水性聚氨酯储能材料的相变机理及智能粘胶纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着越来越多的消费者倾向于购买功能性纺织品,开发功能/智能面料、增加纺织品的技术含量、提高服饰的功能性,已成为纺织行业的一大趋势,同时也成为纺织品企业在国内外市场占据优势地位的条件之一。本文首先设计并制备了一系列水性聚氨酯相变储能材料(WPUPCM),然后采用纺前共混的方法,通过湿法纺丝工艺,使用WPUPCM和粘胶制备了水性聚氨酯智能调温粘胶纤维(WTRVF)。本研究采用溶胶-凝胶法制备了PEG/SiO2PCM,然后使用后整理方法,制备了PEG/SiO2智能调温粘胶纤维(PEG/SiO2TRVF),并对通过直接成纤和后整理制备的两类智能调温纤维(WTRVF和PEG/SiO2TRVF)进行了比较。
     首先,本文以MDI、HDI、PEG、扩链剂(DMPA、BDO、EDA)、催化剂(DBTDL)、中和剂(TEA)等为主要原料,制备了一系列M-WPUPCM和H-WPUPCM的乳液、膜和块。应用正交试验法,以乳液粒度为评价指标,确定了制备乳液的最佳方案。FTIR测试结果表明,实验合成了M-WPUPCM和H-WPUPCM。热性能测试表明,WPUPCM是相变过程可逆、热循环稳定性很好的调温材料。对微观形貌的分析显示,WPUPCM膜的表面粗糙度随乳液粒径的增大而提高。POM测试表明:室温下PUPCM仍以结晶态存在,但比PEG的晶体尺寸小;WPUPCM的相转变过程实质上是样品中PEG的无定形态和结晶态的交替过程。TG-FTIR测试表明:PUPCM热分解过程的主要产物是CO2。
     以M-WPUPCM乳液、H-WPUPCM乳液和粘胶纤维原液为原料,应用工厂小试设备,采用湿法纺丝制备了M-WTRVF和H-WTRVF。微观形貌分析表明,WPUPCM与VF结合良好,H-WTRVF的截面比M-WTRVF的更规整。FTIR测试表明,WPUPCM与VF没有发生化学反应。热性能测试表明,WTRVF的相变焓随WPUPCM含量的增加而增大,M-WTRVF的熔融焓比H-WTRVF低;WTRVF的相变过程可逆、热循环稳定性很好。WTRVF可实现工业化生产,且其热性能明显优于现有市售产品,具有很高的市场应用价值。耐水洗性能测试显示,WTRVF的耐水洗性能良好。极限氧指数(LOI)测试表明,WPUPCM的加入未增加VF产品的火灾隐患。TG-FTIR测试显示,WTRVF的高温燃烧产物主要为H2O和CO2,无有毒有害气体产生。WTRVF的干态强度、断裂伸长率较VF都稍有下降,与微胶囊TRVF的降幅相当,但WTRVF的相变焓明显高于后者;添加WPUPCM后,纤维的摩擦阻力变小,回潮率提高,手感稍有改善,柔软、平滑度有一定提高。WPUPCM的加入使VF的蓬松度稍有改善。随着WPUPCM含量的增加,WTRVF的升温(降温)速率减小,而且保持缓慢升温(降温)的时间也延长,即调温效果提高;升、降温达到600s时,WTRVF与普通VF的最大温差分别7℃和6.5℃。
     采用溶胶-凝胶法制备了PEG/SiO2PCM。PEG/SiO2PCM中二氧化硅的网络结构对PEG进行了有效包裹,解决了固-液相变过程中漏液的问题。在此基础上制备的PEG/SiO2TRVF具有良好的调温效果。织物的手感比处理前稍差,这是由于纤维表面存在许多细小颗粒。随着PEG/SiO2PCM含量的增加,纤维织物的调温能力提高;升、降温达到600s时,PEG/SiO2TRVF与普通VF的最大温差分别为8.2℃和6.2℃。水洗对调温织物热性能影响较大,但仍然保持较大的相变焓。与PEG/SiO2TRVF相比较,WTRVF的服用性能和耐水洗性能优势明显。
With more and more people preferring to buy functional textiles, developingfunctional/intelligent fabrics, increasing technological content of textiles or improving thefunctionality of clothing has become a major trend in textile industry as well as animportant condition for textile companies to occupy dominant position in domestic andforeign markets. In this dissertation, the author first designed and prepared waterbornepolyurethane phase change material (WPUPCM); moreover, utilizing spinning blendingmethod and wet spinning process, waterborne polyurethane thermo-regulated viscose fiber(WTRVF) was prepared by adding WPUPCM to viscose. Meanwhile, PEG/SiO2PCMwas prepared by adopting sol-gel technique, then PEG/SiO2thermo-regulated viscosefiber (PEG/SiO2TRVF) was prepared by employing after-treating method. Finally,WTRVF and PEG/SiO2TRVF, prepared respectively by directly fiber forming methodand after-treating method, were compared.
