稀土掺杂纳米发光材料的制备及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着场发射(FED)和等离子体(PDP)发光显示技术的发展,对荧光粉的粒度分布大小、稳定性、发光效率、发光亮度以及导电性等提出了更高的要求,由于纳米发光材料所具备的量子效应、表面效应以及小尺寸效应等优异的性能对其发光性能有显著的影响,因而已成为当前新型发光材料的研究重点。在众多纳米发光材料中,由于ZnO优越的特殊的光学性能,使得其成为了一种很有前途的光电子应用软件和光敏器件的候选材料;同时,以稀土硼铝酸盐为基质的发光材料亦具有良好的化学稳定性和热稳定性,因此,本文的重点是研究以硼铝酸盐和氧化锌为基质的掺杂稀土的纳米发光材料。
     本文综述了纳米发光材料的研究现状,系统介绍了镧系离子的光谱理论及镧系掺杂发光纳米微粒的研究背景,概括和评述了近年来镧系掺杂发光纳米微粒的合成和表面修饰所取得的进展及面临的问题,并对今后的研究方向进行了总结和展望。在此基础上,我们针对场发射显示器(FED)和等离子体(PDP)对发光材料的要求,以稀土硼铝酸盐和氧化锌纳米发光材料为研究对象,采用溶胶-凝胶法,水热法,热溶剂法,震荡法等方法成功制备了多种具有不同形貌和光学性质的稀土纳米晶。应用X射线衍射(XRD)、场发射扫描电镜(SEM)、光致发光光谱(PL)、能量弥散光谱(EDX)、发光衰减曲线和寿命等手段研究了合成条件和掺杂离子浓度等对稀土掺杂纳米微粒的晶体结构、形貌和尺寸、掺杂离子的固溶度和发光性能的影响,取得了一系列重要的结论和创新性成果,为稀土掺杂纳米发光材料成为一种极具发展前景的新型发光材料打下了坚实的基础。
     探索合成了SrAl_2B_2O_7:Eu~(3+)、SrLi_xAl_2B_2O_7:Eu~(3+)5%、SrNa_xAl_2B_O_7:Eu~(3+)5%、SrAl_2B_2O_7:Tb~(3+)、SrAl_2B_2O_7:Ce~(3+),Tb~(3+)、YAl_3(BO_3)_4:Eu~(3+),Dy~(3+)、YAl_3(BO_3)_4:Eu~(2+),Dy~(3+)、YBO_3:Eu~(3+),RE、ZnO:Eu~(3+)体系,研究了稀土离子性质、浓度以及合成的温度和基质组成等因素对发光性能的影响。
     采用新的方法制备了ZnO纳米棒和纳米花,所制备的纳米棒尺寸均一,直径为65-85nm,长度为2μm。采用溶胶凝胶法、热溶剂法、水热法成功制备了不同形貌的纳米氧化锌,首次探讨了氧化锌的微观结构、形貌与宏观发光性能之间的关系。
Along With the development of field emission(FED) and plasma light emitting display(PDP) technology,higher demands have been bring forward to phosphor particle size distribution,stability,light-emitting efficiency,brightness,as well as electrical conductivity.As for the nanophosphor materials quantum effect,surface effect,small-size effect and other excellent properties have great impact on their photoluminescence properties,which have come to be the research focus of the new nanophosphor materials.Among the many nanophosphor materials,ZnO has become to be a kind of promising optoelectronic applications and photosensor candidate materials due to its special optical performance;At the same time,the aluminoborate matrix also has good chemical stability and thermal stability, therefore the focus of this paper is to study the rare earth doped luminescent materials which use aluminoborate and ZnO as matrix.
     Along With the development of field emission(FED) and plasma light emitting display(PDP) technology,higher demands have been bring forward to phosphor particle size distribution,stability,light-emitting efficiency,brightness,as well as electrical conductivity.As for the quantum effect,surface effect,small-size effect and other excellent properties of the nanoluminescent materials have great impact on their photoluminescence properties;nanoluminescent materials have come to be the research focus of the new luminescent materials.Among the many nanoluminescent materials,ZnO has become to be a kind of promising optoelectronic applications and photosensor candidate materials due to its special optical performance;At the same time,the aluminoborate matrix also has good chemical stability and thermal stability,therefore the focus of this paper is to study the rare earth doped luminescent materials which use aluminoborate and ZnO as matrix.
     In this paper,the present status of nano luminescent materials are reviewed,lanthanide ion spectra theory and luminescence of lanthanide-doped nanoparticle research background are systematically introduced,summarized and reviewed the progress and the facing problems about lanthanide-doped luminescent nanoparticle synthesis and surface modification in recent years, and the future research directions are also summarized and prospects.On this basis,we aimed at the luminescent materials demands that requested by the Field Emission Display(FED) and plasma(PDP),regard rare earth doped aluminoborate and zinc oxide as research objects,a variety of rare earth doped nanocrystals that have different optic properties and morphologies have been successfully synthesized by sol-gel method,hydrothermal method, hot solvent method,vibration method etc..The impact of synthetic conditions and the doping ion concentrations on the rare earth doped nanocrystals crystal structure,morphology,size,doping ion solid solution and luminescent properties were studied by means of X-ray diffraction(XRD), field emission scanning electron microscope(SEM),photoluminescence spectroscopy(PL),energy dispersion spectroscopy(EDX),luminescence decay curves and life expectancy,a series of important conclusions and innovative results were acquired.Laid a solid foundation for the rare earth doped nanoluminescent material to be a new promising luminescent material.
