈尔滨理工大学学报. 2002, 7(6): 100~104
    14赁敦敏,肖定全,朱建国等. LiNbO3基无铅压电陶瓷的研究与进展.功能材料. 2004, 35(1):18~20
    15肖定全.压电热释电与铁电材料.天津大学出版社, 2000:43~48
    16 H. Nagata, T. T. Kenaka. Lead-free Piezoelectric Ceramics of (Bi1/2Na1/2) TiO3-1/2(Sc2O3) System. Jpn. Journal of Appl. Phys. 1997, 36:6055~6059
    17 T. Tekenaka, K. Sakata, K. Toda. Piezoelectric Properties of(Bi1/2Na1/2) TiO3-based Ceramics. Ferroelectrics. 1990, 106:375~380
    18 T. Takenaka, T. Okuda, K. Takegahara. Lead-free Piezoelectric Ceramics Based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics. 1997, 196: 175~178
    19赁敦敏,肖定全,朱建国等.无铅压电陶瓷研究开发进展.压电与声光, 2003, 25(2):127~132
    20赁敦敏,肖定全,朱建国等铋层状结构无铅压电陶瓷的研究与进展之无铅压电陶瓷20年发明专利分析三.功能材料, 2003, 34(5):491~495
    21 Nava Setter. Piezoelectric Materials in Devices. Setter Ceramics Laboratory EPFL Swiss Federal Institute of Technology. 2002:19~23
    22杨群保,荆学珍,李玉祥等.无铅压电陶瓷研究的新进展,电子元件与材料, 2003, 11(23):56~62
    23郝俊杰,李龙土,王晓慧等.无铅压电陶瓷材料研究现状,硅酸盐学报, 2004, 1(32):189~195
    24马晋毅,吴裕功. (Bi0.5Na0.5)TiO3陶瓷A位二价金属离子取代的研究.压电与声光. 2000, 22(4):253~255
    25吴裕功,马晋毅. (Bi1/2Na1/2)TiO3-SrTiO3无铅压电陶瓷的介电、压电性能.压电与声光. 2000, 22(6):370~372
    26 C. S. Tu, I. G Siny, V. H. Schmidt. Brillouin Scattering in Na1/2Bi1/2TiO3. Ferroelectrics. 1994, 15(2):403~408
    27 Y. Hosono, K. Harada, Y. Yamashita. Crystal Growth and Electrical Properties of Lead-free Ppiezoelectric Material (Bi1/2Na1/2)TiO3-BaTiO3. Ferroelectrics. 1999, 229:273~278
    28 H. Nagata, N. Koizumi, T. Takenaka. Lead-free Piezoelectric Ceramics of (Bi1/2Na1/2)TiO3-BiFeO3 System. Key Engineering Materials. 1999, 169:37~40
    29初宝进,李国荣. Na0.5Bi0.5TiO3-BaTiO3系陶瓷压电性及弛豫相变研究.无机材料学报. 2000, 15(5):815
    30 Nava Setter, Ed. Piezoelectric. Materials in Devices. Published by N. Setter Ceramics Laboratory EPFL Swiss Federal Institute of Technology. Printed in May. 2002, 14:31~36
    31杨群保,李玉祥.无铅压电陶瓷相变研究.电子元件与材料. 2004, 12(14): 61~66
    32张杨,王矜奉,杜鹃等.铌担酸盐无铅压电陶瓷的制备与性能.电子元件与材料. 2004, 23(11):217~221
    33胡嗣强,黎少华.水热合成技术的研究和应用.化工冶金. 1994, 15(4):309~314
    34翟学良.水热法制备四方相BaTiO3及其晶相转化机理.硅酸盐学报. 2000, 28(4):298~305
    35 Mathew George, Asha Mary John. Finite Size Effects on the Structural and Magnetic Properties of Sol-gel Synthesized NiFe2O4 Powders. Journal of Magnetism and Magnetic Materials. 2006, 302(1):190~195
    36 XU B. S., T. I. Formation and Bonding of Platinum Nanoparticles Controlled by High Energy Beam Irradiation. Nanostructured Materials, 2000, 12:915~918.
    37 C. Haguge, J. Mayo. Effect of Crystallization and Phase Transformation in Nanoscrystalline TiO2. Nanostructured Materials , 1993, 3(3):61~67.
