有机荧光染料的设计合成及在化学传感和分子逻辑门中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有机合成方法的不断推陈出新,人们开发出多种多样性能优良的有机荧光染料,而这些染料在军用和民用多个领域发挥着重要的作用。近年来,有机荧光染料也被经常用于化学传感和分子逻辑门。荧光传感器是以有机荧光染料为探针,利用分子识别原理来实现对待测物质的检测,具有灵敏度高、响应快速、试样量小等特点。而分子逻辑门则是将传统集成电路功能实现在分子尺度的新兴科学,广泛应用于生物传感与诊断,药物传输与释放,分子计算机等领域。
     芘和8-羟基喹啉就是其中被广泛修饰的荧光母核之一。因此,我们希望通过一些简单的有机反应修饰上一些特定的官能团,从而制备出性能优良的荧光染料,检测效果好的荧光探针和功能复杂的分子逻辑门。
     1.我们制备了六个芘基噻唑荧光染料分子,并进行了相应的紫外和荧光光谱表征,发现苯环的引入对其光谱性质影响很大,而甲基的引入影响甚微。在对其的荧光量子产率测定中,我们发现随着溶剂极性的增加,荧光量子产率随之提高。但是在乙醇中因为乙醇可以与之形成氢键而出现反常的小幅下降。接下来,我们在其单晶结构中发现了苯-噻唑堆积而不是像其他芘衍生物那样的芘-芘堆积,分析原因可能是由于这样的排列方式更利用空间。最后我们进行了理论化学计算,解释了之前测定的光谱性能,并发现染料分子内存在着一定程度上的分子内电荷转移。
     2.而后,我们合成了芘基查尔酮荧光染料分子,发现该染料具有集聚诱导缔合发光增强的特性。利用这个特性,我们设计了一种水溶性的荧光探针,经测试,其对聚阴离子(聚丙烯酸钠和DNA)和生物硫醇(半胱氨酸)有优良的传感性能。然后,我们根据这两种不同传感方式可以导致不同颜色的“Tunr-on”荧光信号,设计出一个新型的2-4分子译码器。这个分子译码器可以在水环境下工作,颜色变化可以被裸眼识别,对环境友好不使用有毒物质(氰根等)和重金属离子(汞离子等)。而据我们所知,查尔酮结构在集聚诱导缔合发光增强材料和分子译码器之前都未曾报道,未来我们也将拓展这类材料在更多领域上的应用。
     3.我们根据药物化学的相关文献,合成了基于芘基酰亚胺的分子逻辑门。我们发现其在不同pH环境下可以选择性识别汞离子和银离子,其它金属离子不会对此产生干扰,这与之前报道的只能对汞离子识别的茈酰亚胺探针和萘酰亚胺探针有很大的不同。为此,我们进行了深入的研究,发现由于分子共轭效应,胸腺嘧啶和胞嘧啶功能被集成到一个有机小分子里。之后,我们设计了以氢离子、银离子、汞离子和硫离子为输入端的分子逻辑门,该分子逻辑门拥有16种不同的输入组合和3个逻辑元件(INHIBITOR,OR和IMPLICATION)。然后,我们将该分子逻辑门制作成荧光纸,用于加密文字,首次将分子逻辑门应用于密码学领域。
     4.我们将酰亚胺结构嫁接在8-羟基喹啉上,设计成一个分子逻辑门。该分子逻辑门可以在水:乙醇比例为96:4的溶液中工作,能选择性与锌离子,镉离子,钇离子和镧离子结合成荧光配合物,之后我们筛选出铜离子作为前四种输入端的INHIBITOR,组成一个五输入的分子逻辑门。
     5.我们利用 Vilsmeier-Haack-Arnold反应,Corey-link反应和Corey-Fuchs反应,以最简单的苯环来替代芘,蒽,菲等稠环芳香烃,从原料苯乙酮出发进行了炔类化合物的合成探索,用以探索从芳烃出发的一条有机染料合成新路线。
With the innovation of organic synthesis methods, a vairety of organic fluorescentdyes have been developed that play an important role in various areas of military andcivilian. In recent years, organic fluorescent dyes have been also often used inchemosensing and molecular logic gates. Fluorescent chemosensors combine molecularrecognition with some form of reporter. And the presence of target can be detected withorganic fluorescence dyes as the indicator. It is simple, fast, sensitive, and inexpensive.Molecular logic gates are an emerging interdiscipline, utilizing integrated circuits inelectronics on a molecular scale. And they have been widely applied in biosensing anddiagnostics, prodrug activation and drug delivery/release, intelligent mateirals andmolecular computers.
     The pyrene and8-hydroxy quinoline (8-HQ) are two of important fluorescent dyes.Therefore, we would prepare many fluorescent dyes with good fluorescence propertiesfrom these two dyes, and develop their applications in sensing and logic gates.
     1. We developed new fluorescent dyes based on pyrenylthiazoles and studied thefluorescence and UV/Vis properties of these dyes. The introduction of the phenylgroup could cause significant change and the effect of the methyl group was notobvious in fluorescence emission. From the single crystal data, we found anarrangement of benzene-thiazole stacking rather than pyrene-pyrene stacking. And thetheoretical (TD-DFT) calculations were carried out and the intramolecular chargetransfer was observed in these dyes. The theoretical calculations are in good agreementwith the expeirmental data.
