两亲性间苯二酚杯芳烃超分子组装与识别光谱特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是当代化学领域的前沿学科,间苯二酚杯芳烃以其合成简单易于修饰的优点而成为超分子化学的一个重要研究方向。为了进一步揭示两亲性间苯二酚杯芳烃及其衍生物的分子别机理及组装规律,本文合成了一系列两亲性间苯二酚杯芳烃,并按照其溶解性的不同分别研究了氯仿相及水相中与染料的相互作用关系和选择性识别能力。具体研究内容如下:
     以间苯二酚和不同链长的脂肪醛为原料合成了一系列间苯二酚杯芳烃(CRA),并通过酚羟基的修饰得到了一系列醚酯类(CRE),羧酸类(CRC)和磺酸类(CRS)衍生物,利用核磁、红外等表征了其结构。并对磺酸类衍生物的溶解性、光谱特性、表面活性等进行了研究,发现CRS水溶液具有独特的荧光性能,且荧光发射峰受激发波长及溶液浓度影响。
     通过液-液两相萃取技术,研究了在油溶两亲性间苯二酚杯芳烃作用下水溶性染料在氯仿相中的聚集行为。发现CRA和CRE均只能选择性包裹水溶性阳离子染料而不能包裹水溶性阴离子染料,且C11CRA、C6CRA和C6CRE对亚甲基蓝(MB)的饱和包裹量不同,平均每个C11CRA、C6CRA和C6CRE分子分别能包裹2.5、2和0.5个MB分子。研究发现选择MB与AO作为染料对时,C11CRA对AO的包裹具有优先选择性,当AO存在时C11CRA对MB的包裹能力会降低,而MB的存在对C11CRA包裹AO的能力影响不大;选择MB与RhB为染料对时,C11CRA对两种染料的包裹能力都会下降,MB和RhB与C11CRA的结合能力相当。而对于MB与水溶性阴离子染料组成的染料对,如MB和MO两种溶液混合后能形成溶于氯仿和二氯甲烷的配合物,而通过对比实验可以发现C11CRA的存在使得更多的MB和MO转移至氯仿相;而MB和FSS混合后,FSS不能被转移至二氯甲烷相,且FSS会抑制C11CRA对MB的包裹。
     利用间苯二酚杯芳烃与超支化聚合物HPEI通过超分子作用构建了C6CRA-HPEI、C11CRA-HPEI、C6CRC-HPEI、C11CRC-HPEI四种复合物。该类复合物对水溶性阴离子染料MO具有较好的包裹性能,并计算了复合物对MO的饱和包裹量。在C6CRA、C11CRA、C6CRC和C11CRC先包裹MB后仍然能与HPEI复合,并可用于再包裹MO,即此类复合物具有同时包裹两种不同电性的染料客体分子的能力。
     研究了杯[6]芳烃磺酸钠(SCA[6])和己基间苯二酚杯芳烃丁磺酸钠(C6CRS)两种水溶性杯芳烃对噻唑橙类菁染料荧光性能影响。结果表明:SCA[6]与TO-COOH和Cy3分别形成了化学计量比为1:1的主客体复合物,并计算出复合物的结合稳定常数。SCA[6]可以有效增溶TO-COOH染料,使其作为荧光探针更好的用于生物标记。而C6CRS与噻唑橙菁染料(TO-COOH)作用,可以使TO-COOH的荧光强度增强,能够形成化学计量比为1:4的主客体复合物。而金属阳离子的加入,能与TO-COOH竞争与C6CRS作用,使得复合物的荧光发生变化,价态越高对复合物的荧光影响越明显。在蛋白标记实验中TO-C6CRS复合物效果明显优于TO,而直接利用C6CRS水溶液标记蛋白也取得了良好的效果。表明C6CRS不仅能改善荧光染料在水溶液中的荧光特性,而且可直接用于标记蛋白。
     研究了三种水溶性染料RhB、AO和FSS与C6CRS的相互作用,发现C6CRS与三种染料均存在强相互作用。通过Job’s法,确定C6CRS与RhB、AO和FSS三种水溶性染料结合的化学计量比均为1:4,表明C6CRS与水溶性染料作用时,静电引力并不是主导作用,而可能是疏水作用力和π-π堆积作用起了主要作用。为了对比,研究了Gemini表面活性剂分别与罗丹明B和吖啶橙及在两种染料共存时的相互作用。发现染料可以参与Gemini表面活性剂胶束的形成过程,染料的尺寸影响表面活性剂聚集特性。当AO到RhB同时存在于Gemini表面活性剂溶液时,能观察到了能量转移现象。
Supramolecular chemistry is an important research field in current chemistry.System based on calixarene plays an important role in the field of supramolecularchemistry. A series of amphiphilic benzodiazepines calixarene were synthesized andtheir binding behaviors to the fluorescent guests were also investgated in differentsolvents were studied. Following are the main contents:
     A series of calix[4]resorcinarenes (CRA) were synthesized with Resorcinol andfatty aldehyde. Then a series of derivatives such as ether ester (CRE), carboxylic acid(CRC) and sulfonic acid type (CRS) were obtained. Their structures were confirmedby FTIR and1HNMR et al. The solubility, spectral characteristic and surface activityof the CRS were also studied and CRS in aqueous solution were fluorescent andemitting wavelength changed by varying the exited wavelength or concentration ofthe CRS solutions.
