基于γ射线的管道焊缝检测机器人关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大型长距离管道运输的推广应用,管道焊接质量直接关系到运输的可靠性。作为焊缝质量检测的新型设备,管道检测机器人的研究和应用成为了国内外学者的研究热点之一。目前对于管道焊缝检测机器人的理论研究和实际应用还处于发展阶段,研究成果大多为实验样机,距离产业化的普及应用还有不小的差距,主要是管道机器人还存在着定位不准、体积重量较大、管径适应能力差等问题。针对以上问题,受国家质量监督检验检疫总局项目“核电领域放射性安全监测量值溯源技术研究”(项目编号:201210044-03)子项目资助,本文提出了一种新型的管道焊缝检测机器人机构,并对其检测原理、本体结构、定位方法等问题进行了深入的分析和研究。
     鉴于野外作业的特殊性,如何有效地降低机器人对于外部能源的依赖成为影响其产业化的限制条件之一。本文针对目前管道焊缝检测机器人大多采用拖缆方式的X射线检测,并通过对当前常见的γ射线源的特性进行了对比分析,提出了采用~(75)Se的检测方案。通过实验研究更新了~(75)Se射线源在AB级像质灵敏度要求下其有效的管道壁厚检测范围。管道焊缝检测实验表明,在壁厚4~30mm的范围内,~(75)Seγ射线检测的胶片像质达到AB级,满足国家标准和设计要求。
     针对管道焊缝检测机器人管径适应能力差的问题,本文设计了一种新型的管道焊缝检测机器人的本体结构,创造性地设计了伸缩足结构,并采用蓄能器保障能量供给,极大地提升了管道机器人的管径适应能力,并设计了机器人的工作平台调节机构,确保焊缝检测质量的可靠性。
     为了确保本体结构设计的合理性,建立了完整的机器人空间运动力学模型。对机器人在弯管中的运动进行了理论研究,分析了机器人在管内的运动状态。模拟实验表明,管道机器人在弯管中运行时,适用管径为Φ440~Φ858mm。
     管道焊缝检测机器人质心的自我稳定性对于检测结果、通过性和越障性能具有重要的影响。文中分析了管道焊缝检测机器人质心发生偏心、振动的原因,建立了机器人质心的运动姿态方程,分析表明在弯管内,机器人质心的运动规律为一椭圆轨迹,并采用ADAMS软件验证了数学模型的正确性。
     论文分析了管道机器人现有管内定位方案存在的问题,提出了采用计程轮主定位、机器视觉精确定位的管道机器人管内定位方法。鉴于传统视觉定位基于灰度差异不易提取焊缝特征的问题,系统采用基于色彩特征的图像焊缝特征识别方法,并提出了一种改进的矢量中值滤波法和基于归一化处理的改进型增强算法,有效地增强了各通道通过的色差,提高了图像对比度,实现了焊缝中心线的准确定位。通过对管道机器人在可测管道范围内的误差分析可知,最大误差为1.84~3.76mm,定位精度得到了很大的提高。
With the development of the long-distance pipeline transportation, the weldingquality for pipeline directly influences the reliability of the transportation. As the newequipment for welding test, the research and application of pipeline inspection robothas become one of the hot topics recently both at home and abroad. At present thetheoretical research and practical application of pipe robot are still in the developmentstage and will be available in the future and the research results mostly are onlylimited to the experimental prototype, which should be done before industrializationthrough systematic research and pilot plant scale. Supported by GeneralAdministration of Quality Supervision, Inspection and Quarantine fund (Grant No.201210044-03), the paper analyzes the existing problems that the pipeline robot is tooheavy, positioning is not accurate, the ability of adapting pipe is poor, andsystematically put forward a new type of mechanism of pipe robot, analyzing andstudying profoundly the detecting principle, the bulk structure and the localizationmethod.
     Considering the particularity of field operations, how to make robot effectivelyreduce dependence on external energy has become one of the key factors. According tothe facts that pipe robot adopts mostly X-ray to detect the weld by dragging cable, thepaper intends to make a contrastive analysis of the characteristics of different γ-raysources and proposes the test scheme to use Se75. The effective weld detection range isascertained in level AB through experiment. The experiments about the detection ofpipe welds show that the image reached AB-level in the range between4mm and30mm by Se75and meet the national standards and design requirements.