     2. We synthesized an aggregation-enhanced excimer emission (AEEE) fluorophore byintroducing chalcone into pyrene. Then we designed a probe with good watersolubility based on pyrenylchalcone for polyanion (Polyacrylic acid sodium salt andDNA) detection in aqueous media. Moreover, we found that the addition of biothiol(Cysteine) could lead to another different "Turn-on" change in fluorescence. And wemade this AEEE-active probe into a2-to-4molecular decoder. Our molecular decodercould work in pure water and be observed by naked eyes. And it wasenvironmentally-friendly (Instead of heavy metal ions and poisons, such as mercuryand cyanide). To our knowledge, the chalcone for AEEE-designing and itsapplications in the molecular decoder have not been reported before. This class ofAEEE-active luminophore is expected to be applied in more area in future.
     3. By using the new method in medicinal chemistry, we developed a new molecular logicgate that utilized a succinic imide labelled pyrene probe as the signal responser.Different from perylenebisimide and naphthalimide probes, this new logic gate canhandle both A+2+gand Hg in different pH without interference from other metal ions.After further investigating, owing to its molecular conjugative effect, we found thatthe functions of cytosine and thymine were integrated into an organic molecular. Thenwe desi+gn a molecular logic gate for H+, A+g,H22g and S" which has16kinds of inputcombinations and3different kinds of gate symbols (INHIBITOR,OR andIMPLICATION). Moreover,this molecular logic gate could be made into fluorescentpapers and firstly applied in the field of cryptography.
     4. We introduced the imide structure into8-HQ and made this new molecular logic gatef23or Zn++, Cd2+,Y and La)+selectively. Then we designed a five-input molecularlo2+gic gate by another input of Cu as INHIBITOR.
     5. We used the Vilsmeier-Haack-Arnold reaction, Corey-link reaction and Corey-Fuchsreaction to explore a new synthesis route of organic dyes from aromatic compounds.
引文
[1]贾建洪,盛卫坚,高建荣.有机荧光染料的研究进展[J].化工时刊,2004,18(1):18-22.
    [2]张艳,陈鹏,姚祝军.适用于荧光成像的化学发色团与生物正交反应研究进展[J].科学通报,2013,2.
    [3]龚洁,沈清明,范曲立,等.荧光有机小分子纳米材料的合成及其应用[J].化学进展,2013,25(11):1928-1941.
    [4] BAGGALEY E, GILL M R, GREEN N H, et al. Dinuclear Ruthenium (II) Complexesas Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA[J].Angewandte Chemie International Edition,2014, DOI:10.1002/anie.201309427.
    [5] HUANG L, ZHAO J, GUO S, et al. Bodipy Derivatives as Organic TripletPhotosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines andPhotooxidation of Dihydroxylnaphthalenes[J]. The Journal of organic chemistry,2013,78(11):5627-5637.
    [6] PARK J H, KO K C, KIM E, et al. Photocatalysis by Phenothiazine Dyes:Visible-Light-Driven Oxidative Coupling of Primary Amines at Ambient Temperature[J].Organic letters,2012,14(21):5502-5505.
    [7]杨洗,潘祖亭,马勇.用罗丹明B作标准物测定二氯荧光素的荧光量子产率[J].分析科学学报,2003,19(6):588-589.
    [8]魏永巨,李娜,秦身钧.磺基水杨酸的荧光光谱与荧光量子产率[J].光谱学与光谱分析,2004,24(6):647-651.
    [9]张韶瑜,孟林,高文远,等.香豆素类化合物生物学活性研究进展[J].中国中药杂志,2005,30(6):410-414.
    [10] HIRANO T, KUBO H, SHIRAISHI T, et al. Fluorescent properties of coumarins withdual functions constructed by two sequential reactions[J]. Tetrahedron Letters,2012,53(44):5916-5919.
    [11] SANAP K K, SAMANT S D. Synthesis of coumarin based fluorescent compounds[J].Tetrahedron Letters,2012,53(40):5407-5410.
    [12] WEI C, ZHU Q, LIU W, et al. NBD-based colorimetric and fluorescent turn-onprobes for hydrogen sulfide[J]. Organic&biomolecular chemistry,2014,12(3):479-485.
    [13] GU X, LI X, CHAI Y, et al. A simple metal-free catalytic sulfoxidation under visiblelight and air[J]. Green Chem.,2013,15(2):357-361.
    [14] GAI L, MACK J, LU H, et al. New2,6‐Distyryl‐Substituted BODIPY Isomers:Synthesis, Photophysical Properties, and Theoretical Calculations[J]. Chemistry-AEuropean Journal,2014,20(4):1091-1102.
    [15] CHANáLEE S, JINáPARK S. Microglia specific fluorescent probes for live cellimaging[J]. Chemical Communications,2014,50(9):1089-1091.
    [16] SHIMIZU S, IINO T, ARAKI Y, et al. Pyrrolopyrrole aza-BODIPY analogues: afacile synthesis and intense fluorescence[J]. Chemical Communications,2013,49(16):1621-1623.
    [17] ZHAO D, LI G, WU D, et al. Regiospecific N‐Heteroarylation of Amidines for Full‐Color‐Tunable Boron Difluoride Dyes with Mechanochromic Luminescence[J].Angewandte Chemie,2013,125(51):13921-13925.
    [18] KUBOTA Y, TANAKA S, FUNABIKI K, et al. Synthesis and fluorescence propertiesof thiazole–boron complexes bearing a β-ketoiminate ligand[J]. Organic letters,2012,14(17):4682-4685.
    [19] KARTON-LIFSHIN N, ALBERTAZZI L, BENDIKOV M, et al.“Donor–Two-Acceptor” Dye Design: A Distinct Gateway to NIR Fluorescence[J]. Journalof the American Chemical Society,2012,134(50):20412-20420.