     Aggregation properties of water-soluble dye in chloroform were studied in thepresence of Resorcinarenes by two-phase extraction technology. CRA and CRE canencapsulate only cationic dyes. The loading ability of C11CRA, C6CRA and C6CREto MB is different. Each C11CRA, C6CRA and C6CRE can encapsulate about2.5,2and0.5MB molecules. There were competitive or synergistic effects betweendifferent pair of dyes. When MB and AO exist at the same time, there is priorityselectivity in encapsulation for C11CRA to AO and load ability to MB decrease withexistence of AO. But the presence of MB molecules almost has no influence onencapsulation of C11CRA to AO molecules. When the dye pairs are MB and RhB,encapsulation capacity of C11CRA to both dyes decreased. For MB and MO, they canform a complex dissolved in CHCl2or when mixed together and the presence ofC11CRA can increase the possibility of MB and MO transfer from aqueous solutionto CHCl3phase. When MB and FSS mixed together, FSS can not be transferred toCHCl2phase and the existence of FSS decreased the encapsulation of C11CRA toMB.
     Four complexes including C6CRA-HPEI, C11CRA-HPEI, C6CRE-HPEI andC11CRE-HPEI were constructed with Resorcinarenes and HPEI. Encapsulationcapacity of complexes improved remarkably compared with HPEI itself. They stillhave the ability to form complex with HPEI after their saturated encapsulation withMB and the complex also have ability to interact with MO.
     Influences of two water-soluble calixarene on the thiazole orange cyanine dyeswere studied. Stoichiometric ratio of calix [6] arene and dyes was1:1. Solubility ofdyes in water was improved, which made it a potential fluorescent probe asbiomarkers. While the interaction of C6CRS with thiazole orange cyanine (TO) wasquite different. The stoichiometric ratio between C6CRS and TO was1:4. Addition ofmetal cations may have competitive effect with TO-COOH to interact with C6CRS.The higher the valence of cations, the more significant fluorescence intensity changesof the complex. In protein labeling experiments, TO-C6CRS had advantages overTO-COOH itself. While protein labeled with C6CRS itself achieved good result,which suggested that C6CRS can improve solubility of TO in water and used as apotential fluorescent probe to label protein.
     The interactions between three water-soluble dyes of RhB, AO, FSS and C6CRSwere studied. There was quenching effect between C6CRS and dyes. Thestoichiometric ratio of C6CRS and three dyes had the same values of1:4, whichsuggested that electrostatic attraction between C6CRS and dyes is not dominant roleand the principal pi-pi stacking may account for this. For comparison, we chose toinvestigate interaction between a sulfonated Gemini surfactant and RhodamineB/acridine orange. Results showed that the dyes involved in the process of the micelleformation and the size of the dyes had different effect on the aggregation properties ofGemini surfactant. When the AO and RhB coexisted in the solution of Geminisurfactant, energy transfer from AO to RhB was observed.
引文
[1] Lehn Jean-Marie. Supramolecular chemistry—scope and perspectives molecules,supermolecules, and molecular devices (Nobel Lecture)[J]. Angewandte ChemieInternational Edition in English.1988,27(1):89-112.
    [2]徐家业.超分子化学发展简介[J].有机化学.1995,15(2):133-144.
    [3] Cram Donald J. The design of molecular hosts, guests, and their complexes[J].Journal of Inclusion Phenomena and Macrocyclic Chemistry.1988,6(4):397-413.
    [4]沈兴海.超分子化学--概念和展望(Supramolecular Chemistry: Concepts andPerspectives)[M].北京:北京大学出版社,2002.
    [5] Lehn Jean-Marie. Supramolecular chemistry: from molecular information towardsself-organization and complex matter[J]. Reports on progress in physics.2004,67(3):249.
    [6] Zeng Fanwen, Zimmerman Steven C. Dendrimers in supramolecular chemistry:from molecular recognition to self-assembly[J]. Chemical reviews.1997,97(5):1681-1712.
    [7] Zimmerman Steven C. Dendrimers in molecular recognition and self-assembly[J].Current Opinion in Colloid&Interface Science.1997,2(1):89-99.
    [8] Lehn Jean-Marie. Perspectives in supramolecular chemistry: From molecularrecognition towards self-organisation[J]. Pure and applied chemistry.1994,66(10):1961-1966.
    [9]楼兴隆.超分子纳米载体的制备,表征及性能研究[D].天津大学,2010.
    [10]孙涛.功能型超分子体系的合成与自组装[D].山东大学,2012.
    [11] Danil de Namor Angela F, Cleverley Robert M, Zapata-Ormachea Mariel L.Thermodynamics of calixarene chemistry[J]. Chemical reviews.1998,98(7):2495-2525.
    [12] Molenveld Peter, Engbersen Johan FJ, Reinhoudt David N. Dinuclearmetallo-phosphodiesterase models: application of calix [4] arenes as molecularscaffolds[J]. Chemical Society Reviews.2000,29(2):75-86.
    [13] Asfari Zouhair, B hmer Volker, Harrowfield Jack M, et al. Calixarenes2001[M].Kluwer Academic Publishers Dordrecht,2001.