     SrAl_2B_2O_7:Eu~(3+)、SrLi_xAl_2B_2O_7:Eu_(5%)~(3+)、SrNa_xAl_2B_2O_7:Eu_(5%)~(3+)、SrAl_2B_2O_7:Tb~(3+)、SrAl_2B_2O_7:Ce~(3+),Tb~(3+)、YAl_3(BO_3)_4:Eu~(3+),Dy~(3+),YAl_3(BO_3)_4:Eu~(2+),Dy~(3+)、YBO_3:Eu~(3+),RE and ZnO:Eu~(3+) luminescent systems were synthesized.Studied the impacts of rare earth quality,concentration,synthesis temperature and matrix composition on the luminescent properties.The experimental results showed that the YAl_3(BO_3)_4,YAl_3(BO_3)_4:Dy~(3+),Eu~(3+)、YAl_3(BO_3)_4:Dy~(3+),Eu~(2+) samples are triangle crystal.The Al_3(BO_3)_4:Eu~(2+),Dy~(3+) characteristic spectrum comes from the f-d transition of Eu~(2+).The codoping of Dy~(3+) intensified the fluorescence intensity, and it also mished the samples decay time.The best doping concentration of Oy~(3+) is 1.25%
     The same method was used to synthesize cubic systems of SrAl_2B_2O_7 and SrAl_2B_2O_7:Eu~(3+),M(M=Li~+,Na~+)、SrAl_2B_2O_7:Tb~(3+)、SrAl_2B_2O_7:Ce~(3+),Tb~(3+).In the SrAl_2B_2O_7:Eu~(3+) system,the best doping concentration is 5%.In the Sr_(0.96-x)Li_xAl_2B_2O_7:Eu~(3+)(5%) system,the best doping concentration of Li~+ is 7%. In the Sr_(0.96-x)Na_xAl_2B_2O_7:Eu~(3+)(4%) system,the strongest luminescent intensity was abtained when the 3%is chosen as the doping concentration of Na~+.As for the SrAl_2B_2O_7:Tb~(3+) samples,the best doping concentration of Tb~(3+) is 5%. The codoping of Ce~(3+) greatly intensified the emission band intensity.The samples fluorescent lifetime is also intensified.
     The single phase vaterite Y_(0.95-x)BO_3:Eu_(5%)~(3+),Gd_x~(3+) was synthesized using sol-gel menthod at 900℃air condition for 4h.Along with the increase calcination temperature,the crystal growth and the crystal is integrity,the fluorescent intensity is also intensified.The Y_(0.95-x)BO_3:Eu_(5%)~(3+) fluorescent intensity is improved when the doping concentration of Gd is changed.The best doping concentration of Gd is 30%.YBO_3:Eu~(3+),M(M=Na~+,Li~+,Ca~(2+),Ba~(2+),Sr~(2+),Al~(3+) samples were synthesized.The impact of different kinds to the samples fluorenscent intensity is discussed.The results showed that the order of sample fluorescent intensity is as follows:Li~+>Na~+>Ca~(2+)>Al~(3+)>vacancy>Sr~(2+)>Ba~(2+).The samples luminescent intensity has close relations with the radius. The smaller radius of the codoping ions is,the stronger fluorescent intensity is got.At the same time,when the raius of the doping ions is smaller than Eu~(3+),the Y_(0.95)BO_3:Eu_(5%)~(3+)fluorescent intensity is intensified.But the Y_(0.95)BO_3:Eu_(5%)~(3+)fluorescent intensity is weaken when bigger radius ions were doped,which radius is bigger than Eu~(3+).
     Rare earth doped ZnO phosphors were also studied.For one thing,a new method- concussive method was used to synthesize ZnO及ZnO:Eu~(3+) nanorodsw. The optimal concussive frequency and reaction time are 750t/s and 24h respectively.The average diameter and length of the nanorods are 80 nm and 2μm respectively.The composing process and reaction mechanism are analysed, and the luminescent characteristics were also studied.
     Zinc oxide nanorods and zinc oxide nanoflowers were synthesized by new mentods,the dimention of the prepared nanorods are uniform with a diameter of about 65-75nm and a length of about 1.5μm.Different morphologies of zinc oxide and rare earth doped zinc oxide were successfully prepared via sol-gel method,thermal solvent method and hydrothermal method.The relationship between the microstructure and macroscopic luminescent properties were studied for the first time.The reaults showed that fluorescent intensity orders of the samples with different morphologies are as follows:nanorod arrays>nanoparticles membrane>nanoparticels>nanoflowers>nanorods.There are close relation ship between the samples properties and the homogeneous degree.The biger the samples homogeneous are,the stronger the samples luminescent intensity is.There are also close relation ship between the samples luminescent properties and the size of the sample diameters.The bigger the samlples diameter is,the stronger the samples luminescent intensity is.The samples homogeneous degree plays the decisive position between the two qualities.When two samples homogeneous degree are similar with each other,their luminescent degree will decided by their diameters.
引文
1.中国科学院吉林物理所与中国科技大学固体发光编写组。固体发光。北京:科学出版社,1976
    2.Blasse G,GrabmaierBC,Luminescent Materials,Berlin-Heidelberg:springer-Verlag,1994
    3.马尔富宁著,矿物的谱学,发光和辐射中心,蔡秀成译,北京:科学出版社,1984,106
    4.余宪恩。实用发光材料与光致发光机理。北京:中国轻工业出版社,1984,106
    5.方客川。发光学研究及应用。合肥:中国科学技术大学出版社,1998
    6.Harada H,Tanaka K..J.Non-crystall.Solids,1999,246(3):189
    7.Wu X,Hommerich U,Mackenzie J D.J.Lumin.1997,72-74:284
    8.Rebohle L,Tyschenko I E,Froeb H,et al.Microelectron.Eng.1997,36(1-4):107
    9.刘光华.稀土固体材料学.北京:机械工业出版社,1997,180
    10.潘科夫著.电致发光.李维楠编译.北京:科学出版社,1987.1
    11.彭英才,陈金钟.大自然探索,1997,16(61),.34
    12.张纯祥,罗达玲.核技术,1997,16(61):34
    13.Poolton N R J,Botter J L,Duller G A T.Radiat.Meas.1995,24(1):57
    14.王丽辉,徐征,赵辉等。北方交通大学学报,1998,22(5):41
    15.陈述春,戴凤妹。无机材料学报,1996,11(4):731
    16.Mikhail P,Schnieper M,Bill H,et al.Phys.Status Solidi B,1999,215(2):17
    17.Ohzu A.Opt.Laser Technol.,2000,32(5):379
    18.王永生,熊光楠。发光学报,1994,15(3):209
    19.Didenko Y T,Gordeychulk T V.Phys.Rev.Lett.2000,84(24):5640
    20.Ashokkumar M,Hall R,Mulvancy P,et al.J.Phys.Chem.B,1997,101(50):10845
    21.Takada N,Hieda S,Sugiyama J,et al.Synthetic Met.2000,111-112:587
    22.Xu C N, WatanabeT, A kiyama M , et al. Appl. Phys. Lett. 1999, 74(17) :2414
    23. Reynolds G T, Austin R H. J. Lumin., 2000, 92(1-2) :79
    24. Eychmuller A. Structure and Photophysics of Semiconductor Nano- -crystals, J. Phys Chem, 104, 6514, 2000.
    
    25. R. Rossetti, S. Nakahara, and L. E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution J. Chem. Phys. 79, 1086, 1983.