    [20] SEO S, PASCAL S, PARK C, et al. NIR electrochemical fluorescence switching frompolymethine dyes [J]. Chemical Science,2014, DOI:10.1039/C3SC53161A.
    [21] BAG S S, PRADHAN M K, KUNDU R, et al. Highly solvatochromic fluorescentnaphthalimides: design, synthesis, photophysical properties and fluorescence switch-onsensing of ct-DNA [J]. Bioorganic&medicinal chemistry letters,2013,23(1):96-101.
    [22] DUBEY R K, NIEMI M, KAUNISTO K, et al. Direct Evidence of SignificantlyDifferent Chemical Behavior and Excited-State Dynamics of1,7-and1,6-Regioisomers ofPyrrolidinyl-Substituted Perylene Diimide [J]. Chemistry-A European Journal,2013,19(21):6791-6806.
    [23] ZHU X, TSUJI H, LóPEZ NAVARRETE J T, et al. Carbon-Bridged Oligo(phenylenevinylene) s: Stable π-Systems with High Responsiveness to Doping andExcitation[J]. Journal of the American Chemical Society,2012,134(46):19254-19259.
    [24] XING Y, HU B, YAO Q, et al. Tandem Synthesis of Benzo[b]carbazoles and TheirPhotoluminescent Properties [J]. Chemistry-A European Journal,2013,19(38):12788-12793.
    [25] BABU S S, HOLLAMBY M J, AIMI J, et al. Nonvolatile liquid anthracenes forfacile full-colour luminescence tuning at single blue-light excitation[J]. Naturecommunications,2013,4.
    [26] LUO C-Z, GANDEEPAN P, JAYAKUMAR J, et al. Rh(III)-Catalyzed C-HActivation: A Versatile Route towards Various Polycyclic Pyridinium Salts [J]. Chemistry-A European Journal,2013,19(42):14181-14186.
    [27] LI J, HU G, LI X, et al.9,11,12,14-Tetraaryldibenzo[f,h]imidazo[1,2-b]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes[J]. European Journal of Organic Chemistry,2013,2013(32):7320-7327.
    [28] SHI K, LEI T, WANG X-Y, et al. A bowl-shaped molecule for organic field-effecttransistors: crystal engineering and charge transport switching by oxygen doping [J].Chemical Science,2014,5(3):1041-1045.
    [29] FIGUEIRA-DUARTE T M, MüLLEN K. Pyrene-based materials for organicelectronics[J]. Chemical reviews,2011,111(11):7260-7314.
    [30]杨玉斌.新型含芘类非共价DNA荧光探针[D].大连理工大学,2009.
    [31] NEUPANE L N, PARK J Y, PARK J H, et al. Turn-on fluorescent chemosensor basedon an amino acid for Pb (II) and Hg (II) ions in aqueous solutions and role of tryptophanfor sensing[J]. Organic letters,2013,15(2):254-257.
    [32] YUAN W Z, GONG Y, CHEN S, et al. Efficient solid emitters withaggregation-induced emission and intramolecular charge transfer characteristics:molecular design, synthesis, photophysical behaviors, and OLED application[J].Chemistry of Materials,2012,24(8):1518-1528.
    [33] ALDRED M P, LI C, ZHANG G F, et al. Fluorescence quenching and enhancementof vitrifiable oligofluorenes end-capped with tetraphenylethene[J]. Journal of MaterialsChemistry,2012,22(15):7515-7528.
    [34] JACKY W Y, SINGáKWOK H, ZHONGáTANG B. Aggregation-induced emissionof1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,2001(18):1740-1741.
    [35]钱立军,支俊格,佟斌,等.具有聚集诱导发光性质的化合物[J].化学进展,2008,20(5):673-678.
    [36] HONG Y, LAM J W Y, TANG B Z. Aggregation-induced emission[J]. ChemicalSociety Reviews,2011,40(11):5361-5388.
    [37] DING D, LI K, LIU B, et al. Bioprobes based on AIE fluorogens[J]. Accounts ofChemical Research,2013,46(11):2441-2453.
    [38] QIAN Y, LI S, ZHANG G, et al. Aggregation-induced emission enhancement of2-(2'-hydroxyphenyl) benzothiazole-based excited-state intramolecular proton-transfercompounds[J]. The Journal of Physical Chemistry B,2007,111(21):5861-5868.
    [39] DONG Y, LAM J W Y, QIN A, et al. Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emissionenhancement[J]. Chemical Communications,2007(1):40-42.
    [40] QI Q, FANG X, LIU Y, et al. A TPE-oxazoline molecular switch with tunablemulti-emission in both solution and solid state [J]. RSC Advances,2013,3(38):16986-16989.
    [41] DONG Y, XU B, ZHANG J, et al. Piezochromic luminescence based on themolecular aggregation of9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene [J]. AAngewandteChemie International Edition,2012,51(43):10782-10785.
    [42] OOYAMA Y, UENAKA K, MATSUGASAKO A, et al. Molecular design andsynthesis of fluorescence PET (photo-induced electron transfer) sensors for detection ofwater in organic solvents[J]. RSC Advances,2013,3(45):23255-23263.
    [43] KOWALCZYK T, LIN Z, VOORHIS T V. Fluorescence quenching by photoinducedelectron transfer in the Zn2+sensor Zinpyr-1: A computational investigation[J]. TheJournal of Physical Chemistry A,2010,114(38):10427-10434.