    [14]梁清.两亲性杯芳烃的自组装及其纳米杂化体系的构筑[D].复旦大学,2012.
    [15]吕鉴泉,陈朗星,郭洪声,等.杯芳烃的功能化修饰及其在分子识别中的应用[J].化学进展.2001,13(3):209-215.
    [16]胡旭波,钟振林,卢雪然,等.杯芳冠醚研究进展[J].化学通报.1997,418-25.
    [17] Alfieri Carla, Dradi Emanuele, Pochini Andrea, et al. Synthesis, and X-raycrystal and molecular structure of a novel macro-bicyclic ligand: crownedpt-butyl-calix [4] arene[J]. Journal of the Chemical Society, ChemicalCommunications.1983,(19):1075-1077.
    [18] Mogck O, Parzuchowski P, Nissinen M, et al. Covalently linkedmulti-calixarenes[J]. Tetrahedron.1998,54(34):10053-10068.
    [19] Higler Irene, Timmerman Peter, Verboom Willem, et al. Combination of calix [4]arenes and resorcin [4] arenes for the complexation of steroids[J]. The Journal ofOrganic Chemistry.1996,61(17):5920-5931.
    [20] Ferguson G, Gallagher JF, McKervey MA, et al. For the use of calix [4] arenes ascores for dendrimers see also[J]. J. Chem. Soc., Perkin Trans.1996,1599-602.
    [21] Giannini Luca, Solari Euro, Zanotti‐Gerosa Antonio, et al. The OrganometallicChemistry of Zirconium on an Oxo Surface Provided by p‐tert‐Butylcalix [4]arene[J]. Angewandte Chemie International Edition in English.1996,35(1):85-87.
    [22] Csokai Viktor, Grün Alajos, Balázs Barbara, et al. Unprecedented cyclizations ofcalix [4] arenes with glycols under the mitsunobu protocol, part2.1O, O-and O,S-bridged calixarenes[J]. Organic Letters.2004,6(4):477-480.
    [23] Simaan Samah, Biali Silvio E. Preferential Axial Protonation in a ZwitterionicCalix [4] arene[J]. Organic Letters.2005,7(9):1817-1820.
    [24] Katagiri Hiroshi, Iki Nobuhiko, Hattori Tetsutaro, et al. Calix [4] arenescomprised of aniline units[J]. Journal of the American Chemical Society.2001,123(4):779.
    [25] Beer Paul D, Chen Zheng, Gale Philip A, et al. Cation recognition by newdiester-and diamide-calix [4] arenediquinones and adiamide-benzo-15-crown-5-calix [4] arene[J]. Journal of inclusion phenomenaand molecular recognition in chemistry.1994,19(1-4):343-359.
    [26] Poleska-Muchlado Zuzanna, Luboch El bieta, Biernat Jan F. Novel Calix [4]resorcinarenes with Side Azobenzo-15-crown-5Residues[J]. SyntheticCommunications.2008,38(18):3062-3067.
    [27] Tunstad Linda M, Tucker John A, Dalcanale Enrico, et al. Host-guestcomplexation.48. Octol building blocks for cavitands and carcerands[J]. TheJournal of Organic Chemistry.1989,54(6):1305-1312.
    [28] Hoegberg AG Sverker. Two stereoisomeric macrocyclic resorcinol-acetaldehydecondensation products[J]. The Journal of Organic Chemistry.1980,45(22):4498-4500.
    [29] Hoegberg AG Sverker. Cyclooligomeric phenol-aldehyde condensation products.2. Stereoselective synthesis and DNMR study of two1,8,15,22-tetraphenyl [14]metacyclophan-3,5,10,12,17,19,24,26-octols[J]. Journal of the AmericanChemical Society.1980,102(19):6046-6050.
    [30] Weinelt Frank, Schneider Hans Joerg. Host-guest chemistry.27. Mechanisms ofmacrocycle genesis. The condensation of resorcinol with aldehydes[J]. TheJournal of Organic Chemistry.1991,56(19):5527-5535.
    [31] Jain VK, Kanaiya PH. Chemistry of calix [4] resorcinarenes[J]. RussianChemical Reviews.2011,80(1):75-102.
    [32] O'Farrell Courtney M, Chudomel J Matthew, Collins Jan M, et al. Water-solublecalix [4] resorcinarenes with hydroxyproline groups as chiral NMR solvatingagents[J]. The Journal of Organic Chemistry.2008,73(7):2843-2851.
    [33] Pham Ngoc H, Wenzel Thomas J. A sulfonated calix [4] resorcinarene withl-pipecolinic acid groups as a water-soluble chiral NMR solvating agent[J].Tetrahedron: Asymmetry.2011,22(14):1574-1580.
    [34] Pham Ngoc H, Wenzel Thomas J. A water‐soluble calix [4] resorcinarene withL‐pipecolinic acid groups as a chiral NMR solvating agent[J]. Chirality.2012,24(3):193.
    [35] Kashapov Ruslan R, Pashirova Tatiana N, Kharlamov Sergey V, et al. Novelself-assembling system based on resorcinarene and cationic surfactant[J].Physical Chemistry Chemical Physics.2011,13(35):15891-15898.
    [36] Korshin Dmitry E, Kashapov Ruslan R, Murtazina Leisan I, et al. Self-assemblyof an aminoalkylated resorcinarene in aqueous media: host–guest properties[J].New Journal of Chemistry.2009,33(12):2397-2401.