    26. R. Kubo, A. Kawabata, S. Kobayshi, Annu. Electronic Properties of Small Particles, Rev. Mater. Sci. 14, 49, 1984.
    27. W. P. Halperin, Quantum size effects in metal particles, Rev. Mod. Phys. 58, 533, 1986.
    28. J. Lu, and M. Tinkhan, II 类超导体相变特征热力学探析,物理, 27, 137, 1998.
    29. D. L. Feldhein, C.D. Keating, Nano-patterns of polylstyrene-block-butyl acylcde) block copolymer brushes on the surfaces , Chem. Soc. Rev. 27, 1, 1998.
    30. Bhargava R N, GallagherD, Hong X, et al. Op tical p roperties of manganes2doped nanocrystals of ZnS [J]. Phys. Rev.Lett. , 1994, 72 (3) : 4162419.
    
    31. Bhargava R N, GallagherD, Welker T. Doped nanocrystals of semiconductors—a new class of luminescentmaterials [J]. J. Lum in. , 1994, 60&61 (3) : 2752280.
    32. Rajeshwar K, deTacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials: preparation, properties, and performance [J]. Chem. Mater. , 2001, 13 (9) : 276522782.
    33.Trindade T, OpBrien P, PickettN L. Nanocrystalline semiconductors: synthesis, p roperties, and perspectives [J]. Chem. Mater. , 2001, 13 (11) : 384323858.
    34. Wang Z G. Progress on the study of semiconductor nanomaterials and nanosized devices[J].Sem icond Technol.(半导体技术),2001,26(4):17221(in Chinese).
    35.Song H W,Chen B J,Zhang J,et al.Ultraviolet light-induced spectral change in cubic nanocrystalline Y_2O_3,:Eu~(3+)[J].Chem.Phys.Lett.,2003,372(324):3682372.
    36.Peng H S,Song H W,Chen B J,et al.Temperature dependence of luminescence spectra and dynamics of Y203:Eu~(3+) nanocrystals[J].ActaPhys.Sinfca(物理溜报),2002,51(12):287522880(in Chinese).
    37.Wei Z G,Sun L D,L iao C S,et al.Size dependence of luminescent p roperties for hexagonal YB03:Eu nanocrystals in the vacuum ultraviolet region[J].J.Appl.Phys.,2003,93(12):978329788.
    38.Fang Y P,Xu AW,Song R Q,et al.Systematic synthesis and characterization of single2crystal lanthanide orthophosphate nanowires[J].J.Am.Chem.Soc.,2003,125(51):16025-16034.
    39.Yan Z G,Zhang YW,You L P,et al.General synthesis and characterization ofmonocrystalline 1D2nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate[J].J.Cryst.Grow th,2004,262(124):408-414.
    40.Zhang YW,Van Z G,You L P,et al.General synthesis and characterization of monocrystalline lanthanide orthophos phate nanowires[J].Eur.J.Inorg.Chem.,2003,(22):4099-4104.
    41.Meyssamy H,Riwotzki K.Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO_4:Eu,LaPO_4:Ce,and LAP04:Ce,Tb[J].Adv Mater.,1999,11(10):840-844.
    42.PangM L,L in J,Fu J,et al.Prparation,patterning and luminescent p roperties of nanocrystalline Gd_2O_3:A(A= Eu~(3+),Dy~(3+),Sm~(3+),Er~(3+))phosphor films via pechini sol2gel soft lithography[J].Opt.Mater.,2003,23:5472558.
    43.Lazarouk S K,MudryA V,Borisenko V E.Room2temperature formation of erbium related luminescent centers in anodic alumina[J].Appl. Phys.Lett,1998,73(16):2272-2274.
    44.ChenW,Sammynaiken R,Huang Y N.Photoluminescence and photostimulated luminescence of Tb~(3+) and Eu~(3+) in zeo-lite-Y[J].J.Appl.Phys.,2000,88(3):1424-1430.
    45.YinW,ZhangM S,Kang B S.Prepartion and characterization of the nanostructured materialsMCM 241and the luminescence functional sup ramolecule with Eu(phen)_4as guest[J].Chin.J.Lum in.(发光学报),2001,22(3):232-236(in Chinese).
    46.谢平波,段昌圭,等,纳米晶Y_2SiO_5:Eu的浓度猝灭研究,发光学报,1998,19(1) 19-23
    47.SOO Y L,MING z H,HuANG s W,Local structures around Mn Luminescent centers in Mn-doped nanocrystals of ZnS,J.Physical.Review B,1994,50(11),7602-7607
    48.Qian Li,Lian Gao,Yah Dongsheng,Effects of grain size on Wavelength of Y_2O_3:Eu emission spectra,J.Nanostructured.Materials,1997,8(7),825-831.
    49.KONRAN A,T FRIES,A GAHN,Chemical vaporsynthesis and luminescence properties of nanocrystalline cubic Y_2O_3:Eu,Journal of Applied Physics,1999,86(6),3129-3133
    50.G.H.Pan,H.W.Song,X.Bai,Z.C.Liu,H.Q.Yu,Novel Energy-Tran-sfer Route and Enhanced Luminescent Properties in YVO4:Eu~(3+)/YBO_3:Eu~(3+)Composite,Chem.Mater.2006,18,4526-4532
    51.C.J.Jia,L.D.Sun,F.Luo,X.C.Jiang,L.H.Wei,C.H.Yan.Structural transformation induced improved luminescence properties for LaVO_4:Eu nanocrystal.Appl.Phys.Lett.2004,84:5305-5307.
    52.W.L Fan,X.Y.Song,Y.X.Bu,S.X.Sun,X.Zhao,Selected-Control Hydrothermal Synthesis and Formation Mechanism of Monazite-and Zircon-Type LaVO_4 Nanocrystals,J.Phys.Chem.B 2006,110,23247-23254
    53. D.M. Burland, R. D. Miller, C. A. Walsh, Second—Order Nonlinearity in Poled-Polymer Systems , Chem. Rev. 94 (1994) 31.
    54. L. L. Beecroft, C. K. Ober, Nanocomposite Materials for Optical Applications, Chem. Mater. 9 (1997) 1302.
    55. G. Blasse, B.C. Grabmeter, Luminescent Materials, Springer, Berlin, 1994.
    56. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, Photorefractive materials for nonvolatile volume holographic data storage, Science 282 (1998).
    57. F.M. Nirwan, T.K. Gundu Rao, P. K. Gupta, R. B. Pode, Studies of defects in YVO_4:Pb~(2+), Eu~(3+) red phosphor material, Phys. Stat. Sol. (a) 198 (2003) 447.