    [44] XU Y, LIU Q, DOU B, et al. Zn2+Binding Enabled Excited State IntramolecularProton Transfer: A Step toward New Near-Infrared Fluorescent Probes for ImagingApplications[J]. Advanced healthcare materials,2012,1(4):485-492.
    [45] ARONOFF M R, VANVELLER B, RAINES R T. Detection of Boronic Acidsthrough Excited-State Intramolecular Proton-Transfer Fluorescence[J]. Organic letters,2013,15(20):5382-5385.
    [46] GOSWAMI S, DAS A K, AICH K, et al. Competitive intra-and inter-molecularproton transfer in hydroxynaphthyl benzothiazole: selective ratiometric sensing ofacetate[J]. Tetrahedron Letters,2013,54(32):4215-4220.
    [47] SHANMUGARAJU S, JADHAV H, KARTHIK R, et al. Electron richsupramolecular polymers as fluorescent sensors for nitroaromatics[J]. RSC Advances,2013,3(15):4940-4950.
    [48] LIU Y, LV X, ZHAO Y, et al. A naphthalimide–rhodamine ratiometric fluorescentprobe for Hg2+based on fluorescence resonance energy transfer[J]. Dyes and Pigments,2012,92(3):909-915.
    [49] YUAN L, LIN W Y, ZHENG K B, et al. FRET-Based Small-Molecule FluorescentProbes: Rational Design and Bioimaging Applications [J]. Accounts of Chemical Research,2013,46(7):1462-1473.
    [50] WANG F, MOON J H, NANDHAKUMAR R, et al. Zn2+-induced conformationalchanges in a binaphthyl-pyrene derivative monitored by using fluorescence and CDspectroscopy[J]. Chemical Communications,2013,49(65):7228-7230.
    [51] WANG G K, MI Q L, ZHAO L Y, et al. A Pyrene Derivative for Hg2+‐SelectiveFluorescent Sensing and Its Application in In Vivo Imaging[J]. Chemistry–An AsianJournal,2013,9(3):744-748.
    [52] WANG X, SUN J, ZHANG W, et al. A near-infrared ratiometric fluorescent probe forrapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells[J].Chemical Science,2013,4(6):2551-2556.
    [53] SUN Y Q, LIU J, ZHANG J, et al. Fluorescent probe for biological gas SO2derivatives bisulfite and sulfite[J]. Chemical Communications,2013,49(26):2637-2639.
    [54] KIM M, KO S K, KIM H, et al. Rhodamine cyclic hydrazide as a fluorescent probefor the detection of hydroxyl radicals[J]. Chemical Communications,2013,49(72):7959-7961.
    [55] PIAO W, TSUDA S, TANAKA Y, et al. Development of Azo‐Based FluorescentProbes to Detect Different Levels of Hypoxia[J]. Angewandte Chemie InternationalEdition,2013,52(49):13028-13032.
    [56] TIAN M, LIU L, LI Y, et al. An unusual OFF–ON fluorescence sensor for detectingmercury ions in aqueous media and living cells[J]. Chemical Communications,2014,50(16):2055-2057.
    [57] ZHANG C, LIU Z, LI Y, et al. In vitro and in vivo imaging application of a1,8-naphthalimide-derived Zn2+fluorescent sensor with nuclear envelope penetrability [J].Chemical Communications,2013,49(97):11430-11432.
    [58] VOLKOVA Y A, BRIZET B, HARVEY P D, et al. BODIPY Dyes Functionalizedwith Pendant Cyclic and Acyclic Polyamines [J]. European Journal of Organic Chemistry,2013,2013(20):4270-4279.
    [59] EGAWA T, HIRABAYASHI K, KOIDE Y, et al. Red Fluorescent Probe forMonitoring the Dynamics of Cytoplasmic Calcium Ions [J]. Angewandte ChemieInternational Edition,2013,52(14):3874-4877.
    [60] TSAY O G, LEE K M, CHURCHILL D G. Selective and competitive cysteinechemosensing: resettable fluorescent “turn on” aqueous detection via Cu2+displacementand salicylaldimine hydrolysis [J]. New Journal of Chemistry,2012,36(10):1949-1952.
    [61] WANG M, XU J, LIU X, et al. A highly selective pyrene based “off–on” fluorescentchemosensor for cyanide[J]. New Journal of Chemistry,2013,37(12):3869-3872.
    [62] KIM I, KIM D, SAMBASIVAN S, et al. Synthesis of π-Extended Coumarins andEvaluation of Their Precursors as Reactive Fluorescent Probes for Mercury Ions [J]. AsianJournal of Organic Chemistry,2012,1(1):60-64.
    [63] ZHANG L, WANG Y, YU J, et al. A colorimetric and fluorescent sensor based onPBIs for palladium detection [J]. Tetrahedron Letters,2013,54(31):4019-4022.
    [64] KARAKU E, ü üNCü M, EMRULLAHO LU M. A rhodamine/BODIPY-basedfluorescent probe for the differential detection of Hg (II) and Au (III)[J]. ChemicalCommunications,2014,50(9):1119-1121.
    [65] HU B, LU P, WANG Y. A highly selective and real-time ratiometric fluorescentchemosensor for fluoride anion detection under either neutral or basic condition [J].Sensors and Actuators B: Chemical,2014,195,320-323.
    [66] DE SILVA P A, GUNARATNE N H Q, MCCOY C P. A molecular photoionic ANDgate based on fluorescent signalling[J]. Nature,1993,364(6432):42-44.
    [67] DE RUITER G, VAN DER BOOM M E. Surface-confined assemblies and polymersfor molecular logic[J]. Accounts of chemical research,2011,44(8):563-573.