     In the first place, taking MDI, HDI, PEG, chain extenders (DMPA、BDO、EDA),catalyst (DBTDL) and neutralizer (TEA) as the raw materials, a series of emulsions, filmsand blocks about M-WPUPCM and H-WPUPCM were prepared. Moreover, the bestsolution to preparing emulsions has been determined by utilizing orthogonal experimentalmethod and taking emulsion particle size as evaluation index. FTIR result indicated thatthe experiment has successfully synthesized M-WPUPCM and H-WPUPCM. Thermalperformance test showed that WPUPCM, the phase transition of which is reversible, is athermo-regulated material with excellent thermal cycling stability. Microstructure analysisrevealed that the surface roughness of WPUPCM film improved with the increase ofemulsion particle size. POM test indicated that PUPCM still exists in crystalline state atroom temperature, but the crystal size is smaller than that of PEG; essentially, the phasetransition process of WPUPCM is the alternating process between amorphous state andcrystalline state. According to TG-FTIR test, the main product of PUPCM thermaldecomposition was CO2.
     By applying wet spinning method to small production line in industry and usingM-WPUPCM emulsion, H-WPUPCM emulsion and viscose fiber dope as raw materials,the author prepared M-WTRVF and H-WTRVF. Microstructure analysis revealed thatWPUPCM could well combine with VF and no obvious interface appeared, andH-WTRVF displayed more regular section than M-WTRVF. FTIR test indicated that nochemical reaction occurred between WPUPCM and VF. And thermal performance testdemonstrated that the phase transition enthalpy of WTRVF increased with the raise ofWPUPCM content, and the melting enthalpy of M-WTRVF was lower than that ofH-WTRVF; in addition, WTRVF, with reversible phase transition, possesses great thermalcycling stability. Therefore, WTRVF can be industrialized, and its’ thermal performance isapparently superior to existing commercial products, thus possessing high applicationvalue. Washing performance test showed that WTRVF displays excellent washingperformance. And according to Limiting Oxygen Index (LOI) test, the addition ofWPUPCM did not increase fire hazard of VF products. TG-FTIR test indicated that, afterhigh temperature combustion, WTRVF products were mainly H2O and CO2and no toxicor harmful gases appeared. Meanwhile, WTRVF mechanical property declined slightlythan that of VF, being similar to microcapsule RVF in the aspect of reducing magnitude,whereas, the phase transition enthalpy of WTRVF was visibly higher than that ofmicrocapsule RVF; the addition of WPUPCM decreased the frictional resistance,improved the moisture regain and the handle as well as softness and smoothness of fiber;moreover, VF bulkiness was also slightly improved due to the addition of WPUPCM.With the increase of WPUPCM content, the heating (cooling) rate of WTRVF reduced,and time for maintaining a slow heating (cooling) extended, namely,temperature-adjustable effect improved; the maximum temperature difference betweenWTRVF and ordinary VF was7℃as heating reached600s, and it was6.5℃as coolingreached600s.
     Furthermore, PEG/SiO2PCM was prepared by employing sol-gel technique. And thenetwork structure of SiO2has effectively wrapped PCM, thereby solving the liquid leakageproblem in the process of solid-liquid phase change. PEG/SiO2TRVF, which was further prepared, has excellent temperature-adjustable effect. The fabric handle is slightly worsethan after-treating for many tiny particles appeared on fiber surface. Thetemperature-adjustable ability improves with the increase of PEG/SiO2PCM content; themaximum temperature difference between PEG/SiO2TRVF and ordinary VF was8.2℃as the heating reached600s, while it was6.2℃as the cooling was600s. Thetemperature-adjustable fabric had a large phase change enthalpy despite the great effect ofwashing on the thermal performance of it. In summary, compared with PEG/SiO2TRVF,WTRVF has obvious advantages in the aspect of wearing property and washingperformance.