    58. S. Strite, in: H.J. Queisser (Ed.), Characterization of Group Ill-nitride semiconductors by high-resolution electron microscopy, Advanced Solid State Physics, Springer, 1994.
    59. J. Ballato, J. S. Lewis, P. H. Holloway, Display applications of rare-earth-doped materials, MRS Bull. 24 (1999) 51.
    60. G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer, Berlin, 1994.
    61. K. Riwotzki, M. Haase, Wet-Chemical Synthesis of Doped Colloidal Nanoparticles: YVO_4:Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129.
    62. B. Yan, X. Q. Su, In situ chemical coprecipitation composition of hybrid precursors to synthesize YP_xV_(1-x)O_4:Eu~(3+) micron crystalline phosphors, Mater. Sci. Eng. B 116 (2005) 196.
    63. P. Gerner, K. K. amer, H.U.G. udel, J. Lumin. 102-103 (2003) 112.
    64. S. Erdei, F.W. Ainger, D. Ravichandran, W. B. White, L. E. Cross, Preparation of Eu~(3+): YVO_4 red and Ce~(3+), Tb~(3+): LaPO_4 green phosphors by hydrolyzed colloid reaction (HCR) technique Mater. Lett. 30 (1997) 389.
    65. R. Jagannathan, The Conditiona CAPM and the Cross-Section of Expected Returns J. Lumin. 68 (1996) 211.
    66. M. Yu, J. Lin, Y.H. Zhou, M. L Pang, X.M. Han, S.B. Wang, Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO_4:A (A = Eu~(3+), Dy~(3+), Sm~(3+), Er~(3+)) Phosphor Films via Sol-Gel Soft Lithography, Thin Solid Films 444 (2003) 245.
    67. A. Huignard, V. Buissette, G. Laurent, T. Gacoin, J. P. Boilot, Synthesis and Characterizations of YVO_4:Eu Colloids, Chem. Mater. 14 (2002) 2264.
    68. A. Huignard, V. Buissette, A. C. Franville, T. Gacoin, J. P. Boilot, Emission Processes in YVO_4:Eu Nanoparticles, J. Phys. Chem. B 107 (2003) 6754.
    69. M. Haase, K. Riwotzki, H. Meyssamy, A. Kornowski, Synthesis and properties of colloidal lanthanide-doped nanocrystals, J. Alloys Cmpds. 303-304 (2000) 191.
    70. T. Minami, T. Miyata, T. Shirai, T. Nakatani, Mater. Luminescence properties of RP_(1-x)V_xO_4: A (R=Y, Gd, La; A=Sm~(3+), Er~(3+) x=0, 0.5, 1) thin films prepared by Pechini sol-gel process, Res. Soc. Symp. Proc. 621 (2000) 431.
    71. R. S. Meltzer, S. P. Feo. lov, Fluorescence line narrowing study of Cr3. ions in cordierite glass nucleating MgA1204 nanocrystals, J. Lumin. 102-103 (2003) 151.
    72. T. Ju¨ stel, P. Huppertz, W. Mayr, D. U. Wiechert, Temperature-dependent spectra of YPO_4:Me (Me=Ce, Pr, Nd, Bi), J. Lumin. 106 (2004) 225.
    73. E. Cavalli, M. Bettinell, A. Belletti, A. Speghini, Chemical co-precipitation composition of hybrid precursors to synthesize Y_(0.5-x)Dy_xLi_(1.5)VO_4 microcrystalline phosphors, J. Alloys Cmpds. 341 (2002) 107.
    74. S. J. Yang, L J. Yuan, J. T. Sun, Synthesis and luminescent properties of Eu~(3+)-doped LaPO_4 Rare Met. 22 (2003) 95.
    75. W. O. Milligan, D. F. Mullica, G. W. Beall, L.A. Boatner, Structural investigations of YPO_4, ScPO_4 and LuPO_4, Inorg. Chim. Acta 60 (1982) 39.
    76. Schafer, Kuzel. Neues Jahrb. Mineral., Monatsh , 1967.
    77. Keszler. Opinion solid State Mater Scien, 1996.
    78. Hubner. Neues Jahrb. Mineral, Abh. 1970.
    79. T. Le Mercier, F.Cuillen. Crystal Structure of SrA12B207 and Eu2+ Luminescence. Journal of Solid State Chemistry 150, 404-409 (2000)
    80. Meng.H, Xiaolong Chen. (K_(1-x)Na_x)_2Al_2B_2O_7 with 0 ≤ x < 0. 6: A Promising Nonlinear Optical Crystal . Chem. Mater. 2005, 17, 2193-2196
    81. Meng.H, Arndt Simon. Ca_(1-x)Na_(2x)B_2O_7: A Structure with Tunable Density of Na~+ Vacancies Inorg. Chem. 2005, 44, 4421-4426
    82. Kyong-Gue Lee, Byung-Yong Yu, Vacuum ultraviolet excitation and photoluminescence characteristics of YAl_3(BO_3)_4/Eu~(3+) Y_(0.65)Gd_(0.35)Al_3(BO_3)_4/Eu~(3+) Solid State Communications 122 (2002) 485-488
    83. Shuxiu Zhang, Toshihiko Kono, Akira Ito, Taketo Yasaka and Heiju Uchiike Degradation mechanisms of the blue-emitting phosphor BaMgAl_(10)O_(17):Eu~(2+) under baking and VUV-irradiating treatments J. Lumin. 106, (2004), 39
    84 Dulub O, Boatner L A and Diebold U 2002 Surf. Sci. 519 201
    85 Meyer B and Marx D 2003 Density-functional study of the structure and stability of ZnO surfaces Phys. Rev. B 67 035403
    86 Tasker P W 1979 The stability of ionic crystal surfaces J. Phys. C: Solid State Phys. 12 4977
    87. Dulub O, Diebold U and Kresse G 2003 Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-ZnPhys. Rev. Lett. 90, 016102
    88. Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G and Harrison NM2001 Phys. Rev. Lett. 86 3811
    89. Staemmler V, Fink K, Meyer B, Marx D, Kunat M, Gil Girol S, Burghaus U and Woll Ch 2003 Phys. Rev. Lett. 90 106102
    90. Kong XY, Ding Y, Wang ZL, Metal-Semiconductor Zn-Zn0 Core-Shell Nanobelts and Nanotubes J. PHYS. CHEM. B 108: 570-574 (2004),
    91. Kong XY, Wang ZL, Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes/nanosprings, APPL. PHYS. LETT, 84: 975-977 (2004)
    92. T.M.Williams, D.Hunter, A.K.Pradhan, and I.V.Kityk ( 2006 ) Photoinduced piezo-optical effect in Er doped ZnO films Applied Phys. Letters DOI:10.1063/1.2236211
    93. Alivisatos, A. P. (1996) Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science DOI: 10.1126/science. 271. 5251. 933
    94. Xia, Y. ; Yang, P. ; Sun, Y. ; Wu, Y. ; Mayers, B. ; Gates, B. ; Yin, Y. ; Kim, F. ; Yan, H. (2003) One-Dimensional Nanostructures:Synthesis, Characterization and Applications. AdV. Mater. 2003, 15, 353-389.