    [37] Kashapov RR, Pashirova TN, Zhiltsova EP, et al. Supramolecular systems basedon aminomethylated calix [4] resorcinarene and a cationic surfactant: Catalystsof the hydrolysis of esters of phosphorus acids[J]. Russian Journal of PhysicalChemistry A.2012,86(2):200-204.
    [38] Menon Shobhana K, Modi Nishith R, Mistry Bhoomika, et al. Improvement ofsome pharmaceutical properties of mycophenolate mofetil (MMF) by parasulphonatocalix [4] resorcinarene inclusion complex[J]. Journal of InclusionPhenomena and Macrocyclic Chemistry.2011,70(1-2):121-128.
    [39] Kazakova Ella Kh, Makarova Nelly A, Ziganshina Albina U, et al. Novelwater-soluble tetrasulfonatomethylcalix [4] resorcinarenes[J]. Tetrahedron letters.2000,41(51):10111-10115.
    [40] Mustafina Asiya R, Fedorenko Svetlana V, Makarova Nelya A, et al. Theinclusion properties of a new watersoluble sulfonated calix [4] resorcinarenetowards alkylammonium and N-methylpyridinium cations[J]. Journal ofInclusion Phenomena and Macrocyclic Chemistry.2001,40(1-2):73-76.
    [41] Syakaev Victor V, Kazakova Ella Kh, Morozova Julia E, et al. Guest controlledaggregation of amphiphilic sulfonatomethylated calix [4] resorcinarenes inaqueous solutions[J]. Journal of colloid and interface science.2012,370(1):19-26.
    [42] Manabe Osamu, Asakura Kazumichi, Nishi Tadahiko, et al. Diazo-coupling witha resorcinol-based cyclophane. A new water-soluble host with a deep cleft[J].Chemistry Letters.1990,19(7):1219-1222.
    [43] Jain Vinod K, Kanaiya Parin H, Bhojak Narendar. Synthesis, spectralcharacterization of azo dyes derived from calix [4] resorcinarene and theirapplication in dyeing of fibers[J]. Fibers and Polymers.2008,9(6):720-726.
    [44] Lee Jae-jun, Jung Myung-sup, Kim Do-yun, et al. Solid acid, Polmer ElectrolyteMembrane Including The Same, and Fuel Cell Using the Polymer ElectrolyteLMembrane[P]. American Patents:200700822482007041.
    [45]史春越,曹家庆,范平.杯芳烃对有机小分子识别作用的研究进展[J].辽宁大学学报(自然科学版).2003,30(1).
    [46]何俊,安绪武,王真筠.水溶液中对磺酸钠杯[8]芳烃醚与芘间的相互作用[J].化学学报.1999,57(12):1332-1337.
    [47]田振峰,郑炎松.手性杯芳烃的合成及性质[J]. Chinese Journal of Olganicch∞s时.2002,22O02.
    [48] Hassan AK, Ray AK, Nabok AV, et al. Spun films of novel calix [4] resorcinarenederivatives for benzene vapour sensing[J]. Sensors and Actuators B: Chemical.2001,77(3):638-641.
    [49]刘宇,陶雅秋,曹炎炎,等.杯芳烃的超分子化学研究(IV):对一叔丁基杯
    [4]芳烃对ATP的分子识别及液膜传输作用[J].化学学报.2002,60(6):1111-1115.
    [50] Atwood Jerry L, Barbour Leonard J, Jerga Agoston. Hydrogen-bonded molecularcapsules are stable in polar media[J]. Chemical Communications.2001,(22):2376-2377.
    [51] Shivanyuk Alexander, Rebek Jr Julius. Hydrogen-bonded capsules in polar,protic solvents[J]. Chemical Communications.2001,(22):2374-2375.
    [52] Avram Liat, Cohen Yoram. Spontaneous formation of hexameric resorcinarenecapsule in chloroform solution as detected by diffusion NMR[J]. Journal of theAmerican Chemical Society.2002,124(51):15148-15149.
    [53] Avram Liat, Cohen Yoram. The role of water molecules in a resorcinarenecapsule as probed by NMR diffusion measurements[J]. Organic Letters.2002,4(24):4365-4368.
    [54] Xu Wei, Vittal Jadagese J, Puddephatt Richard J. Inorganic inclusion chemistry: anovel anion inclusion system[J]. Journal of the American Chemical Society.1995,117(32):8362-8371.
    [55] Aoyama Yasuhiro, Tanaka Yasutaka, Toi Hiroo, et al. Polar host-guest interaction.Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomeras a lipophilic polar host[J]. Journal of the American Chemical Society.1988,110(2):634-635.
    [56] Aoyama Yasuhiro, Tanaka Yasutaka, Sugahara Shuji. Molecular recognition.5.Molecular recognition of sugars via hydrogen-bonding interaction with asynthetic polyhydroxy macrocycle[J]. Journal of the American Chemical Society.1989,111(14):5397-5404.
    [57] Kobayashi Kenji, Asakawa Yuji, Kikuchi Yasuaki, et al. CH-. pi. interaction as animportant driving force of host-guest complexation in apolar organic media.Binding of monools and acetylated compounds to resorcinol cyclic tetramer asstudied by proton NMR and circular dichroism spectroscopy[J]. Journal of theAmerican Chemical Society.1993,115(7):2648-2654.