引文
[1] Yuksel N, Avci A, Kilic M. A model for latent heat energy storage systems[J]. Int. J. Energ. Res.,2006,30(14):1146-1157.
    [2] Koca A, Oztop H F, Koyun T. Energy and exergy analysis of a latentheat storage system withphase change material for a solar collector[J]. Renew. Energ.,2008,33(4):567-574.
    [3] Zhang H Z, Wang X D. Synthesis and properties of microencapsulated noctadecane withpolyurea shells containing different soft segments for heatenergy storage and thermal regulation[J].Sol. Energ. Mater. Sol. C,2009,93(8):1366-1376.
    [4] Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable forthe design of thermally enhanced fabrics[J]. Thermochim. Acta.,2007,452:149-160.
    [5] Alkan C, Karaipekli A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM forthermal energy storage[J]. Appl.Energ.,2010,87(5):1529-1534.
    [6] Mhike W, Focke W W, Mofokeng J P. Thermally conductive phase change materials for energystorage based on low-density polyethylene, soft Fischer-Tropsch wax and graphite[J].Thermochim. Acta.,2012,527:75-82.
    [7] Salaun F, Devaux E, Bourbigot S, et al. Polymer nanoparticles to decrease thermal conductivityof phase change materials[J]. Thermochim. Acta.,2008,477(1-2):25-31.
    [8] Farid M M, Khudhair A M, Razack S A K. A review on phase change energy storage: materialsand applications[J]. Energ. Convers. Manage.,2004,45:1597-1615.
    [9] Mondal S. Phase change materials for smart textiles-an overview[J]. Appl. Therm. Eng.,2008,28:1536-1550.
    [10] Borreguero A M, Valverde J L, Peijs T. Characterization of rigid polyurethane foams containingmicroencapsulated Rubitherm RT27. Part I[J]. J. Mater. Sci.,2010,45:4462-4469.
    [11] Telkes M, Raymond E. Storing solar heat in chemicals-a report on the Dover house[J]. Heat Vent,1949,46(11):80-86.
    [12] Salaun F, Bedek G, Devaux E, et al. Microencap sulation of a cooling agent by interfacialpolymerization: influence of the parameters of encapsulation on poly(urethane-urea)microparticles characteristics[J]. J. Membr. Sci.,2011,370:23-33.
    [13] Pauken M, Emis N, Watkins B. Thermal energy storage technology developments[J]. AIP Conf.Proc.,2007,880(1):412-420.
    [14] Buddhi D, Sawhney R L, Seghal P N. A simplification of the differential thermal analysismethod to determine the latent heat of fusion ofphase change materials[J]. J. Phys. D: Appl. Phys.,1987,20:1601-1605.
    [15] Lacroix M. Study of the heat transfer behavior of a latent heat thermal energy storage unit with afinned tube[J]. Int. J. Heat Mass Transf.,1993,36(8):2083-2092.
    [16] Khudhair A M, Farid M M. A review on energy conservation in building applications withthermal storage by latent heat using phase change materials[J]. Energ. Convers. Manage.,2004,45:263-275.
    [17] Tyagi V V, Kaushik S C, Tyagi S K, Akiyama T. Development of phase change materials basedmicroencapsulated technology for buildings: a review[J]. Renew. Sust. Energ. Rev.,2011,15:1373-1391.
    [18] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials heat transfer and phase changeproblem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renew. Sust.Energ. Rev.,2010,14:615-628.
    [19] Choi J K, Lee J G, Kim J H, Yang H S. Preparation of microcapsules containing phase changematerials as heat transfer media by in-situ polymerization[J]. J. Ind. Eng. Chem.,2001,7:358-362.
    [20] Alkan C. Enthalpy of melting and solidification of sulfonated paraffins asphase change materialsfor thermal energy storage[J]. Thermochim. Acta,2006,451:126-130.
    [21] Zalba B, MaMarin J, Cabeza L F, Mehling H. Review on thermal energy storage with phasechange: materials, heat transfer analysis and applications[J]. Appl. Therm. Eng.,2003,23:251-283.
    [22] Tyagi V V, Buddhin D. PCM thermal storage in buildings: a state of art[J]. Renew. Sust. Energ.Rev.,2007,11:1146-1166.
    [23] Agbossou A, Zhang Q, Sebald G, Guyomar D. Solar micro-energy harvesting based onthermoelectric and latent heat effects. Part I: theoretical analysis[J], Sens. Actuator A: Phys.,2010,163:277-283.
