铬掺杂氮化铝薄膜的结构与磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cr掺杂AlN是一种理论预测的高温稀磁材料,在实验上对其结构与磁性进行系统研究有助于探讨稀磁材料的磁性起源机理,也可以掌握控制其磁性的制备工艺。本文采用直流反应磁控溅射技术,制备了Cr掺杂AlN薄膜,系统研究了掺杂含量、铁电基片、基片负偏压、掺碳以及[TiN/Cr:AlN]多层膜结构等工艺条件对薄膜结构与磁性的影响。
     研究表明:
     (1)本文制备了掺杂含量小于11.5atom%的Cr掺杂AlN薄膜,通过XRD、X射线吸收谱等表征手段证明,单层膜结构的Cr掺杂AlN形成了成分均匀的纤锌矿固溶体,而小周期多层膜结构的Cr掺杂AlN则形成NaCl结构固溶体。其中Cr以+3价置换Al溶解于AlN基体中,没有发生第二相析出。
     (2)所有Cr掺杂AlN样品均具有室温铁磁性,该磁性来自Al-Cr-N固溶体而非磁性第二相颗粒。在Si基片上生长的薄膜,随着掺杂含量从2.3atom%增加到7.7atom%,Cr掺杂AlN的平均原子磁矩从0.23μB/Cr下降到0.03μB/Cr。在LiTaO3、LiNbO3铁电基片上生长的薄膜,当铁电基片c轴与薄膜c轴的夹角减小时,Cr掺杂AlN薄膜的平均原子磁矩增加,其变化范围从0.01μB/Cr到0.20μB/Cr,该现象与AlN基体内部极化电场对磁偶极子的散射作用有关。
     (3)施加基片负偏压使Si基片上的Cr掺杂AlN薄膜磁性从0.07μB/Cr提高到0.18μB/Cr,而掺碳使薄膜的磁性从0.10μB/Cr提高到0.42μB/Cr。通过分析表明,前者磁性的增强来自薄膜中晶界断键缺陷的增多,而后者磁性的增强来自C杂质缺陷的引入。
     (4)减小Cr掺杂AlN在多层膜中的单层厚度至2nm,可以使它发生纤锌矿结构到NaCl结构的相变,新相也具有室温铁磁性,与原纤锌矿六方相相比,新相具有更大的剩磁,且更易被磁化。
Cr-doped AlN is a high curie temperature diluted magnetic material as predicted by theoretical studies. Systematical experimental studies on the structure and magnetism of Cr-doped AlN are helpful to find the origination of ferromagnetism of diluted magnetic materials, as well as to master the way to control their magnetic properties. In this paper, Cr-doped AlN films are prepared by DC reactive magnetron sputtering. The effects of preparation parameters, such as dopant concentration, ferroelectric substrates, substrate negative bias and C co-doping, are systematically studied. Additionally, [TiN/Cr:AlN] multilayers are prepared too. As the period of [TiN/Cr:AlN] multilayers changes, the variation of the structure and magnetism is studied.
     As the results show,
     Ⅰ. Cr-doped AlN films with content of Cr lower than 11.5atom% are prepared. The elaborate characterizations such XRD and XANES and so on show that the single layer Cr-doped AlN forms uniform solid solution with wurtzite structure, while the Cr-doped AlN in small period [TiN/Cr:AlN] multilayers forms solid solution with rocksalt structure. Dopant Cr dissolves into AlN matrix and substitutes Al with trivalance. No second phase precipitates.
     Ⅱ. Room temperature (RT) ferromagnetism is observed in all the samples. It is ascribed to the Al-Cr-N solid solution but not the magnetic second phase. As to the films on Si substrate, the average atomic magnetic moment decreases from 0.23μB/ Cr to 0.03μB/ Cr when the dopant concentration increases from 2.3atom% to 7.7atom%. As to the films on LiTaO3 and LiNbO3 substrates, it is found that as the angle between the c-axis of film and c-axis of substrate decreases, the average atomic magnetic moment of Cr-doped AlN increases from 0.01μB/ Cr to 0.20μB/ Cr. This phenomenon is associated with the scattering of BMP by the internal polarization field of AlN matrix.
     Ⅲ.Substrate negative bias leads in the increasing of the magnetism of Cr-doped AlN on Si substrate from 0.07μB/ Cr to 0.18μB/ Cr, while C co-doping leads in the increasing of the magnetism from 0.10μB/ Cr to 0.42μB/ Cr. According to the analysis, the increasing of magnetism is ascribed to the increment of boundary dangling-bond defects in the former case, and ascribed to the introduction of C impurity defects in the latter case.