    [58] Yanagihara Ryoji, Aoyama Yasuhiro. Enhanced sugar-binding ability ofdeprotonated calix [4] resorcarene in water: Balance of CH-π interaction andhydrophobic effect[J]. Tetrahedron letters.1994,35(52):9725-9728.
    [59] Fujimoto Takako, Shimizu Chikao, Hayashida Osamu, et al. Solution-to-surfacemolecular-delivery system using a macrocyclic sugar cluster. Sugar-directedadsorption of guests in water on polar solid surfaces[J]. Journal of the AmericanChemical Society.1997,119(28):6676-6677.
    [60] Fujimoto Takako, Shimizu Chikao, Hayashida Osamu, et al. TERNARYCOMPLEXATION INVOLVING PROTEIN. MOLECULAR TRANSPORT TOSACCHARIDE-BINDING PROTEINS USING MACROCYCLICSACCHARIDE CLUSTER AS SPECIFIC TRANSPORTE R[J]. Journal of theAmerican Chemical Society.1998,120(3):601-602.
    [61] IWANEK YW, Frohlich R. Structural Investigation of the Complex ofCalixresorcarene with Pyridine[J]. Polish journal of chemistry.1998,72(10):2342-2345.
    [62] Kunsági-Máté Sándor, Nagy Livia, Nagy Géza, et al. Complex formation of Fe(II) and Fe (III) ions with octafunctionalized C-methyl-calix [4] resorcinarenepossessing-OCH2COOH (K) moieties[J]. The Journal of Physical Chemistry B.2003,107(20):4727-4731.
    [63] Kunsági-Máté Sándor, Szabó Kornélia, Lemli Beáta, et al. Increasedcomplexation ability of water-soluble calix [4] resorcinarene octacarboxylatetoward phenol by the assistance of Fe (II) ions[J]. The Journal of PhysicalChemistry B.2004,108(40):15519-15522.
    [64] Bibal Brigitte, Declercq Jean-Paul, Dutasta Jean-Pierre, et al.Thiophosphorylated cavitand: structure and affinity towards soft metal ions[J].Tetrahedron.2003,59(31):5849-5854.
    [65] Demirel Nadir, Merdivan Melek, Pirinccioglu Necmettin, et al. Thorium (IV) anduranium (VI) sorption studies on octacarboxymethyl- C-methylcalix [4]resorcinarene impregnated on a polymeric support[J]. Analytica chimica acta.2003,485(2):213-219.
    [66] Faull John D, Wissmann Paul J, Gupta Vinay K. Ionic interactions and multilayerstructures on self-assembled surfaces of calix [4] resorcinarene[J]. Thin SolidFilms.2004,457(2):292-300.
    [67] Konovalov AI, Antipin IS, Mustafina AR, et al. Design and Ionophore Propertiesof Some Macrocyclic Calixarene-Based Ligands[J]. Russian Journal ofCoordination Chemistry.2004,30(4):227-244.
    [68] Beer Paul D, Gale Philip A. Anion recognition and sensing: the state of the artand future perspectives[J]. Angewandte Chemie International Edition.2001,40(3):486-516.
    [69] Dumazet Isabelle, Beer Paul D. Synthesis and characterisation of novelruthenium (II) bipyridyl and ferrocenoyl cavitand receptors for the recognition ofanionic guests[J]. Tetrahedron letters.1999,40(4):785-788.
    [70] Jacopozzi Paola, Dalcanale Enrico. Metal‐induced self‐assembly ofcavitand‐based cage molecules[J]. Angewandte Chemie International Edition inEnglish.1997,36(6):613-615.
    [71] Lücking Ulrich, Rudkevich Dmitry M. Deep cavitands for anion recognition[J].Tetrahedron letters.2000,41(49):9547-9551.
    [72] Kim Sook Kyung, Moon Byung-Sik, Park Ju Hyun, et al. A fluorescent cavitandfor the recognition of GTP[J]. Tetrahedron letters.2005,46(39):6617-6620.
    [73] West W, Pearce Sandra. The dimeric state of cyanine dyes[J]. The Journal ofPhysical Chemistry.1965,69(6):1894-1903.
    [74] Patil Kesharsingh, Pawar Rajesh, Talap Pandurang. Self-aggregation ofMethylene Blue in aqueous medium and aqueous solutions of Bu4NBr andurea[J]. Physical Chemistry Chemical Physics.2000,2(19):4313-4317.
    [75] Pandey Shubha, Kar Jyotsna R, Azam Amir, et al. Competitive Self and InducedAggregation of Calix [4] arene Ethers and Their Interaction with PinacyanolChloride and Methylene Blue in Nonaqueous Media[J]. Journal of solutionchemistry.2010,39(1):107-120.
    [76] Helttunen Kaisa, Prus Piotr, Luostarinen Minna, et al. Interaction ofaminomethylated resorcinarenes with rhodamine B[J]. New Journal of Chemistry.2009,33(5):1148-1154.
    [77] Borowia Teresa, M czyński Marek, Pietraszkiewicz Marek, et al. StructuralStudy of C-undecylcalix [4] resorcinarene Solvate with Dioxane[J]. Journal ofInclusion Phenomena and Macrocyclic Chemistry.1999,35(1-2):131-138.