    95. Zhang, J. ; Sun, L. ; Yin, J. ; Su, H. ; Liao, C. ; Yan, C. (2002) Control of ZnO morphology via a simple solution route[Chem. Mater. 14, 4172-4177.
    96.Geng, J. ; Lu, D. ; Zhu, J. ; Chen, H. (2006) Antimony (III)-Doped PbWO_4 Crystals with Enhanced Photoluminescence via a Shape-Controlled Sonochemical Route. J. Phys. Chem. B 2006, 110, 13777-13785.
    97. Moore D, Ronning C, Ma C and Wang Z L 2004 Wurtzite ZnS nanosaws produced by polar surfaces Chem. Phys. Lett. Volume 385, Issues 1-2, 2004, Pages 8-11
    98. Huang M H, Wu Y Y, Feick H, Tran N, Weber E and Yang P D 2001 Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport Adv. Mater.
    13 ,113-116
    99. Gao P X and Wang Z L 2003 Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst. Nano Letters, 2003, 3 (9), pp 1315-1320
    100.Pan Z W,Dai Z R and Wang Z L 2001 Spherical Bilayer Vesicles of Fullerene-Based Surfactants in Water:A Laser Light Scattering Study.Science 291 1947
    1. K. Park, J. H. Lee, Y. Kwon. The effect of simultaneous addition of Gd and Al on the photoluminescence characteristics of (Y_(0.94-x-y)Al_xGd_yEu_(0.06)) BO_3 phosphors Materials Research Bulletin, Volume 44, Issue 5, 6 May 2009, Pages 1077-1080
    2. L. J. Q. Maia, V. R. Mastelaro, A. C. Hernandes, J. Fick, A. Ibanez. Er:YAl_3(BO_3)_4 glassy thin films from polymeric precursor and sol-gel methods: Waveguides for integrated optics. Thin Solid Films, In Press, Accepted Manuscript, Available online 22 April 2009
    3. E. C. Fuchs, C. Sommer, F. P. Wenzl, B. Bitschnau, A. H. Paulitsch, A. Muhlanger, K. Gatterer Polyspectral white light emission from Eu~(3+), Tb~(3+), Dy~(3+), Tm~(3+) co-doped GdAl_3(BO_3)_4 phosphors obtained by combustion synthesis. Materials Science and Engineering: B, Volume 156, Issues 1-3, 25 January 2009, Pages 73-78
    4. N. I. Leonyuk, L. I. Leonyuk, Prog. Growth and characterization of RM_3(BO_3)_4 crystals Crystal Growth Characterization 31 (1995) 179.
    5. A. Brenier, Modelling of the NYAB self-doubling laser with focused Gaussian beams. Opt. Commun. 141 (1997) 221.
    6. Qiong Wei, Donghua Chen Luminescence properties of Eu~(3+) and Sm~(3+) coactivated Gd(III) tungstate phosphor for light-emitting diodes Optics & Laser Technology, Volume 41, Issue 6, September 2009, Pages 783-787
    7. A. V. Malakhovskii, A. L. Sukhachev, S. L. Gnatchenko, I.S. Kachur, V. G. Piryatinskaya, V. L. Temerov, A. S. Krylov, I.S. Edelman. Spectroscopic properties and energy levels of Yb~(3+) ion in huntite structure. Journal of Alloys and Compounds, Volume 476, Issues 1-2, 12 May 2009, Pages 64-69
    8. J. H. Lee, M. H. Heo, S.-J. Kim, S. Nahm, K. Park Photoluminescence properties of (Y_(1-x-y)M_xEu_y)BO_3 (M = Al, Zn, and La) phosphors prepared by ultrasonic spray pyrolysis under VUV excitation. Journal of Alloys and Compounds,Volume 473,Issues 1-2,3 April 2009,Pages 272-274
    9.Min LIU,Shiwei WANG,Dingyuan TANG,Lidong CHEN,Jian MA Preparation and upconversion luminescence of YAG(Y_3l_5O_(12)):Yb~(3+),Ho~(3+) nanocrystals Journal of Rare Earths,Volume 27,Issue 1,February 2009,Pages 66-70
    10.蒋洪川,杨仕清,张文旭等.“溶胶-凝胶法合成Y_5Al_5O_(12):Ce~(3+),Tb~(3+)稀土荧光粉的研究”,无机材料学报,2001,16:720-722.