    [68] DE SILVA A P. Molecular logic gate arrays[J]. Chemistry, an Asian journal,2011,6(3):750-766.
    [69] PISCHEL U, ANDRéASSON J, GUST D, et al. Information Processing withMolecules—Quo Vadis?[J]. ChemPhysChem,2013,14(1):28-46.
    [70] HALáMEK J, WINDMILLER J R, ZHOU J, et al. Multiplexing of injury codes forthe parallel operation of enzyme logic gates[J]. Analyst,2010,135(9):2249-2259.
    [71] LI H, CHENG C, MCGONIGAL P R, et al. Relative Unidirectional Translation in anArtificial Molecular Assembly Fueled by Light[J]. Journal of the American ChemicalSociety,2013,135(49):18609-18620.
    [72] SUN Y L, ZHOU Y, LI Q L, et al. Enzyme-responsive supramolecular nanovalvescrafted by mesoporous silica nanoparticles and choline-sulfonatocalix [4] arene [2]pseudorotaxanes for controlled cargo release[J]. Chemical Communications,2013,49(79):9033-9035.
    [73] AMBROGIO M W, THOMAS C R, ZHAO Y L, et al. Mechanized silicananoparticles: a new frontier in theranostic nanomedicine[J]. Accounts of chemicalresearch,2011,44(10):903-913.
    [74] ANGELOS S, YANG Y W, KHASHAB N M, et al. Dual-controlled nanoparticlesexhibiting AND logic[J]. Journal of the American Chemical Society,2009,131(32):11344-11346.
    [75] ELBAZ J, WANG F, REMACLE F, et al. pH-Programmable DNA logic arrayspowered by modular DNAzyme libraries[J]. Nano letters,2012,12(12):6049-6054.
    [76] ORBACH R, REMACLE F, LEVINE R D, et al. DNAzyme-based2:1and4:1multiplexers and1:2demultiplexer[J]. Chemical Science,2014, DOI:10.1039/c3sc52752b.
    [77] ZHAN Y, PENG J, YE K, et al. Pyrene functionalized triphenylamine-based dyes:synthesis, photophysical properties and applications in OLEDs[J]. Organic&biomolecular chemistry,2013,11(39):6814-6823.
    [78] KWON J, HONG J P, NOH S, et al. Pyrene end-capped oligothiophene derivativesfor organic thin-film transistors and organic solar cells[J]. New Journal of Chemistry,2012,36(9):1813-1818.
    [79] KIM J H, KIM H U, KANG I N, et al. Incorporation of Pyrene Units to Improve HoleMobility in Conjugated Polymers for Organic Solar Cells[J]. Macromolecules,2012,45(21):8628-8638.
    [80] HAHMA A, BHAT S, LEIVO K, et al. Pyrene derived functionalized low molecularweight organic gelators and gels[J]. New Journal of Chemistry,2008,32(8):1438-1448.
    [81] RAJAMALLI P, PRASAD E. Non-amphiphilic pyrene cored poly (aryl ether)dendron based gels: tunable morphology, unusual solvent effects on the emission andfluoride ion detection by the self-assembled superstructures[J]. Soft Matter,2012,8(34):8896-8903.
    [82] MARBUMRUNG S, WONGRAVEE K, RUANGPORNVISUTI V, et al.Discrimination of nucleotides by single fluorescence sensor under solvent-dependentrecognition patterns[J]. Sensors and Actuators B: Chemical,2012,171:969-975.
    [83] KAUR A, SHARMA H, KAUR S, et al. A counterion displacement assay with aBiginelli product: a ratiometric sensor for Hg2+and the resultant complex as a sensor forCl [J]. RSC Advances,2013,3(17):6160-6166.
    [84] FERNáNDEZ-LODEIRO J, Nú EZ C, DE CASTRO C S, et al. Steady-State andTime-Resolved Investigations on Pyrene-Based Chemosensors[J]. Inorganic chemistry,2012,52(1):121-129.
    [85] SAU S P, MADSEN A S, PODBEVSEK P, et al. Identification and Characterizationof Second-Generation Invader Locked Nucleic Acids (LNAs) for Mixed-SequenceRecognition of Double-Stranded DNA[J]. The Journal of organic chemistry,2013,78(19):9560-9570.
    [86] NIKO Y, KAWAUCHI S, OTSU S, et al. Fluorescence enhancement of pyrenechromophores induced by alkyl groups through σ–π conjugation: systematic synthesis ofprimary, secondary, and tertiary alkylated pyrenes at the1,3,6, and8positions and theirphotophysical properties[J]. The Journal of organic chemistry,2013,78(7):3196-3207.
    [87] WANG Q, LIU H, LU H, et al. Synthesis, characterization and solid-state emissionproperties of arylsilyl-substituted pyrene derivatives[J]. Dyes and Pigments,2013,99(3):771-778.
    [88] ZOU L, WANG X Y, SHI K, et al. Fusion at the Non-K-Region of Pyrene: AnAlternative Strategy To Extend the π-Conjugated Plane of Pyrene[J]. Organic letters,2013,15(17):4378-4381.
    [89] TSUKADA T, TAKAHASHI M, TAKEMOTO T, et al. Structure-based drug designof tricyclic8H-indeno [1,2-d][1,3] thiazoles as potent FBPase inhibitors[J]. Bioorganic&medicinal chemistry letters,2010,20(3):1004-1007.