     The mechanical self adapting characteristics of robot are one of key performancesand the novel ontological structure is designed scientifically. The stretching leg structure whose energy and the adjusting mechanism of working platform are suppliedwith accumulator is created, which greatly improves the ability to adapt to pipeline andensures the reliability of the weld inspection. Based on the establishment of the motiondynamics model, the paper analyzes the motion state of robot. The simulation resultsreveal that the suitable diameter of the pipeline robot in bend pipe ranges from440mmto858mm. The self stability of the robot mass centroid exerts significant influence onthe test results, the passing capacity and the obstacle negotiation performance. Thepaper analyzes the causes of the eccentricity and vibration of robot and establishes themovement state formulas. The analysis shows that the motion law of the centroid is anellipse trajectory in bending pipe, and verifies the correctness of the mathematicalmodel by ADAMS.
     The paper analyzes the current positioning scheme of robot in pipe and problems,and puts forward the location plan by which the odometer method is mainly locatedand the visual recognition method is accurately positioned accurately. In view of thetraditional visual position based on gray level difference which is difficult to extractthe weld characteristics, the recognition method of image for welding seam based onthe color characteristics is applied, and the improved vector median filtering and theimage enhancement algorithm based on based on normalized improvement arepresented. The measures improve the color difference of multi-channels effectively,enhancing the image contrast and realizing the accurate positioning of the weld centerline. The analysis shows that error bound is1.84~3.76mm in the measurable pipelineand improves location accuracy greatly.
引文
[1]王功礼,王莉.油气管道技术现状与发展趋势[J].石油规划设计,2004,15(4):1~7.
    [2]吴磊.中国石油安全[M].北京:中国社会科学出版社,2003.
    [3]熊建森.我国成品油管道输送现状分析与展望[J].石油知识,2011(1):42~44.
    [4]杨筱蘅,张国忠.输油管道设计与管理[M].东营:石油大学出版社,1996.
    [5]马志祥,梅云新.我国油气长输管道的技术现状及差距分析[J].油气储运,2004,23(3):1~4.
    [6]戚爱华.我国油气管道运输发展现状及问题分析[J].国际石油经济,2009(12):57~84.
    [7]郎需庆,赵志勇,宫宏等.油气管道事故统计分析与安全运行对策[J].安全.健康和环境,2006,6(10):15~17.
    [8]李平全.油气输送管道失效事故及典型案例[J].焊管,2005,,28(4):76~84.
    [9]马宏伟,陈富,杜功儒.长输管道无损检测自动化技术的研究进展[J].中国机械工程,2003,14(23):2066~2069.
    [10] X.G. Fu, G.Z. Yan, B. Yan etal. A new robot system for auto-inspection of intersected weldsofpipes used in nuclear power stations [J]. International Journal of Advanced ManufacturingTechnology,2006,28(5-6):596~601.
    [11] MITSUNORI KOMORI, KIICHI SUYAMA. Inspection robots for gas pipelines of TokyoGas [J].Advanced Robotics,2001,15(3):365~370.
    [12] Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON etal. A simple architecturefor in-pipe inspection robots[C].International Colloquium on Autonomous and Mobile Systems,Magdeburg, Germany,2002:1~4
    [13] ZHELONGWANG, ERNEST APPLETON. The concept and research of a pipe crawlingrescue robot [J]. Advanced Robotics,,2003,17(4):339~358.
    [14] JONGCHEOL KIM, MASAHIRO MURAMATSU, YUICHIRO MURATA etal.Omnidirectional vision-based ego-pose estimation for an autonomous in-pipe mobile robot[J].Advanced Robotics,2007,21(3-4):441~460.
    [15] Komori, M, Suyama, K, I. Ardelean. Inspection robots for gas pipelines of Tokyo Gas [J].Advanced Robotics,2001,15(3):365~370.
    [16] Brian Rooks. Mobile robots walk into the future[J]. Industrial Robot,2002,29(6):527~533.
    [17] Luis A. Mateos, Markus Vincze. DeWaLoP-Monolithic Multi-module In-Pipe RobotSystem[C]. Intelligent Robotics and Applications,2011,17(4):406~415.
    [18] Sinha, Sunil K. State-of-the-art in sensor technologies for pipe inspection [J]. New PipelineTechnologies, Security, and Safety,2003(2):1592~1602.
    [19] Chi Zhu. In-pipe robot for inspection and sampling tasks[J]. Industrial Robot,2007,34(1):39~45.
    [20] A. Brunete, M. Hernando, J.E. Torres, E. Gambao. Heterogeneous multi-configurablechained microrobot for the exploration of small cavities[J]. Industrial Robot,2012,21(1):184~198.