    [78] Kubinyi Miklós, Brátán János, Grofcsik András, et al. Proton transfer andsupramolecular complex formation between Nile blue and tetraundecylcalix [4]resorcinarene—a fluorescence spectroscopic study[J]. Journal of the ChemicalSociety, Perkin Transactions2.2002,(10):1784-1789.
    [79] Utzig E, Pietraszkiewicz O, Pietraszkiewicz M. Thermal analysis of calix [4]resorcinarene complexes with secondary and tertiary amines[J]. Journal ofthermal analysis and calorimetry.2004,78(3):973-980.
    [80] Zhang Yuegang, Kim Christopher D, Coppens Philip. Does C-methylcalix [4]resorcinarene always adopt the crown shape conformation? Aresorcinarene/bipyridine/decamethylruthenocene supramolecular clathrate with anovel framework structureElectronic supplementary information (ESI): colourversion of Fig.1. See http://www. rsc. org/suppdata/cc/b0/b004783j[J]. ChemicalCommunications.2000,(23):2299-2300.
    [81] Ma Bao-Qing, Zhang Yuegang, Coppens Philip. Structural variation andsupramolecular isomerism in the C-Methylcalix [4] resorcinarene/bipyridinesystem[J]. Crystal Growth&Design.2002,2(1):7-13.
    [82] Ma Bao-Qing, Coppens Philip. Variable conformation of benzophenone in aseries of resorcinarene-based supramolecular frameworks[J]. Crystal Growth&Design.2004,4(6):1377-1385.
    [83] Ma Bao-Qing, Zhang Yuegang, Coppens Philip. Multiple conformations of benzilin resorcinarene-based supramolecular host matrixes[J]. The Journal of OrganicChemistry.2003,68(24):9467-9472.
    [84] Georgiev Ivan, Bosch Eric, Barnes Charles L, et al. The quest for chain-linkhydrogen-bonded capsules: Self-assembly of C-methyl calix [4] resorcinarenewith1,2-bis (5'-pyrimidyl) ethyne[J]. Crystal Growth&Design.2004,4(2):235-239.
    [85] Barnes Charles L, Bosch Eric. The quest for chain-link hydrogen-bondedcapsules: Self-assembly of C-methyl calix [4] resorcinarene with5,5'-bipyrimidine[J]. Crystal Growth&Design.2005,5(3):1049-1053.
    [86] Lee Myongsoo, Lee Sun-Ja, Jiang Li-Hong. Stimuli-responsive supramolecularnanocapsules from amphiphilic calixarene assembly[J]. Journal of the AmericanChemical Society.2004,126(40):12724-12725.
    [87] McIldowie Matthew J, Mocerino Mauro, Skelton Brian W, et al. Facile Lewisacid catalyzed synthesis of C4symmetric resorcinarenes[J]. Organic Letters.2000,2(24):3869-3871.
    [88] Yamakawa Yoshitaka, Ueda Mitsuru, Nagahata Ritsuko, et al. Rapid synthesis ofdendrimers based on calix [4] resorcinarenes[J]. Journal of the Chemical Society,Perkin Transactions1.1998,(24):4135-4140.
    [89] Faull John D, Gupta Vinay K. Chemical selectivity of self-assembled monolayersof calix [4] resorcinarene[J]. Thin Solid Films.2003,440(1):129-137.
    [90] Collyer Stuart D, Davis Frank, Lucke Andrew, et al. The electrochemistry of theferri/ferrocyanide couple at a calix [4] resorcinarenetetrathiol-modified goldelectrode as a study of novel electrode modifying coatings for use withinelectro-analytical sensors[J]. Journal of Electroanalytical Chemistry.2003,549(5):119-127.
    [91] Botta Bruno, Caporuscio Fabiana, Subissati Deborah, et al. Flattened Cone2,8,14,20-Tetrakis (L-valinamido)[4] resorcinarene: An Enantioselective AllostericReceptor in the Gas Phase[J]. Angewandte Chemie.2006,118(17):2783-2786.
    [92]周瑞.功能化间苯二酚杯芳烃的合成和性质研究[D].扬州大学,2009.
    [93] MacGillivray Leonard R, Spinney Heather A, Reid Jennifer L, et al. Entrapmentof ferrocenes within supramolecular, deep-cavity resorcin [4] arenes Published asNRCC no.43832[J]. Chemical Communications.2000,(6):517-518.
    [94] MacGillivray Leonard R, Atwood Jerry L. RATIONAL DESIGN OFMULTICOMPONENT CALIX4ARENES AND CONTROL OF THEIRALIGNMENT IN THE SOLID STATE[J]. Journal of the American ChemicalSociety.1997,119(29):6931-6932.
    [95] Fri i Tomislav, MacGillivray Leonard R. Double inclusion of ferrocene withina doubly interpenetrated three-dimensional framework based on a resorcin [4]arene[J]. Journal of organometallic chemistry.2003,666(1):43-48.
    [96] Ma Bao-Qing, Zhang Yuegang, Coppens Philip. Multiple structures insupramolecular solids: benzophenone embedded in three different C-methylcalix
    [4] resorcinarene/bipyridine frameworks[J]. Crystal Growth&Design.2001,1(4):271-275.