    11.张巍巍,谢平波,张慰萍等,“PDP荧光粉GdBO_3:Eu格位选择激发下的光致发光及其相变研究”,2001,16:470-474
    12.李强,高濂,严东生,“稀土化合物纳米荧光材料研究的新进展”,2001,16:17-22
    13.F(o|¨)ldvari I.,Beregi E.,Baraldi A.,"Growth and spectroscopic properties of rare-earth doped YAl_3(BO_3)_4 single crystals",J.Lumin.,2003,102-103:395-401
    14.Hayakawa Tomokatsu,Selvan Tamil S.and Nogami Masayuki,"Influence of adsorbed CdS nanoparticles on ~5D_0→~7F_J emissions in Eu~(3+)-doped silica gel",J.Lumin.,2000,87-89:532-534
    15.Kwon Il-Eok,Yu,Byung-Young,Bae Hyunsook,et al.," Luminescence properties of borate phosphors in the UV/VUV region",J.Lumin.,2000,87-89:1039-1041
    16.Okazaki C.,Shiiki M.,Suzuki T.and Suzuki K.," Luminance saturation properties of PDP phosphors",J.Lumin.,2000,87-89:1280-1282
    17.Justel Thomas,J Krupa ean-Claude and Wiechert Detlef U.,"VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps",J.Lumin.,2001,93:179-189
    18.Ruan,Shen-Kang,Zhou,Jian-Guo:Zhong,Ai-Min,"Synthesis of Y_3Al_5O_(12):Eu~(3+) phosphor by sol-gel method and its luminescence behavior",.Alloys Compd.,1998,275-277:72-75
    19.Kim,Chang-Hong;Kwon,I1-Eok;Park,Cheol-Hee et al.,"Phosphors for plasma display panels",Journal of Alloys and Compounds,2000, 311: 33-39
    20. Lo, Chung-Lun; Duh, Jenq-Gong; Chiou, Bi-Shiou; Peng, Chao-Chi; Ozawa, Lyuji, "Synthesis of Eu~(3+)-activated yttrium oxysulfide red phosphor by flux fusion method" , Mater. Phys. Chem., 2001, 71: 179-189
    21. Ronda C. R., " Recent achievements in research on phosphors for lamps and displays" , J. Lumin. 1997, 72-74:49-54
    22. M. Kamada~a *; J. Murakami~h, N. Ohno~e . Excitation spectra of a long-persistent phosphor SrAl_2O_4 : Eu, Dy in vacuum ultraviolet region Journal of Luminescence 87-89 (2000) 1042-1044
    23. K. Toh *, S. Nagata, B. Tsuchiya, T. Shikama. Luminescence characteristics of Sr_4Al_(14)O_(25):Eu, Dy under proton irradiation Nuclear Instruments and Methods in Physics Research B 249 (2006) 209-212
    24. Abanti Nag, T. R. N. Kutty* The mechanism of long phosphorescence of SrAl_(2-x)B_xO_4 (0    25. Qin Fei, Chengkang Chang., Dali Mao Luminescent properties of Sr_2MgSi_2O_7 and Ca_2MgSi_2O_7 long lasting phosphors activated by Eu~(3+), Dy~(3+) Journal of Alloys and Compounds 390 (2005) 133 - 137
    26. Chadeyron G., Mahiou R., El-Ghozzi M., "Luminescence of the orthoborate YBO_3:Eu~(3+) Relationship with crystal structure" , J. Lumin., 1997, 72-74: 564-
    1. Qiong Wei, Donghua Chen Luminescence properties of Eu~(3+) and Sm~(3+) coactivated Gd(III) tungstate phosphor for light-emitting diodes. Optics & Laser Technology, Volume 41, Issue 6, September 2009, Pages 783-787
    2. Hans L. Bodlaender, Michael R. Fellows, Dimitrios M. Thilikos Derivation of algorithms for cutwidth and related graph layout parameters Journal of Computer and System Sciences, Volume 75, Issue 4, June 2009, Pages 231-244
    3. Beatrice Luais, Christian Le Carlier de Veslud, Yves Geraud, Francois Gauthier-Lafaye Comparative behavior of Sr, Nd and Hf isotopic systems during fluid-related deformation at middle crust levels . Geochimica et Cosmochimica Acta, Volume 73, Issue 10, 15 May 2009, Pages 2961-2977
    4. VesselinM. Dekov, Ulf Halenius, Kjell Billstrom, George D. Kamenov, Frans Munnik, Lars Eriksson, Alan Dyer, Mark Schmidt, Reiner Botz Native Sn - Pb droplets in a zeolitic amygdale (Isle of Mull, Inner Hebrides) Geochimica et Cosmochimica Acta, Volume 73, Issue 10, 15 May 2009, Pages 2907-2919
    5. R. H. Smithies, D. C. Champion, M. J. Van Kranendonk Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt Earth and Planetary Science Letters, Volume 281, Issues 3-4, 15 May 2009, Pages 298-306
    6. D. Wang, Rajagopalan Srinivasan Multi-model based real-time final product quality control strategy for batch processes Computers & Chemical Engineering, Volume 33, Issue 5, 21 May 2009, Pages 992-1003
    7. Hans L. Bodlaender, Michael R. Fellows, Dimitrios M. Thilikos Derivation of algorithms for cutwidth and related graph layout parameters Journal of Computer and System Sciences, Volume 75, Issue 4, June 2009, Pages 231-244
    8. Jing Huang, Yuwen Zhang, J. K. Chen . Ultrafast solid - liquid - vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses International Journal of Heat and Mass Transfer, Volume 52, Issues 13-14, June 2009, Pages 3091-3100
    9. Beatrice Luais, Christian Le Carlier de Veslud, Yves Geraud, Francois Gauthier-Lafaye Comparative behavior of Sr, Nd and Hf isotopic systems during fluid-related deformation at middle crust levels Geochimica et Cosmochimica Acta, Volume 73, Issue 10, 15 May 2009, Pages 2961-2977
    10. Xuefang Hu, Shirun Yan, Lin Ma, Guojiang Wan, Jianguo Hu Preparation of LaPO_4:Ce,Tb phosphor with different morphologies and their fluorescence properties Powder Technology, Volume 192, Issue 1, 15 May 2009, Pages 27-32
    
    11. Quan Yuan, Hao-Hong Duan, Le-Le Li, Ling-Dong Sun, Ya-Wen Zhang, Chun-Hua Yan Controlled Synthesis and Assembly of Ceria-based Nanomaterials. Journal of Colloid and Interface Science, Available online 14 April 2009
    12. RuitaoChai, Hongzhou Lian, Piaoping Yang, Yong Fan, Zhiyao Hou, Xiaojiao Kang, Jun Lin In situ Preparation and Luminescent Properties of LaPO_4: Ce~(3+), Tb~(3+) Nanoparticles and Transparent LaPO_4: Ce~(3+), Tb~(3+)/ PMMA nanocomposite Journal of Colloid and Interface Science, Available online 8 April 2009
    13. Kai Zhang, Wenbin Hu, Yating Wu, Hezhou Liu Influence of processing techniques on the properties of YAG:Ce nanophosphor Ceramics International, Volume 35, Issue 2, March 2009, Pages 719-723