    [24] Feldman D, Shapiro M M, Banu D. Organic phase change materials for thermal energystorage[J]. Sol. Energ. Mater.,1986,13(1):1-10.
    [25] Abhat A. Low temperature latent heat thermal energy storage: heat storage materials[J]. Sol.Energy,1983,30(4):313-332.
    [26] Kurklu A, Energy storage applications in greenhouses by means of phase change materials(PCMs): a review[J]. Renew. Energ.,1998,13(1):89-103.
    [27] Hasnain S M. Review on sustainable thermal energy storage technologies. Part I: heat storagematerials and techniques[J]. Energ. Convers. Manage.,1998,39(11):1127-1138.
    [28] Regin F, Solanki S C, Saini J S. Heat transfer characteristics of thermal energy storage systemusing PCM capsules: a review[J]. Renew. Sust. Energ. Rev.,2008,12(9):2438-2458.
    [29] Sharma A, Tyagi V V, Chen C R, Buddhi D. Review on thermal energy storage with phasechange materials and applications[J]. Renew. Sust. Energ. Rev.,2009,13(2):318-345.
    [30] Jegadheeswaran S, Pohekar S D, Kousksou T. Exergy based performance evaluation of latentheat thermal storage system: a review[J]. Renew. Sust. Energ. Rev.,2010,14(9):2580-2595.
    [31] Zhu N, Ma Z, Wang S. Dynamic characteristics and energy performance of buildings usingphase change materials: a review[J]. Energ. Convers. Manage.,2009,50(12):3169-3181.
    [32] Baetens R, Jelle B P, Gustavsen A. Phase change materials for building applications: astate-of-the-art review[J]. Energ. Buildings,2010,42(9):1361-1368.
    [33] Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phase change materials(PCMs) in building applications[J], Appl. Energ.2012,92:593-605.
    [34] Kuznik F, David D, Johannes K, Roux J J. A review on phase change materials integrated inbuilding walls[J]. Renew. Sust. Energ. Rev.,2011,15(1):379-391.
    [35] Cabeza L F, Castell A, Barreneche C, de Gracia A, Fernandez A I. Materials used as PCM inthermal energy storage in buildings: a review[J]. Renew. Sust. Energ. Rev.,2011,15(3):1675-1695.
    [36] Chen Z, Fang G. Preparation and heat transfer characteristics of microencapsulated phase changematerial slurry: a review[J]. Renew. Sust. Energ. Rev.,2011,15(9):4624-4632.
    [37] Dutil Y, Rousse D R, Salah N B, Lassue S, Zalewski L. A review on phase change materials:mathematical modeling and simulations[J]. Renew. Sust. Energ. Rev.,2011,15(1):112-130.
    [38] Delgado M, Lazaro A, Mazo J, Zalba B. Review on phase change material emulsions andmicroencapsulated phase change material slurries: materials, heat transfer studies andapplications[J]. Renew. Sust. Energ. Rev.,2012,16(1):253-273.
    [39] Zhao C Y, Zhang G H. Review on microencapsulated phase change materials(MEPCMs):fabrication, characterization and applications[J]. Renew. Sust. Energ. Rev.,2012,16(5):3136-3145.
    [40] Rao Z, Wang S, Zhang Z. Energy saving latent heat storage and environmental friendlyhumidity-controlled materials for indoor climate[J]. Renew. Sust. Energ. Rev.,2012,16(5):3136-3145.
    [41] Lorsch H G, Kauffman K W, Denton J C. Thermal energy storage for heating and airconditioning, future energy production system[J]. Heat Mass Transf.,1976,1:69-85.
    [42] Humphries W R, Griggs E I. A designing handbook for phase change thermal control and energystorage devices[J], NASA Technical Paper,1977:1074.
    [43] Farid M M, Khudhair A M. Effect of Natural convection on the process of melting andsolidification of paraffin wax[J]. Chem. Eng. Commun.,1987,57:297-316.
    [44] Demirbas M F. Thermal energy storage and phase changing materials: an overview[J]. Energ.Source B,2006,1(1):85-95.
    [45] Parks G S, West T J, Naylor B F, Fujii P S, McClaine L A. Thermal data on organic compounds:XXIII. Modern combustion data for fourteen hydrocarbons and five polyhydroxy alcohols[J]. J.Am. Chem. Soc.,1946,68:2524-2527.