    [90] CORT A, OZDEMIR E, TIMUR M, et al. Effects of N-acetyl-l-cysteine onbleomycin induced oxidative stress in malignant testicular germ cell tumors[J]. Biochimie,2012,94(12):2734-2739.
    [91] XIAO G, LEI P, CHI H, et al. Synthesis and luminescence of red, fluorinated iridium(III) complexes containing alkenyl benzothiazole ligand[J]. Synthetic Metals,2009,159(7):705-709.
    [92] DESSì A, BAROZZINO CONSIGLIO G, CALAMANTE M, et al. OrganicChromophores Based on a Fused Bis‐Thiazole Core and Their Application in Dye‐Sensitized Solar Cells[J]. European Journal of Organic Chemistry,2013,2013(10):1916-1928.
    [93] FRISCH, M. J., TRUCKS, G. W., SCHLEGEL, H. B., SCUSERIA, G. E., ROBB, M.A., CHEESEMAN, J. R., SCALMANI, G., BARONE, V., MENNUCCI, B., PETERSSON,G. A., NAKATSUJI, H., CARICATO, M., LI, X., HRATCHIAN, H. P., IZMAYLOV, A. F.,BLOINO, J., ZHENG, G., SONNENBERG, J. L., HADA, M., EHARA, M., TOYOTA, K.,FUKUDA, R., HASEGAWA, J., ISHIDA, M., NAKAJIMA, T., HONDA, Y., KITAO, O.,NAKAI, H., VREVEN, T., MONTGOMERY, J. A., PERALTA, J. E., OGLIARO, F.,BEARPARK, M., HEYD, J. J., BROTHERS, E., KUDIN, K. N., STAROVEROV, V. N.,KOBAYASHI, R., NORMAND, J., RAGHAVACHARI, K., RENDELL, A., BURANT, J.C., IYENGAR, S. S., TOMASI, J., COSSI, M., REGA, N., MILLAM, J. M., KLENE, M.,KNOX, J. E., CROSS, J. B., BAKKEN, V., ADAMO, C., JARAMILLO, J., GOMPERTS,R., STRATMANN, R. E., YAZYEV, O., AUSTIN, A. J., CAMMI, R., POMELLI, C.,OCHTERSKI, J. W., MARTIN, R. L., MOROKUMA, K., ZAKRZEWSKI, V. G., VOTH,G. A., SALVADOR, P., DANNENBERG, J. J., DAPPRICH, S., DANIELS, A. D.,FARKAS, FORESMAN, J. B., ORTIZ, J. V., CIOSLOWSKI, J., FOX, D. J., Gaussian09,Revision B.01, Gaussian Inc.: Wallingford CT,2009.
    [94] ZHAO Z, CHEN S, LAM J W Y, et al. Pyrene-substituted ethenes:aggregation-enhanced excimer emission and highly efficient electroluminescence[J].Journal of Materials Chemistry,2011,21(20):7210-7216.
    [95] Molecular and supramolecular information processing: from molecular switches tologic systems[M]. John Wiley&Sons,2012.
    [96] BHALLA V, GUPTA A, DHIR A, et al. A pentaquinone-based4-2bit photonicencoder[J]. Dalton Transactions,2011,40(19):5176-5179.
    [97] ANDRéASSON J, PISCHEL U, STRAIGHT S D, et al. All-photonic multifunctionalmolecular logic device[J]. Journal of the American Chemical Society,2011,133(30):11641-11648.
    [98] BI S, JI B, ZHANG Z, et al. Metal ions triggered ligase activity for rolling circleamplification and its application in molecular logic gate operations[J]. Chemical Science,2013,4(4):1858-1863.
    [99] ALTANáBOZDEMIR O. Proof of principle for a molecular1:2demultiplexer tofunction as an autonomously switching theranostic device[J]. Chemical Science,2013,4(2):858-862.
    [100] ZHAO L, XIA W, YANG C. Fluorescent1:2demultiplexer and half-subtractorbased on the hydrolysis of N-salicylidene-3-aminopyridine[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,117:397-401.
    [101] ROUT B, MILKO P, IRON M A, et al. Authorizing Multiple Chemical Passwordsby a Combinatorial Molecular Keypad Lock[J]. Journal of the American Chemical Society,2013,135(41):15330-15333.
    [102] ZHOU Z, LIU Y, DONG S. DNA-templated Ag nanoclusters as signal transducersfor a label-free and resettable keypad lock[J]. Chemical Communications,2013,49(30):3107-3109.
    [103] PU F, LIU Z, REN J, et al. Nucleic acid–mesoporous silica nanoparticle conjugatesfor keypad lock security operation[J]. Chemical Communications,2013,49(23):2305-2307.
    [104] CHEN S, GUO Z, ZHU S, et al. A Multiaddressable Photochromic Bisthienylethenewith Sequence-Dependent Responses: Construction of an INHIBIT Logic Gate and aKeypad Lock[J]. ACS applied materials&interfaces,2013,5(12):5623-5629.
    [105] XU S, LI H, MIAO Y, et al. Implementation of half adder and half subtractor with asimple and universal DNA-based platform[J]. NPG Asia Materials,2013,5(12): e76.
    [106] CHEN S, YANG Y, WU Y, et al. Multi-addressable photochromic terarylenecontaining benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctionalmolecular logic gates on unimolecular platform [J]. Journal of Materials Chemistry,2012,22(12):5486-5494.
    [107] KONDURU N K, DEY S, SAJID M, et al. Synthesis and antibacterial andantifungal evaluation of some chalcone based sulfones and bisulfones[J]. European journalof medicinal chemistry,2013,59:23-30.