    14. K. A. Gschneidner Jr., Ya. Mudryk, A. T. Becker, J. L. Larson The crystal structures of some RM and RM_2 compounds (where R=rare earth metal and M=non - rare earth metal) Calphad, Volume 33, Issue 1, March 2009, Pages 8-10
    15. Jan A. K. W. Kiel, Ida J. van der Klei Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans Fungal Genetics and Biology, Volume 46, Issue 1, Supplement 1, March 2009, Pages S62-S71
    16. M. Pani, P. Manfrinetti, A. Palenzona The new series of RZnGe compounds (R = rare earth element) with the YPtAs structure type Intermetallics, Volume 17, Issue 3, March 2009, Pages 146-149
    17. Gang Du, Xinguo Zhuang, Xavier Querol, Maria Izquierdo, Andres Alastuey, Teresa Moreno, Oriol Font Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China International Journal of Coal Geology, Volume 78, Issue 1, 1 March 2009, Pages 16-26
    18. Meng-Yin Xie, Liao Yu, Hui He, Xue-Feng Yu. Synthesis of highly fluorescent LaF_3:Ln~(3+)/LaF_3 core/shell nanocrystals by a surfactant-free aqueous solution route Journal of Solid State Chemistry, Volume 182, Issue 3, March 2009, Pages 597-601
    19. Cuicui Yu, Min Yu, Chunxia Li, Xiaoming Liu, Jun Yang, Piaoping Yang, Jun Lin Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles Journal of Solid State Chemistry, Volume 182, Issue 2, February 2009, Pages 339-347
    20. Piaoping Yang, Zewei Quan, Chunxia Li, Zhiyao Hou, Wenxin Wang, Jun Lin Solvothermal synthesis and luminescent properties of monodisperse LaPO_4:Ln (Ln=Eu~(3+), Ce~(3+), Tb~(3+)) particles Journal of Solid State Chemistry, Available online 30 January 2009
    21. Fang Wang, Hongwei Song, Guohui Pan, Libo Fan, Biao Dong, Lina Liu, Xue Bai, Ruifei Qin, Xinguang Ren, Zhuhong Zheng, Shaozhe Lu Luminescence properties of Ce~(3+) and Tb~(3+) ions codoped strontium borate phosphate phosphors. Journal of Luminescence, Volume 128, Issue 12, December 2008, Pages 2013-2018
    22 .A. Blachowski, K. Ruebenbauer, J. Przewoznik, J. Zukrowski, D. Sitko, N. -T. H. Kim-Ngan, A. V. Andreev. Hyperfine interactions on iron in R_(2-x)Fe_(14+2x)Si_3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mossbauer spectroscopy Journal of Alloys and Compounds, Volume 466, Issues 1-2, 20 October 2008, Pages 45-51
    23. Li juan Zhao, Fu-Shen Zhang, Jingxin Zhang Chemical properties of rare earth elements in typical medical waste incinerator ashes in China Journal of Hazardous Materials, Volume 158, Issues 2-3, 30 October 2008, Pages 465-470
    24. Yaxin Ye, Lihong Wang, Xiaohua Huang, Tianhong Lu, Xiaolan Ding, Qing Zhou, Shaofen Guo Subcellular location of horseradish peroxidase in horseradish leaves treated with La(III), Ce (III) and Tb(III) Ecotoxicology and Environmental Safety, Volume 71, Issue 3, November 2008, Pages 677-684
    25. L. Ben Tahar, M. Artus, S. Ammar, L. S. Smiri, F. Herbst, M.-J. Vaulay, V. Richard, J.-M. Greneche, F. Villain, F. Fievet Magnetic properties of CoFe_(1.9)RE_(0.1)O_4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol Journal of Magnetism and Magnetic Materials, Volume 320, Issue 23, December 2008, Pages 3242-3250
    26. Fang Wang, Hongwei Song, Guohui Pan, Libo Fan, Biao Dong, Lina Liu, Xue Bai, Ruifei Qin, Xinguang Ren, Zhuhong Zheng, Shaozhe Lu Luminescence properties of Ce~(3+) and Tb~(3+) ions codoped strontium borate phosphate phosphors Journal of Luminescence, Volume 128, Issue 12, December 2008, Pages 2013-2018
    27. R. M. Kadam, T. K. Seshagiri, V. Natarajan, S. V. Godbole Radiation induced defects in BaBPO_5:Ce and their role in thermally stimulated luminescence reactions: EPR and TSL investigations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 266, Issue 24, December 2008, Pages 5137-5143
    28. C. Mansuy, C. Dujardin, R. Mahiou, J. M. Nedelec Characterization and scintillation properties of sol -gel derived Lu_2SiO_5:Ln~(3+) (Ln = Ce, Eu and Tb) powders Optical Materials, Available online 12 November 2008
    29. Lixin Yu, Hongwei Song*, Zhongxin Liu, Linmei Yang, Shaozhe Lu, Zhuhong Zheng Remarkable improvement of brightness for the green emissions in Ce~(3+) and Tb~(3+) co-activated LaPO_4 nanowires Solid State Communications 134 (2005) 753 - 757
    1.FindIt,Version 1.3.3,ICSD database,2004-02,FIZ Karlsruhe,Germany.
    2.C.L.Christ,Crystal chemistry and systematic classification of hydrated minerals,Am.Mineral,1960(45):334-340.
    3.J.O.Edwards,V J.Ross,Structural principles of the hydrated polyborates,Inorg.Nucl.Chem.,1960(15):329-337.
    4.C.L.Ch rist,J.R.Cl ark,A crystal-chemicalcl assification of borate structures with Emphasis on hydrated borates,Phys.Chem.Minerals,1977(2):59-87.
    5.张克从,张乐A,晶体生长科学与技术(下册),北京:科学出版社,1997:397.
    6.钱逸泰编,结晶化学导论,合肥:中国科学技术大学出版社,1999:314.
    7.C.T.Chen,Y C.W u,R.K.L i,T he RelationshipBetween the Structural Type of AnionicGroup and SHG Effect in Boron-Oxygen Compounds,Chin.Phys.Let,1985(2):389-392.
    8.陈创天,紫外、深紫外非线性光学晶体探索十年回顾,人工晶体学报,2001,30(1):36-42.
    9.C.T.Chen,N.Y e,J.Lin,J.Ji ang,W.R.Zeng and B.C.Wu,Computer-Assisted Search f or Nonlinear Optical Crystals,Adv.Mater.,1999(11):1071-1078.
    10.施颖,中国科学院物理研究所博士论文,1997:P 1.
    11.B.Saubat,C.Fouassier and P.Hagenmullerr,Luminescent efficiency of E u~(3+) and Tb~(3+) in LaMgB_5O_(10)-Type borates under excitation from100 to 400,Mater.Res.Bull.,1981(16):193-198
    12.K.Machida,G.Adachi,J.Sh iokawa,Luminescence properties of Eu(Ⅱ)-borates and Eu~(2+)-activated St-Borates,J.Lumin.,1979(21):101-110.
    13.A.Meijerink,J.Nuyten,G.Blasse,Luminescence and energy migration in(Sr,Eu)B_4O_7,a system with a 4f~7-4~65d cross over in the excited state, J. Lumin., 1989 ( 44 ):19-31
    14.C .R , Ronda, Phosphors for lamps and displays:an applicational view, J. A lloys & Comp., 1995 ( 225): 534-538.