    [97] Zhou R., Ren J.C., Yan C.G. Novel synthesis of resorcinarene O-acetates by BF3· OEt2-catalyzed cyclocondensation of1,3-(dialkoxycarbonylmethoxy)benzenes with aldehydes[J]. Journal of Inclusion Phenomena and MacrocyclicChemistry.2010,67(3):335-342.
    [98] Kudo H., Mitani K., Koyama S., et al. Synthesis of novel chemically amplifiedmaterials based on calix [4] arene derivatives with acetal moieties[J]. Bulletin ofthe Chemical Society of Japan.2004,77(11):2109-2114.
    [99]刘翠华.超支化聚合物的合成及其超分子封装和超分子自组装研究[D].上海:上海交通大学,2007.
    [100] Wang Kui, Guo Dong‐Sheng, Liu Yu. Controlled Self‐Assembly byMono‐p‐sulfonatocalix [n] arenes and Bis‐p‐sulfonatocalix [n] arenes[J].Chemistry-A European Journal.2012,18(28):8758-8764.
    [101] Li Qian, Guo Dong‐Sheng, Qian Hai, et al. Complexation ofp‐Sulfonatocalixarenes with Local Anaesthetics Guests: Binding Structures,Stabilities, and Thermodynamic Origins[J]. European Journal of OrganicChemistry.2012,2012(21):3962-3971.
    [102] Guo Dong-Sheng, Liu Yu. Calixarene-based supramolecular polymerization insolution[J]. Chemical Society Reviews.2012,41(18):5907-5921.
    [103] Wang Guo-Song, Zhang Heng-Yi, Ding Fei, et al. Preparation andcharacterization of inclusion complexes of topotecan withsulfonatocalixarene[J]. Journal of Inclusion Phenomena and MacrocyclicChemistry.2011,69(1-2):85-89.
    [104] Liu Yu, Han Bao-Hang, Chen Yun-Ti. Molecular recognition and complexationthermodynamics of dye guest molecules by modified cyclodextrins andcalixarenesulfonates[J]. The Journal of Physical Chemistry B.2002,106(18):4678-4687.
    [105] Liu Yu, Han Bao-Hang, Chen Yun-Ti. Inclusion complexation of acridine reddye by calixarenesulfonates and cyclodextrins: opposite fluorescent behavior[J].Journal of Organic Chemistry.2000,65(19):6227-6230.
    [106] Liu Yu, Guo Dong‐Sheng, Yang En‐Cui, et al. The Structures andThermodynamics of Complexes between Water‐Soluble Calix [4] arenes andDipyridinium Ions[J]. European Journal of Organic Chemistry.2005,2005(1):162-170.
    [107] Guo Dong-Sheng, Wang Li-Hua, Liu Yu. Highly effective binding of methylviologen dication and its radical cation by p-sulfonatocalix [4,5] arenes[J]. TheJournal of Organic Chemistry.2007,72(20):7775-7778.
    [108] Liu Yu, Ma Yu-Hong, Chen Yong, et al. Molecular recognition thermodynamicsof pyridine derivatives by sulfonatocalixarenes at different pH values[J]. TheJournal of Organic Chemistry.2006,71(17):6468-6473.
    [109] Guo Dong-Sheng, Wang Kui, Liu Yu. Selective binding behaviors ofp-sulfonatocalixarenes in aqueous solution[J]. Journal of Inclusion Phenomenaand Macrocyclic Chemistry.2008,62(1-2):1-21.
    [110] Naylor Adel M, Goddard III William A, Kiefer Garry E, et al. Starburstdendrimers.5. Molecular shape control[J]. Journal of the American ChemicalSociety.1989,111(6):2339-2341.
    [111] Topp Andreas, Bauer Barry J, Klimash June W, et al. Probing the location of theterminal groups of dendrimers in dilute solution[J]. Macromolecules.1999,32(21):7226-7231.
    [112] Uppuluri Srinivas, Keinath Steven E, Tomalia Donald A, et al. Rheology ofdendrimers. I. Newtonian flow behavior of medium and highly concentratedsolutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA)solvent[J]. Macromolecules.1998,31(14):4498-4510.
    [113]钟雷,丁悠丹.表面活性剂及其助剂分析[M].浙江科学技术出版社,1986.
    [114] Sunder Alexander, Kr mer Michael, Hanselmann Ralf, et al. Molecularnanocapsules based on amphiphilic hyperbranched polyglycerols[J].Angewandte Chemie International Edition.1999,38(23):3552-3555.
    [115] Arduini Arturo, Pochini Andrea, Raverberi Sara, et al. pt-Butyl-calix [4] arenetetracarboxylic acid. A water soluble calixarene in a cone structure[J]. Journalof the Chemical Society, Chemical Communications.1984,(15):981-982.
    [116] Shinkai Seiji, Araki Koji, Tsubaki Takayuki, et al. New syntheses ofcalixarene-p-sulphonates and p-nitrocalixarenes[J]. J. Chem. Soc., Perkin Trans.1.1987,2297-2299.
    [117] Shahgaldian Patrick, Da Silva Eric, Coleman Anthony W. A first approach to thestudy of calixarene solid lipid nanoparticle (SLN) toxicity[J]. Journal ofInclusion Phenomena and Macrocyclic Chemistry.2003,46(3-4):175-177.