    [108] NDOILE M M, VAN HEERDEN F R. Total synthesis of ochnaflavone[J]. Beilsteinjournal of organic chemistry,2013,9(1):1346-1351.
    [109] XIN X, WANG Y, XU W, et al. A facile and efficient one-pot synthesis ofpolysubstituted benzenes in guanidinium ionic liquids [J]. Green Chemistry,2010,12(5):893-898.
    [110] KARUPPANNAN S, CHAMBRON J C. Supramolecular chemical sensors based onpyrene monomer-excimer dual luminescence [J]. Chemistry-an Asian journal,2011,6(4):964-984.
    [111] MA B, ZENG F, LI X, et al. A facile approach for sensitive, reversible andratiometric detection of biothiols based on thymine-mediated excimer–monomertransformation[J]. Chemical Communications,2012,48(48):6007-6009.
    [112] BAEK K, EOM M S, KIM S, et al. Metal ion-prompted pyrene–excimer formationvia an anion-mediated process and its application for a ratiometric Zn2+chemosensor withhigh selectivity over Cd2+[J]. Tetrahedron Letters,2013,54(13):1654-1657.
    [113] BAG S S, KUNDU R. Sensing of Micellar Microenvironment with DualFluorescent Probe, Triazolylpyrene (TNDMBPy)[J]. Journal of fluorescence,2013,23(5):929-938.
    [114] LI W, CHEN J, JIAO H, et al. A label-free real time fluorometric assay for proteaseand inhibitor screening with a released heme[J]. Chemical Communications,2012,48(81):10123-10125.
    [115] SUN J, LU Y, WANG L, et al. Fluorescence turn-on detection of DNA based on theaggregation-induced emission of conjugated poly(pyridinium salt)s[J]. Polymer Chemistry,2013,4(14):4045-4051.
    [116] CHEN J, LIAO D, WANG Y, et al. Real-Time Fluorometric Assay forAcetylcholinesterase Activity and Inhibitor Screening through the Pyrene ProbeMonomer–Excimer Transition[J]. Organic letters,2013,15(9):2132-2135.
    [117] SONG Q H, WU Q Q, LIU C H, et al. A novel fluorescent probe for selectivedetection of thiols in acidic solutions and labeling of acidic organelles in live cells[J].Journal of Materials Chemistry B,2013,1(4):438-442.
    [118] LIM S Y, YOON D H, HA D Y, et al. Caged rhodamine-based fluorescent probe forbiothiol: Selective detection of cysteine over homocysteine and glutathione in water[J].Sensors and Actuators B: Chemical,2013,188:111-116.
    [119] YIN C, HUO F, ZHANG J, et al. Thiol-addition reactions and their applications inthiol recognition[J]. Chemical Society Reviews,2013,42(14):6032-6059.
    [120] GOSWAMI S, MANNA A, PAUL S, et al. Dual channel selective fluorescencedetection of Al (III) and PPi in aqueous media with an ‘off–on–off’switch which mimicsmolecular logic gates (INHIBIT and EXOR gates)[J]. Dalton Transactions,2013,42(22):8078-8085.
    [121] OR OWSKA M, K ONKOWSKI A M, JEZIERSKA J, et al. Luminescencerecognition material as an INHIBIT logic gate in presence of Pb2+and Cu2+ions inaqueous solutions [J]. Sensors and Actuators B: Chemical,2013,186:396-406.
    [122] DU J, YIN S, JIANG L, et al. A colorimetric logic gate based on free goldnanoparticles and the coordination strategy between melamine and mercury ions[J]. Chem.Commun.,2013,49(39):4196-4198.
    [123] KUMAR R, BHALLA V, KUMAR M. Ratiometric/‘turn-on’fluorescentchemosensor for CN: mimicking XNOR logic function with Fe3+ions[J]. DaltonTransactions,2013,42(24):8808-8814.
    [124] XUE P, LU R, JIA J, et al. A smart gelator as a chemosensor: application tointegrated logic gates in solution, gel, and film[J]. Chemistry-A European Journal,2012,18(12):3549-3558.
    [125] LI H, ZHANG J N, ZHOU W, et al. Dual-Mode Operation of a Bistable [1]Rotaxane with a Fluorescence Signal[J]. Organic letters,2013,15(12):3070-3073.
    [126] ALTANáBOZDEMIR O. Proof of principle for a molecular1:2demultiplexer tofunction as an autonomously switching theranostic device[J]. Chemical Science,2013,4(2):858-862.
    [127] FREEMAN R, FINDER T, WILLNER I. Multiplexed analysis of Hg2+and Ag+ionsby nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gateoperations[J]. Angewandte Chemie International Edition,2009,48(42):7818-7821.
    [128] PARK K S, JUNG C, PARK H G.“Illusionary” Polymerase Activity Triggered byMetal Ions: Use for Molecular Logic‐Gate Operations[J]. Angewandte ChemieInternational Edition,2010,49(50):9757-9760.
    [129] Lin Z, Li X, Kraatz H B. Impedimetric immobilized DNA-based sensor forsimultaneous detection of Pb2+, Ag+, and Hg2+[J]. Analytical chemistry,2011,83(17):6896-6901.
    [130] ZHANG G, LIN W, YANG W, et al. Logic gates for multiplexed analysis of Hg2+and Ag+[J]. Analyst,2012,137(11):2687-2691.
    [131] NATHáDAS R. pH dependent multifunctional and multiply-configurable logic gatesystems based on small molecule G-quadruplex DNA recognition[J]. ChemicalCommunications,2013,49(18):1817-1819.