    [21] TOMOYASU OYA, TOKUJI OKADA. Development of a steerable, wheel-type, in-piperobot and its path planning[J]. Advanced Robotics,,2005,19(6):635~650.
    [22]邓宗全,李金彪.油气管道技术现状与发展趋势[J].哈尔滨工业大学学报,1997,29(1):48~49.
    [23]姜生元,邓宗全,李斌等.内置动力源管内X射线探伤机器人的研制[J].机器人,2001,23(3):211~216.
    [24]马宏伟,陈富,杜功儒.长输管道无损检测自动化技术的研究进展[J].中国机械工程,2003,14(23):2066~2069.
    [25]孙东昌,李军远,张晓华.基于低频电磁波的管道机器人定位技术[J].控制工程,2007,14(B05):159~161.
    [26]王忠巍,曹其新,栾楠等.基于多传感器数据融合的管道机器人精确定位技术[J].机器人,2008,30(3):238~241.
    [27]邓超.输油管道机器人的测力定位法研究[J].重庆科技学院学报-自然科学版,2009(2):79~82.
    [28]王黎,李著信,苏毅.管道检测机器人加速度定位方法[J].中国科技论文在线,2008(8):580~586.
    [29] Luo R C, Lin M H, Scherp R S. Dynamic multi-sensor data fusion system for intelligentrobots[J].IEEE Journal of Robotics and Automation,1988,4(4):386~396.
    [31] Reber K, Beller M, Willems H eta1.A new generation of ultrasonic in-line inspection tools fordetecting, sizing and locating metal loss and cracks in transmission pipelines[A].Proceedings ofthe IEEE Ultrasonics Symposium[C].Piscataway, NJ,USA: IEEE,2002,665~671.
    [32]王永雄,叶青.管道机器人自主导航系统设计[J].制造业自动化,2010(1):113~115.
    [33]李江雄,郭彤,柯映林.基于光学导航定位的钹形压电微型管道机器人[J].浙江大学学报(工学版),2006,40(6):927~931.
    [34] Olsen H O,Vesth L. Automated Ultrasonic Examination of Inclined Nozzle Welds UsingRobot and3D Reconstruction[C].7th European Conference on Non-destructive Testing,Copenhagen,1998
    [35]刘大维,彭商贤,龚进峰.地下管道检测移动机器人的发展现状[J].吉林工业大学学报,1998,28(1):109~ll2.
    [36]李庆云,杨文凯,李扬.模糊神经网络信息融合在管道机器人导航中的应用[J].微型机与应用,2011,30(3):82~85.
    [37]陈应松,周瑜.基于视觉的机器人在管道检测中的远程控制研究[J].制冷与空调,2010,24(4):133~137.
    [38]白素平,杨晓月,阎钰锋.管道机器人检测系统研究[J].长春理工大学学报,2005,28(4):27~29.
    [39]张云伟.煤气管道检测机器人系统及其运动控制技术研究[D].上海交通大学,2007.
    [40]钟映春,杨宜民.新型能源自给式管道机器人的原理设计与研究[J].机床与液压,2006(7):5~6.
    [41]陆麒,章亚男,沈林勇等.适应管径变化的管道机器人[J].机械设计,2007,24(1):16~19.
    [42] Chio H R, Ryew S M, Robotic system with active steering capability for internal inspectionof urban gas pipelines[J]. Mecha-tronics,2002,12(5):716~736.
    [43]邓宗全,王杰.直进轮式全驱动管内行走机构的研究[J].石油规划设计,1995,17(2):121~122.
    [44]刘德镇.现代射线检测技术[M].北京:机械工业出版社,1999.
    [45]李娜.国外管道焊缝缺陷超声波检测现状[J].机械工程师,2008(12):148~149.
    [46]肖三洪,杨延平.厚壁管线焊缝射线及超声波检测[J].石油化工设备,2010,39(5):106~108.
    [47]罗华权,巨西民,吕郑等.油气输送管道对接环焊缝检测现状与研究进展[J].焊管,2008,31(1):40~44.
    [48]李成凯,孙永兴,李潇菲.在线管道缺陷常用检测方法分析[J].管道技术与设备,2009(6):24~26.
    [49]房金库.全自动超声波检测管道焊缝缺陷的评判[J].石油工程建设,2010,36(4):60~62.
    [50]张历成,张宏亮.γ射线管道爬行器的研制[J].油气储运,1997,16(8):50~57.