     Ⅳ.When the single layer of Cr-doped AlN in the multilayers is thinner than 2nm, a phase transition from wurtzite structure to rocksalt structure happens. The new phase is RT ferromagnetic too. It’s more susceptive to external magnetic field and has larger residual magnetization.
引文
[1] ?uti? I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 2004, 76: 323-341
    [2] Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488-1495
    [3]张俊峰.稀磁半导体Al1-xCrxN和Al1-xVxN的第一性原理研究.西南大学硕士论文, 2006
    [4] Tsymbal E Y, Mryasov O N, LeClair P R. Spin-dependent tunneling in magnetic tunnel junctions. J. Phys: Condens. Matter., 2003, 15: R109-R142
    [5] Goering E, Will J, Geissler J, et al. X-ray magnetic circular dichroism– a universal tool for magnetic investigations. Journal of alloys and compounds, 2001, 328: 14-19
    [6] Neal J R, Behan A J, Ibrahim R M, et al. Room-temperature Magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett., 2006, 96: 197208
    [7] Allwood D A, Xiong G, Cooke M D, et al. Submicrometer ferromagnetic NOT gate and shife register. Science, 2002, 296: 2003-2006
    [8] Koshihara S, Oiwa A, Hirasawa M, et al. Ferromagnetic order induced by photogenerated carriers in magneticⅢ-Ⅴsemiconductor heterostructures of (In,Mn)As/GaSb. Phys. Rev. Lett., 1997, 78: 4617-4620
    [9] Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408: 944-946
    [10] Zhao T, Shinde S R, Ogale S B, et al. Electric field effect in diluted magnetic insulator anatase Co:TiO2. Phys. Rev. Lett., 2005, 94: 126601
    [11] Hammar P R, Bennett B R, Yang M J, et al. Observation of spin injection at a ferromagnet-semiconductor interface. Phys. Rev. Lett., 1999, 83: 203-206
    [12] Filip A T, LeClair P, Smits C J P, et al. Spin-injection device based on EuS magnetic tunnel barriers. Appl. Phys. Lett., 2002, 81: 1815-1817
    [13] Story T, Galazka R R, Frankel R B, et al. Carrier-concentration–induced ferromagnetism in PbSnMnTe. Phys. Rev. Lett., 1986, 56: 777-779
    [14] Ohno H, Munekata F, Penney T. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett., 1992, 68: 2664- 2667
    [15] Ohno H, Shen A, Matsukura F. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett., 1996, 69: 363-365
    [16] Macdonald A H, Schiffer P, Samarth N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat. Mater., 2005, 4: 195-202
    [17] Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductor. Science, 2000, 287: 1019-1022
    [18] Pearton S J, Abernathy C R, Overberg M E, et al. Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys, 2003, 93: 1-13
    [19] Matsumoto Y, Murakam M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001, 291: 854-856
    [20] Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition- metal-doped ZnO films. Appl. Phys. Lett., 2001, 79: 988-990
    [21] Thaler G, Frazier R, Gila B, et al. Effect of nucleation layer on the magnetic properties of GaMnN. Appl. Phys. Lett., 2004, 84: 2578-2580
    [22] Frazier R, Thaler G, Overberg M, et al. Indication of hysteresis in AlMnN. Appl. Phys. Lett., 2003, 83: 1758-1760
    [23] Sasaki T, Sonoda S, Yamamoto Y, et al. Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN. J. Appl. Phys., 2002, 91: 7911-7913
    [24] Ziese M, Thornton M J. Spin electronics. Berlin: Springer, 2001
    [25] Kawakami R K, Y. Kato M H, Malajovich I, et al. Ferromagnetic imprinting of nuclear spins in semiconductors. Science, 2001, 294: 131-134
    [26] Manyala N, Sidis Y, DiTusa J F, et al. Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat. Mater., 2004, 3: 255-262
    [27] Higgins J S, Shinde S R, Ogale S B, et al. Hall effect in cobalt-doped TiO2-δ. Phys. Rev. B, 2004, 69: 073201