    [118] Da Silva Eric, Shahgaldian Patrick, Coleman Anthony W. Haemolytic propertiesof some water-soluble para-sulphonato-calix-[n]-arenes[J]. International journalof pharmaceutics.2004,273(1):57-62.
    [119] Fei Xuening, Gu Yingchun, Ban Ying, et al. Thiazole Orange derivatives:Synthesis, fluorescence properties, and labeling cancer cells[J]. Bioorganic&medicinal chemistry.2009,17(2):585-591.
    [120] Gutsche C David, Lin Lee-Gin. Calixarenes12: the synthesis of functionalizedcalixarenes[J]. Tetrahedron.1986,42(6):1633-1640.
    [121] Atwood Jerry L, Orr G William, Means N Carlene, et al. Metal ion complexesof water-soluble calix [4] arenes[J]. Inorganic Chemistry.1992,31(4):603-606.
    [122] Liu Yu, Li Li, Zhang Heng-Yi, et al. Synthesis of novel bis (β-cyclodextrin) sand metallobridged bis (β-cyclodextrin) s with2,2'-diselenobis (benzoyl)tethers and their molecular multiple recognition with model substrates[J]. TheJournal of Organic Chemistry.2003,68(2):527-536.
    [123] Lang Kamil, Kubát Pavel, Lhoták Pavel, et al. Photophysical Properties andPhotoinduced Electron Transfer Within Host–Guest Complexes of5,10,15,20‐Tetrakis (4‐N‐methylpyridyl) porphyrin with Water‐solubleCalixarenes and Cyclodextrins [J]. Photochemistry and photobiology.2001,74(4):558-565.
    [124] Zhang Yuling, Pham Tuyet H, Pena Montserrat Sanchez, et al. Spectroscopicstudies of brilliant cresyl blue/water-soluble sulfonated calix [4] arenecomplex[J]. Applied spectroscopy.1998,52(7):952-957.
    [125] AnthonyáMcKervey M. Calixarene-based sensing agents[J]. Chemical SocietyReviews.1996,25(1):15-24.
    [126] Yamada Manabu, Kondo Yoshihiko, Hamada Fumio. Hydrogen-bondedarchitecture based on p-sulfonatothiacalix [6] arene complex withdysprosium (III) cations and water molecules[J]. Tetrahedron letters.2008,49(11):1790-1794.
    [127] Dalgarno Scott J, Hardie Michaele J, Makha Mohamed, et al. Controlling theConformation and Interplay of p‐Sulfonatocalix [6] arene as LanthanideCrown Ether Complexes[J]. Chemistry-A European Journal.2003,9(12):2834-2839.
    [128] Liu Yu, Li Qiang, Guo Dong-Sheng, et al. Supramolecular chain-like aggregatesand polymeric sandwich complexes constructed from p-sulfonatocalix [4,6]arenes with (8-hydroxy) quinoline guests[J]. CrystEngComm.2008,10(6):675-680.
    [129] Lau Vivian, Heyne Belinda. Calix [4] arene sulfonate as a template for formingfluorescent thiazole orange H-aggregates[J]. Chem. Commun.2010,46(20):3595-3597.
    [130]李干佐,隋华,朱卫忠.表面活性剂研究新进展[J].日用化学工业.1999,1(2422):25.
    [131] Fendler Janos H. Atomic and molecular clusters in membrane mimeticchemistry[J]. Chemical reviews.1987,87(5):877-899.
    [132] Zhu Sen, Cheng Fa, Wang Jun, et al. Anionic gemini surfactants: synthesis andaggregation properties in aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,281(1):35-39.
    [133]黄保军,李建军,屈凌波.罗丹明B荧光光谱机理的研究[J]. Journal ofTianjin Normal University (Natural Science Edition).2005,25(3).
    [134] Tanford Charles. Micelle shape and size[J]. The Journal of Physical Chemistry.1972,76(21):3020-3024.
    [135] Danino D, Talmon Y, Zana R. Alkanediyl-. alpha.,. omega.-Bis(Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants).5.Aggregation and Microstructure in Aqueous Solutions[J]. Langmuir.1995,11(5):1448-1456.
    [136] Lakowicz Joseph R. Principles of fluorescence spectroscopy[M].Springer,2009.
    [137] F rster Th.10th Spiers Memorial Lecture. Transfer mechanisms of electronicexcitation[J]. Discussions of the Faraday Society.1959,277-17.
    [138] F rster Th. Excitation transfer and internal conversion[J]. Chemical PhysicsLetters.1971,12(2):422-424.
    [139] Latt SA, Cheung HT, Blout ER. Energy transfer. A system with relatively fixeddonor-acceptor separation[J]. Journal of the American Chemical Society.1965,87(5):995-1003.
    [140] Sánchez F García, Ruiz C Carnero. Intramicellar energy transfer in aqueousCTAB solutions[J]. Journal of luminescence.1996,69(4):179-186.
    [141] Yang Jiping, Xie Jianyun, Chen Guangming, et al. Surface, interfacial andaggregation properties of sulfonic acid-containing gemini surfactants withdifferent spacer lengths[J]. Langmuir.2009,25(11):6100-6105.