    [132] RUAN Y B, LI A F, ZHAO J S, et al. Specific Hg2+-mediated perylene bisimideaggregation for highly sensitive detection of cysteine[J]. Chemical Communications,2010,46(27):4938-4940.
    [133] FANG C, ZHOU J, LIU X, et al. Mercury(II)-mediated formation ofimide-Hg-imide complexes[J]. Dalton Transactions,2011,40(4):899-903.
    [134] LUO Y, MA L, ZHENG H, et al. Discovery of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione, a readily available and orally active glitazone for the treatment ofconcanavalin A-induced acute liver injury of BALB/c mice[J]. Journal of medicinalchemistry,2009,53(1):273-281.
    [135] ALBERS H M H G, HENDRICKX L J D, VAN TOL R J P, et al. Structure-baseddesign of novel boronic acid-based inhibitors of autotaxin[J]. Journal of medicinalchemistry,2011,54(13):4619-4626.
    [136] HAN M, GAO X, SU J Z, et al. Quantum-dot-tagged microbeads for multiplexedoptical coding of biomolecules[J]. Nature biotechnology,2001,19(7):631-635.
    [137] STRACK G, LUCKARIFT H R, NICHOLS R, et al. Bioelectrocatalytic generationof directly readable code: harnessing cathodic current for long-term information relay[J].Chemical Communications,2011,47(27):7662-7664.
    [138] OH J M, PARK D H, CHOY J H. Integrated bio-inorganic hybrid systems fornano-forensics[J]. Chemical Society Reviews,2011,40(2):583-595.
    [139] PARK D H, CHOY J H. Emerging Strategies in Infohybrid Systems[J]. EuropeanJournal of Inorganic Chemistry,2012,2012(32):5145-5143.
    [140] GAO J, LAI Y, WU C, et al. Exploring and exploiting the synergy of non-covalentinteractions on the surface of gold nanoparticles for fluorescent turn-on sensing ofbacterial lipopolysaccharide[J]. Nanoscale,2013,5(17):8242-8248.
    [141] OKAMOTO I, IWAMOTO K, WATANABE Y, et al. Metal‐Ion Selectivity ofChemically Modified Uracil Pairs in DNA Duplexes[J]. Angewandte Chemie InternationalEdition,2009,48(9):1648-1651.
    [142] ONO A, TORIGOE H, TANAKA Y, et al. Binding of metal ions by pyrimidine basepairs in DNA duplexes[J]. Chemical Society Reviews,2011,40(12):5855-5866.
    [143] AHAMED B N, GHOSH P. Selective colorimetric and fluorometric sensing of Cu(II) by iminocoumarin derivative in aqueous buffer[J]. Dalton Transactions,2011,40(24):6411-6419.
    [143] EL SAYED S, TORRE C D L, SANTOS-FIGUEROA L E, et al. A new fluorescent“turn-on” chemodosimeter for the detection of hydrogen sulfide in water and living cells[J]. RSC Advances,2013,3(48):25690-25693.
    [144] RAZI S S, ALI R, SRIVASTAVA P, et al. A selective quinoline-derived fluorescentchemodosimeter to detect cyanide in aqueous medium [J]. Tetrahedron Letters,2014,55(5):1052-1056.
    [145] HUANG Y, LI F, QIN M, et al. A multi-stopband photonic-crystal microchip forhigh-performance metal-ion recognition based on fluorescent detection [J]. AngewandteChemie International Edition,2013,52(28):7296-7299.
    [146] GUO Z, TONG W L, CHAN M C. Luminescent oligo(ethyleneglycol)-functionalized cyclometalated platinum(II) complexes: cellular characterizationand mitochondria-specific localization [J]. Chemical Communications,2014,50(14):1711-1714.
    [147] ASAKO S, ILIES L, NAKAMURA E. Iron-catalyzed ortho-allylation of aromaticcarboxamides with allyl ethers [J]. Journal of the American Chemical Society,2013,135(47):17755-17757.
    [148] SCHOTTENBERGER H, LUKASSSER J, REICHEL E, et al. Semimasked1,1′-diethynylferrocenes: synthetic concepts, preparations, and reactions[J]. Journal ofOrganometallic Chemistry,2001,637:558-576.
    [149] ASOKAN C V, ANABHA E R, THOMAS A D, et al. A facile method for thesynthesis of nicotinonitriles from ketones via a one-pot chloromethyleneiminium saltmediated three-component reaction[J]. Tetrahedron letters,2007,48(32):5641-5643.
    [150] SHAMSHINA J L, SNOWDEN T S. Practical approach to α-or γ-heterosubstitutedenoic acids[J]. Organic letters,2006,8(25):5881-5884.
    [151] CAFIERO L R, SNOWDEN T S. General and practical conversion of aldehydes tohomologated carboxylic acids[J]. Organic letters,2008,10(17):3853-3856.
    [152] PERRYMAN M S, HARRIS M E, FOSTER J L, et al. Trichloromethyl ketones:asymmetric transfer hydrogenation and subsequent Jocic-type reactions with amines[J].Chemical Communications,2013,49(85):10022-10024.
    [153] S RENSEN M H, NIELSEN C, NIELSEN P. Synthesis of a bicyclic analogue ofAZT restricted in an unusual O4'-endo conformation[J]. The Journal of organic chemistry,2001,66(14):4878-4886.
    [154] WANG Z, CAMPAGNA S, YANG K, et al. A practical preparation of terminalalkynes from aldehydes[J]. The Journal of organic chemistry,2000,65(6):1889-1891.