    [28] Oiwa A, Mitsumori Y, Moriya R, et al. Effect of optical spin injection on ferromagnetically coupled Mn spins in the III-V magnetic alloy semiconductor (Ga,Mn)As. Phys. Rev. Lett., 2002, 88: 137202
    [29] Park Y D, Hanbicki A T, Erwin S C, et al. A group- IV ferromagnetic semiconductor: MnxGe1-x. Science, 2002, 295: 651-654
    [30] Sahoo S, Polisetty S, Duan C-G, et al. Ferroeletric control of magnetism in BaTiO3/Fe heterostructure via interface strain coupling. Phys. Rev. B, 2007, 76: 092108
    [31] Duan C G, Jaswal S S, Tsymbal E Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroeletric control of magnetism. Phys. Rev. Lett., 2006, 97: 047201
    [32] Chattopadhyay A, Sarma S D, Millis A J. Transition temperature of ferromagnetic semiconductors: A dynamical mean field study. Phys. Rev. Lett., 2001, 87: 227202
    [33] Coey J M D, Douvalis A P, Fitzgerald C B, et al. Ferromagnetism in Fe-doped SnO2 thinfilms. Appl. Phys. Lett., 2004, 84: 1332-1334
    [34] Kaminski A, Sarma D D. Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett., 2002, 88: 247202
    [35] Dietl T, Spalek J. Effect of thermodynamic fluctuations of magnetization on the bound magnetic polaron in dilute magnetic semiconductors. Phys. Rev. B, 1983, 28: 1548-1563
    [36] Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater., 2005, 4: 173-179
    [37] Behan A J, Mokhtari A, Blythe H J, et al. Two magnetic regimes in doped ZnO corresponding to a dilute magnetic semiconductor and a dilute magnetic insulator. Phys. Rev. Lett., 2008, 100: 047206
    [38]李小换. ZnO和AlN薄膜结构及其性能的研究.北京工业大学硕士学位论文, 2003
    [39]杨克涛,陈光辉. AlN薄膜的研究进展.山东陶瓷, 2005, 28: 17-21
    [40] Kiyoshi K, Hiroshi T, Yoshihiko S. Synthesis and surface acoustic wave properties of AlN thin films fabricated on (001) and (110) sapphire substrates using chemical vapor deposition of AlCl3-NH3 system. Japanese Journal of Applied Physics, 1997, 36: 2837-2842
    [41] Kaneko S, Tanaka M, Masu K. Epitaxial growth of AlN film by low-pressure MOCVD in gas-beam-flow reactor. Journal of Crystal Growth, 1991, 115: 643-647
    [42]刘彦松,王连卫,黄继颇等.利用ZnO缓冲层制备AlN薄膜.压电与声光, 2000, 22: 322-325
    [43] Suhas M, Jejurikar, Banpurkar A G, et al. Growth temperature and N2 ambient pressure-dependent crystalline orientations and band gaps of pulsed laser-deposited AlN/(0001) sapphire thin films. Journal of Crystal Growth, 2007, 304: 257-263
    [44]宋秀峰,韩艳春,何洪等.磁控溅射法制备AlN薄膜的研究进展.山东陶瓷, 2006, 29: 20-23
    [45] Cui X Y, Fernandez-Hevia D, Delley B, et al. Embedded clustering in Cr-doped AlN: Evidence for general behavior in dilute magneticⅢ-nitride semiconductors. J. Appl. Phys, 2007, 101: 103917
    [46] Wu S Y, Liu H X, Gu L, et al. Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett., 2003, 82: 3047-3049
    [47] Chambers S A. Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surface Science Reports, 2006, 61: 345-381
    [48] Yang S G, Pakhomov A B, Hung S T, et al. Room-temperature magnetism in Cr-doped AlN semiconductor films. Appl. Phys. Lett., 2002, 81: 2418-2420
    [49] Kumar D, Antifakos J, Blamire M G, et al. High Curie temperatures in ferromagnetic Cr-doped AlN thin films. Appl. Phys. Lett. , 2004, 84: 5004-5006
    [50] Zhang J, Li X Z, Xu B, et al. Influence of nitrogen growth pressure on the ferromagnetic properties of Cr-doped AlN thin films. Appl. Phys. Lett. , 2005, 86: 212504
    [51] Hebard A F, Rairigh R P, Kelly J G, et al. Mining for high TC ferromagnetism in ion-implanted dilute magnetic semiconductors. J. Phys. D, 2004, 37: 511-517
    [52] Nan C W, Bichurin M I, Dong S D, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys, 2008, 103: 031101
    [53] Zhang R F, Veprek S. Phase stabilities and spinodal decomposition in the Cr1-xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparision with the Ti1-xAlxN adn TiN/Si3N4 systems. Acta Materialia, 2007, 55: 4615-4624