    [51]张振永,郭彬,樊明锋.长输管道的无损探伤及相关标准[J].焊管,2005,28(6):73~76.
    [52]张栋梁,于洋,刘北平.长输天然气管道不停输焊缝射线检测技术[J].无损检测,2008,30(7):459~460.
    [53]李光海,沈功,李鹤年.工业管道无损检测技术[J].无损检测,2006,28(2):89~93.
    [54]周满,艾尔肯﹒阿不列木,杨坤杰.管壁腐蚀对γ散射法检测油垢厚度的影响初探[J].核电子学与探测技术,2010,30(5):630~633.
    [55]张志强.大中口径管道环焊缝Ir192γ射线透照方式的选择[J].石化技术,2010,17(2):38~41.
    [56]沈功田,景为科,左延田.埋地管道无损检测技术[J].无损检测,2006,28(3):137~141.
    [57]马金彪,施汝才.小管径对接焊接接头的γ射线照相技术[J].无损检测,2003,27(1):15~17.
    [58]夏凤芳.75Se射线源对小径管透照灵敏度的研究[J].上海电机学院学报,2005(6):31~34.
    [59]李衍.新一代同位素75Se源的特性和应用[J].无损检测,2003,25(6):313~319.
    [60]林书生,徐生东.用75SeC射线透照小管径对接焊接接头[J].无损探伤,2008,32(1):34~39.
    [61]张春有.Se75射线源的主要参数及曝光公式[J].浙江电力,2002(3):47~49.
    [62] Bianchi, M.F. Equivalence between radioactive sources in terms of contrast[J]. RivistaItaliana della Saldatura,2009,61(2):159~166.
    [63] Shilton, M.G.. Advanced second-generation selenium-75gamma-radiography sources[J].Insight: Non-Destructive Testing and Condition Monitoring,2001,43(6):414~417.
    [64] JBT4730-2005,承压设备无损检测[S].北京:中国标准出版社,2005.
    [65] Gysemans, M, Moors, H. Determination of75Se,95Zr,237Np and241Am activities in Boom Claysamples from laboratory migration experiments using γ-ray spectrometry [J]. Applied Radiation andIsotopes,2000,53(1):209~213.
    [66]郭利峰. JB/T4730与RCC-M在射线底片影像质量控制方面的差异分析[J].无损探伤,2011,35(5):28~31.
    [67]张云伟.煤气管道检测机器人系统及其运动控制技术研究[D].上海:上海交通大学电子信息与电气工程学院.2007.
    [68] CHOI H R,RYEW S M. Robotic system with active steering capability for internal inspectionof urban gas pipelines[J]. Mechatronics,2002,12(5):713~736.
    [69] Hyoukryeol Choi, Sungmoo Ryew, Sunghwi Cho. Development of articulated robot forinspection of underground pipelines[C]//Transactions of the15th International Conference onStructural Mechancs in Reactor Technology, Seoul Korea,1999:407~414.
    [70]陈军,陈涛,邓宗全.管内移动机器人的变径机构及力学特性研究[J].机械设计,2010,27(10):58~61.
    [71]徐小云,颜国正,丁国清.管道机器人适应不同管径的三种调节机构的比较[J].光学精密工程,2004,12(1):60~65.
    [72]王传江,张志兵,吴建等.污水管道多功能作业机器人设计方案[J].工程机械,2009,40(3):48~51.
    [73] Fjerdingen S A, Mathiassen J R, Schumann-Olsen H, etal. Adaptive snake robot locomotion:A benchmarking facility for experiments[C]//European Robotics Symposium. Heidelberg, Berlin:Springer,2008,44:13~22.
    [74]赵大旭,陈柏,吴洪涛等.管道机器人动力学分析[J].南京航空航天大学学报,2010,42(5):578~582.
    [75]马荣朝,秦岚,潘英俊.微小管道机器人移动机构运动学与动力学特性[J].重庆大学学报,2002,25(7):26~29.
    [76]许冯平,邓宗全.管道机器人在弯道处通过性的研究[J].机器人,2004,26(2):155~160.
    [77]赵大旭,陈柏,吴洪涛等.潜游式管道机器人动力学分析[J].华南理工大学学报,2010,38(8):66~71.
    [78] Abhinandan Jain. Unified formulation of dynamics for serial rigid multi-body systems[J].Journal of Guidance,Control and Dynamics,1991,14(3):531~542.
    [79] CHOI H R, RYEW SM. Robotic system with active steering capability for internal inspectionof urban gas pipelines[J].Mechatronics,2002,12(5):713~736.