    15. Z .W .Pei, and Q . Su , The valence change from RE~(3+) to RE~(3+) (RE=Eu, Sm ,Y b) In SrB_4O_7: prepared in air and the spectral properties of RE~(2+), J. A lloys&Comp 1993( 198):5 1-53.
    16. A.R.Rodger, J. Kuwano and A. R. West, Li~+ ion conductingY solid solutions in the systems Li_4XO_4-Li_3YO_4:X =Si,Ge,T i;Y =P,A s,V ;Li_4XO_4-LiZO_2:Z =Al,Ga,Cr and Li_4GeO_4-Li_2CaGeO_4) Solid State Ionics, 1985( 15): 1 85-198.
    17. S. Wong, P J. Newman, A. S. Best, K. M. Nairn, D. R. MacFarlane and M. Forsyth, Towards elucidating microscopic structural changes in Li-ion conductors Li_(1+y)Ti_(2-y)Al_yPO_4l_3 and Li_(1-y)Ti_(2-y)Al_yPO_(4·3-x)MO_(4.x) ( M=V and Nb) :X - ray and ~(27)Al and 31 PNMR studies, J. Mater. Chem, 1998 (8): 2 199-2203
    18. Y Inaguma,C . L iquan, M .It oh, T .N akamura,T .U chida, H . Ik uta, M .W akihara, High ionic conductivity in lithium lanthanum titanate, Solid State Commun. , 1993(86 ): 6 8 9-693.
    
    19. F. Croce, G B. Appetecchi, L. Persi&B. Scrosati, Nanocomposite polymer. Electrolytes for li thium bateries, Nature,1998( 394):456-458
    20. Y Gao and C . S. Sh i, ElectronTransfer between Eu~(3+)and Tb~(3+) in BaB_4O_7 Matrix, J. Solid State Chem., 1996 (122) :436-438.
    21. I. V Berezovskaya, N. P. Efryushina, V. P. Dotsenko, A. S. Voloshinovskii, Luminescence of Ce ions in strontium borate, SrB_6O_(10), J. Opt. Technol., 2003(70):397-400.
    22. YGao and C. S. Shi, Luminescent properties of Eu and Tb in SrB_6O_(10) matrix, Chi.Sci .Bull., 1 997( 42) :0 0388-00390.
    23. K. I. Schafers and D. A. Keszler, Tetrahedral Triangular 3-D framework and Europium Luminescence in the Borate BaBe_2(BO_3)_2, Inorg. C hem., 1 994 (33): 12 01-1204.
    24. A .Diaz, and D .A. Keszler, Red, green, and blue Eu~(2+) luminescence in solid-state borates: A structure-property relationship, Mat. Res. Bull., 1996(3 1):147-151.
    25. A .D iaz, and D .A. Keszler, Eu~(2+) Luminescence in the Borates X_2Z(BO_3)_2 (X =Ba, Sr; Z = Mg, Ca), Chem. M ater., 1997( 9):2071-2077
    26. S . H . M . Poort, J. W . H . v an Krevel, R . Stomphorst, A . P. V ink, and G Blasse, Luminescence of Eu~(2+) in Host Latices with Three Alkaline Earth Ions in a Row, JSolid State Chem., 1996( 122):432-435.
    27. H. Hata, G. Adachi and J. Shiokawa, Syntheses and Magnetic Properties of Eu_3B_2O_6 and Sr_3B_2O_6, Mat. Res. Bull., 1 977( 12):811-814.
    28. Z . Y ang, J. H . L in, M . Z . Su , L . P. Y ou, Structural and luminescent properties of LnBaB_9O_(16):Eu~(3+), Mat. Res. Bull. , 2000(35):2173-2182
    1. ShuyanGao, Hongjie Zhang, Ruiping Deng, Xiaomei Wang, Dehui Sun, and Guoli Zheng (2006) Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Applied physics letters 89, 123125
    2.Atsushi Ishizumi and Yoshihiko Kanemitsu (2005) Structural and luminescence properties of Eu-doped ZnO nanorods fabricated by a microemulsion method. Applied physics letters 86, 253106
    3. Suparna Sadhu, Tapasi Sen, AmitavaPatra (2007) Shape controlled synthesis and luminescence properties of ZnO: Eu~(3+) Nanostructures. Chemical Physics Letters 440 121 - 124
    4.Lidia Armelao, Gregorio Bottaro, Michele Pascolini, Michele Sessolo, Eugenio Tondello, Marco Bettinelli, and Adolfo Speghini (2008) Structure-luminescence correlations in Europium-doped sol-gel ZnO nanopowders J. Phys. Chem. C 112, 4049-4054
    5. Haibo Zeng, Peisheng Liu, Weiping Cai, Xueli Cao, and Shikuan Yang (2007) Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission. Crystal Growth & Design, Vol. 7, No. 6
    
    6. Y. F. Zhu, D. H. Fan, and W. Z. Shen (2007) Template-free synthesis of Zinc oxide hollow microspheres in aqueous solution at low temperature. J. Phys. Chem. C 111, 18629-18635
    
    7. K. S. Suslick, D. A. Hammerton, R. E. Cline Jr., Sonochemical hot spot. J. Am. Chem. Soc. 108(18), 5641-5642 (1986) 369
    8. V. G. Pol, R. Reisfeld, Gedanken, Sonochemical synthesis and optical properties of europium oxide nanolayer coated on Titania. A. Chem. Mater. 14, 3920-3924 (2002) 372
    9. H. Destaillats, T. M. Lesko, M. Knowlton, H. Wallace, M. R. Hoffmann, Scale-up of sonochemical reactors for water treatment. Ind. Eng. Chem. Res. 10(18), 3855-3860 (2001)
    10. T. J. Mason, Sonochemistry (Oxford University Press, New York, 1999), p. 16
    11. L. Xu, Q. Chen, D. Xu, Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C 111, 11560-11565 (2007)
    12. Ahuja, I. S. ; Yadava, C. L.; Singh, R. (1982) Solution-Grown Zinc Oxide Nanowires. J. Mol. Struct. 81, 229-234.
    13. Yu C. Chang, and Lih J. Chen (2007) ZnO Nanoneedles with Enhanced and Sharp Ultraviolet Cathodoluminescence Peak. J. Phys. Chem. C, 111 (3), 1268-1272
    14. Bin Liu and Hua Chun Zeng. (2003) Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc., 125 (15), pp 4430 - 4431
    15. Wang, Z. ; Qian, X. F. ; Yin, J. ; Zhu, Z. K. (2004) Large-scale fabrication of tower-like, flower-like, and tube-like ZnO. Langmuir 20, 3441-3448.