    [54] Liu H X, Y. W S, Singh R K, et al. Observation of ferromagnetism above 900K in Cr-GaN and Cr-AlN. Appl. Phys. Lett., 2004, 85: 4076-4078
    [55] Pantelouris A, Modrow H, Pantelouris M, et al. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds. Chem. Phys., 2004, 300: 13-22
    [56] Takeuchi T, Harada Y, Tokushima T, et al. Doping-dependent changes in nitrogen 2p states in the diluted magnetic semiconductor Ga1-xCrxN. Phys. Rev. B, 2004, 70: 245323
    [57] Katsikini M, Paloura E C, Moustakas T D. experimental determination of the N-p-partial density of strates in the conduction band of GaN: Determination of the polytype fractions in mixed phase samples. J. Appl. Phys., 1998, 83: 1437-1445
    [58] Song C, Zeng F, Geng K W, et al. substrate-dependent magnetization in Co-doped ZnO insulating films. Phys. Rev. B, 2007, 76: 045215
    [59] Shi L J, Zhu L F, Zhao Y H, et al. Nitrogen defect and ferromagnetism in Cr-doped dilute magnetic semiconductor AlN from frist principles. Phys. Rev. B, 2008, 78: 195206
    [60] Liu X J, Song C, Zeng F, et al. Strain-induced ferromagnetism enhancement in Co: ZnO films. J. Appl. Phys., 2008, 103: 093911
    [61] Chang G S, Kurmaev E Z, Boukhvalov D W, et al. Co and Al co-doping for ferromagnetism in ZnO: Co diluted magnetic semiconductors. J. Phys.: Condens. Matter., 2009, 21: 056002
    [62] Liu X J, Song C, Zeng F, et al. Donor defects enhanced ferromagnetism in Co:ZnO films. Thin Solid Films, 2008, 516: 8757-8761
    [63] Yadav M K, Sanyal B, Mookerjee A. Stabilization of ferromagnetism in Mn doped ZnO with C co-doping. Journal of Magnetism and Magnetic Materials, 2009, 321(4): 273-276
    [64] Abdallah B, Chala A, Jouan P Y, et al. Deposition of AlN films by reactive sputtering: Effect of radio frequency substrate bias. Thin Solid Films, 2007, 515: 7105-7108
    [65] Katsikini M, Pinakidou F, Paloura E C, et al. Identification of implantation-induced defects in GaN: A near-edge x-ray absorption fine structue study. Appl. Phys. Lett., 2003, 82: 1556-1558
    [66] Jozkow J, Jakubas R, Bator G, et al. Crystal structure, dielectric properties and molecular motions in (i-C4H9NH3)3Bi2Br9. J. Phys. Chem. Solids, 2000, 61: 887-890
    [67] Bi Z X, Zheng Y D, Zhang R, et al. Dielectric properties of AlN film on Si substrate. J. Mater. Sci.: Mater. Electr., 2004, 15: 317-320
    [68] Cai K F, McLachlan D S. Preparation, microstructure and properties of reaction-bonded AlN ceramics. Mater. Res. Bull., 2002, 37: 575-581
    [69] Goldsky J C. Micro-mechanical and electrical properties of monolithic aluminum nitride at high temperatures. J. Alloys Compounds, 2001, 321: 67-71
    [70] Tansley T L, Egan R J. Point-defect energies in the nitrides of aluminum, gallium, and indium. Phys. Rev. B, 1992, 45: 10942-10950
    [71] Chen D, Xu D, Wang J J, et al. Influence of the texture on Raman and X-ray diffraction characteristics of polycrystalline AlN films. Thin Solid Films, 2008, 517: 986-989
    [72]陈旺寿,朱嘉琦,韩杰才等. X光电子谱辅助Raman光谱表征N含量对非晶金刚石薄膜的结构影响.光谱学与光谱分析, 2009, 29: 268-272
    [73] Abrasonis G, Berndt M, Krause M, et al. Soft X-ray absorption and emission spectroscopic investigation of carbon and carbon: transition metal composite films. J. Phys. Chem. C, 2008, 112: 17161-17170
    [74] Kang B S, Kim W C, Song Y Y, et al. The half-metallicity and magnetism for Cr in AlN, AlAs, and GaAs. J. Magn. Magn. Mater., 2007, 310: 2135-3137
    [75] Shi L J, Liu B G. Half-metallic ferromagnetism in hexagonal MAl7N8 and cubic MAl3N4 (M=Cr and Mn) from first pinciples. Phys. Rev. B, 2007, 76: 115201
    [76] Madan A, Kim I W, Cheng S C, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices. Phys. Rev. Lett., 1997, 78: 1743-1746