    [80]谢惠祥,张志雄,尚建忠等.一种单向伸缩式管道机器人系统的建模与仿真[J].机械设计与研究,2009,25(6):40~43.
    [81]宋章军,陈恳,杨向东.轮式移动机器人在圆形管道中的运动学建模与分析[J].机器人,2006,28(6):636~641.
    [82]阳艳梅,钱晋武,章亚男等.一种水管机器人的结构和弯道通过性分析[J].机械设计,2007,24(9):56~58.
    [83]王功礼,王莉.具有自适应能力管道机器人的设计与运动分析[J].机械工程学报,2009,45(1):154~161.
    [84] TAROKH M,MCDERMOTT G. Kinematics modeling and analyses of articulated rovers[J].IEEE Trans. Robotics and Automation,2005,21(4):539-553.
    [85]程良伦,杨宜民.管道内微机器人弯管运动的动力学稳定性[J].控制理论与应用,2001,18(1):61~68.
    [86]白相林,张旭堂,刘文剑.水平井牵引机器人自动定心机构动态仿真[J].石油勘探与开发,2010,37(1):104~110.
    [87]孙东昌,李军远,张晓华.基于低频电磁波的管道机器人定位技术[J].控制工程,2007,14(B05):159~161.
    [88]李军远,陈宏钧,张晓华.基于信息融合的管道机器人定位控制研究[J].控制与决策,2006,21(6):661~665.
    [89]王忠巍,曹其新,栾楠.基于信息融合的海底管道机器人自主定位控制[J].上海交通大学学报,2008,42(10):1707~1711.
    [90]邓超.输油管道机器人的测力定位法研究[J].重庆科技学院学报(自然科学版),2009,11(2):79~82.
    [91] Suga, Yasuo, Ishii, Hideaki. Detection and automatic tracking of butt weld line byautonomous mobile robot for pipe welding [J]. Transactions of the Japan Society of MechanicalEngineers,1993,59(6):285~291.
    [92] Ono, Manabu. A study of an earthworm type inspection robot movable in long pipes[J].International Journal of Advanced Robotic Systems,2010,7(1):85~90.
    [93]王慧琴.数字图像处理[M].北京:北京邮电大学出版社,2006.
    [94] Ono, Manabu. A study of an earthworm type inspection robot movable in long pipes[J].International Journal of Advanced Robotic Systems,2010,7(1):85~90.
    [95]孙海英,李锋,商慧亮.改进的变分自适应中值滤波算法[J].电子与信息学报,2011,33(7):1743~1747.
    [96]谭磊,王耀南,沈春生.输电线路除冰机器人障碍视觉检测识别算法[J].仪器仪表学报,2011,32(11):2564~2571.
    [97] Muramatsu, Masahiro, Suga. Autonomous mobile robot system for monitoring and control ofpenetration during fixed pipes welding[J]. Solid Mechanics and Material Engineering,2003,46(3):391~397.
    [98] Bright, Glen, Ferreira. Automated pipe inspection robot [J]. Industrial Robot,1997,24(4):285~289.
    [99]白建军,陈其松,张欣.基于形态滤波的小波融合图像增强算法[J].计算机仿真,2012(1):264~268.
    [100]张建军,胡惠灵,刘征宇.光照不均管道内图像增强算法的研究与应用[J].计算机工程,2011,37(16):227~229.
    [101] Fu Xiao-Wei, Ding Ming-Yue, Zhou Cheng-Ping. Research on image enhancementalgorithms of medical images based on quantum probability statistics [J]. Acta Electronica Sinicat,2010,38(7):1590~1596.
    [102] Bright, Glen, Ferreira. Automated pipe inspection robot [J]. Industrial Robot,1997,24(4):285~289.
    [103]胡晓军,徐飞. MATLAB应用图像处理[M].西安:西安电子科技大学出版社,2002.
    [104]史世明,王岭雪,金伟其等.基于YUV空间色彩传递的可见光/热成像双通道彩色成像系统[J].兵工学报,2009(1):30~35.
    [105]林兰极,王库,陈立国.基于DSP的石油管道焊缝检测机器人系统[J].电子测量技术,2007,30(1):144~146.
    [106]邹怡蓉,吴哲明,郭桂林等.基于图像色彩信息的焊缝识别算法[J].焊接学报,2009,30(10):37~40.
    [107]姜生元,邓宗全,李斌等.内置动力源管内X射线探伤机器人的研制[J].机器人,2001,23(3):211~216.