    38 M. Kadowaki, H. Yoshizawa, S. Mori et al. Plasma CVD on the Inner Surface of a Microchannel. Thin Solid Films. 2006, 1:506~507
    39 L. Yurii, Sharkeev, J Steve. et al. On High Dose Nitrogen Implantation of PVD Titanium Nitride. Surface and Coatings Technology. 2006, 200(20):5915~5920
    40 H. Junjie, W. Xiaohui, C. Renzheng et al. Synthesis of (Bi0.5Na0.5)TiO3 Nano-crystalline Powders by Stearic Acid Gel Method. Materials Chemistry and Physics. 2005, 90:282~285
    41 A. Castro, B. Jime, T. Hungra et al. Sodium Niobate Ceramics Prepared by Mechanical Activation Assisted Methods. Journal of the European Ceramic Society. 2004, 24:941~945
    42 J. A. Horn, S. C. Zhang, U. Selvaraj et al. Fabrication of Textured Bi4Ti3O12 by Templated Grain Growth. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1996, 39(24):943~946
    43 B. Brahmaroutu, L. Messing. Templated Grain Growth of Textured Sr2Nb2O7. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1996, 40(21):883~886
    44 Y. Kana, P. Wanga. Fabrication of Textured Bismuth Titanate by Templated Grain Growth Using Aqueous Tape Casting. Journal of the European Ceramic Society. 2003, 15:2163~2169
    45 H. Seong Hyeon, L. Gary. Development of Textured Mullite by Templated Grain Growth. J. Am. Ceram.Soc. 1999, 82(4):867~872
    46 T. Tsuguto, T. Toshihiko, S. Yasuyoshi. Unidirectionally Textured CaBi4Ti4O15Ceramics by the Reactive Templated Grain Growth with an Extrusion. Jpn. Journal of Appl. Phys. 2000, 18(9):5577~5580
    47 T. Tsuguto, T. Toshihiko, S. Yasuyoshi. Piezoelectric Properties of Bismuth Layer-Structured Ferroelectric Ceramics with a Preferred Orientation Processed by the Reactive Templated Grain Growth Method. Jpn. Journal of Appl.Phys. 1999, 25(12):5553~5556
    48 Jeffrey A. Horn, S. Zhang. Templated Grain Growth of Textured Bismuth Titanate. J. Am. Ceram. Soc. 1999, 82(4):921~926
    49 H. Yilmaz, G. L. Messing and S. Trolier-McKinstry. Textured Sodium Bismuth Titanate (Na1/2Bi1/2)0.945Ba0.055TiO3 Ceramics by Templated GrainGrowth. 1954, 25:809~810
    50 M. M. Seabaugh, G. L. Cheney. Development of Highly Textured Piezoelectric Ceramic via Templated Grain Growth. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2001, 35(16):377~380
    51 Q. Xia, L. Hui, H. Qingwei et al. Preparation of Textured Ba2NaNb5O15 Ceramics by Templated Grain Growth. Ceramics International. 2005, 24(9):1807~1811
    52 H. Amorin, A. L. Kholkin, M. E. V. Costa. Texture Devepopment and Dielectric Properties of SrBi2Ta2O9 Ceramics Processed by Templated Grain Growth. Journal of the European Ceramic Society. 2005, 25(12):2453~2456
    53佟建华,杨维慎.钙钛矿型氧化物混合导体透氧膜材料的选择.膜科学与技术, 2003, 23(1):33~42
    54化学品电子手册3.0版.广西大学编, 2003:127~142
    55 H. Chaib, F. Schlaphof, T. Otto, L. M. Eng. Electrical and Opitcal Properties in 180°Ferroelectric Domain Wall of Tetragonal KNbO3.Ferroelectrics. 2003, 291:143~155
    56 S. Yasuyoshi.Crystallization of Nanosized Ni-Zn powders. Alloys Compd. 2000:2(23):310~314
    57 J. W. Cahn. On the Morphology Stability of Growth Crystals in Crystal Growth. H. S. Peiser, Pergamon, Oxford. U. K. 1967
    58施尔畏,栗怀顺,仇海波等.水热法制备超细ZrO2粉体的物理化学条件.人工晶体学报. 1993, 22(1):79~86
    59高镰,李蔚著.纳米陶瓷.化学工业出版社, 2001:12~36
    60范晓慧,于海东.烧结过程数学模型与人工智能.中南大学出版社, 2002:55~60
    61薛俊虎.烧结生产技能知识问答.冶金工业出版社, 2003:31~43
    62 R. E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 1962, 4(5):209
    63 Isaac R. A. Progressing of Pb(Zr0.52,Ti0.48)O3 (PZT) Ceramics from Microwave and Conventional Hydrothermal Powders. Materials Research Bulletin. 1999, 34(9):1411~1419
    64关振鉏,张中太,焦金生.无机材料物理性能.清华大学出版社, 1992: 288~306
    65陈季丹,刘子玉主编.电介质物理学.机械工业出版社, 1982:138~192
    66 R. Shannon. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993(73):348~366
    67梁敬魁编著.相图与相结构(下册).科学出版社, 1993:406~425
    68吕文中,汪小红.电子材料物理.电子工业出版社, 2002:25~26
    69华南工学院,南京化工学院,清华大学.陶瓷材料物理性能.中国建筑工业出版社. 1980:113~166