    [46] Parks G S, Moore G E, Renquist M L, Naylor B F, McClaine L A, Fujii P S, Hatton J A. Thermaldata on organic compounds. XXV. Some heat capacity, entropy and free energy data for ninehydrocarbons of high molecular weight[J]. J. Am. Chem. Soc.,1949,71:3386-3389.
    [47] Finke H L, Gross M E, Waddington G, Huffman H M. Low-temperature thermal data for the ninenormal paraffin hydrocarbons from octane to hexadecane[J]. J. Am. Chem. Soc.,1954,76(2):333-341.
    [48] Messerly J F, Guthrie Jr G B, Todd S S, Finke H L. Low-temperature thermal data for pentane,n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18[J].J. Chem. Eng. Data,1967,12(3):338-346.
    [49] Miltenburg V J C. Fitting the heat capacity of liquid n-alkanes: new measurements ofn-heptadecane and n-octadecane[J]. Thermochim. Acta,2000,343:57-62.
    [50] Atkinson C M L, Larkin J A, Richardson M J. Enthalpy changes in molten n-alkanes andpolyethylene[J]. J. Chem. Thermodyn.,1969,1(5):435-440.
    [51] Zabransky M, Ruzicka V, Majer V, E.S. Domalski, Heat capacity of liquids: critical review andrecommended values[J]. J. Phys. Chem. Ref. Data,1996, Monograph No.6.
    [52] Zabransky M, zicka V R, Domalski E S. Heat capacity of liquids: critical review andrecommended values. Supplement I[J]. J. Phys. Chem. Ref. Data,2001,30(5):1199-1689.
    [53] Zongrong L, Chung D D L. Calorimetric evaluation of phase change materials for use as thermalinterface materials[J]. Thermochim. Acta,2001,366:135-147.
    [54] Sharma S D, Sagara K. Latent heat storage materials and systems: a review[J]. Int. J. GreenEnergy,2005,2:1-56.
    [55] Sekhara G C, Venkatesua P, Hofman T, Prabhakara Rao M V. Solid-liquid equilibria of longchain n-alkanes (C18-C28) in n, n-dimethylacetamide[J]. Fluid Phase Equilibr,2002,201:219-231.
    [56] Morikawa J, Hashimoto T. Simultaneous measurement of heat capacity and thermal diffusivityin solid-solid and solid-liquid phase transitions of nalkane[J]. Thermochim. Acta,2000,352-353:291-296.
    [57] Alvarado J L, Marsh C, Sohn C, Vilceus M, Hock V, Phetteplace G, Newell T. Characterizationof supercooling suppression of microencapsulated phase change material by using DSC[J]. J.Therm. Anal. Calorim.,2006,86(2):505-509.
    [58] Quanying Y, Chen L, Lin Z. Experimental study on the thermal storage performance andpreparation of paraffin mixtures used in the phase change wall[J]. Sol. Energ. Mater. Sol. C,2008,92:1526-1532.
    [59] Sari A, Alkan C, Karaipekli A, Uzun O. Microencapsulated n-octacosane as phase changematerial for thermal energy storage[J]. Sol. Energy,2009,83:1757-1763.
    [60] Kousksou T, Jamil A, Rhafiki T E, Zeraouli Y, Paraffin wax mixtures as phase changematerials[J]. Sol. Energ. Mater. Sol. C,2010,94(12):2158-2165.
    [61] Zhang H, Wang X. Synthesis and properties of microencapsulated noctadecane with polyureashells containing different soft segments for heatenergy storage and thermal regulation[J]. Sol.Energ. Mater. Sol. C,2009,93:1366-1376.
    [62] Chickos J S, Acree W E, Liebman J F. Estimating solid-liquid phase change enthalpies andentropies[J]. J. Phys. Chem. Ref. Data,1999,28(6):1534-1564.
    [63] Domanska U, Stankiewicz DW. Enthalpies of fusion and solid-solid transition of even-numberedparaffins C22H46, C24H50and C26H54and C28H58[J]. Thermochim. Acta,1991,179:265-271.
    [64] Burchill S, Hall P L, Harrison R, Hayes M H B, Langford J I, Livingston W R, Smedley R J,Ross D K, Tuck J J. Smectite-polymer interactions in aqueous systems[J]. Clay Miner.,1983,18(4):373-397.
    [65] Gines J M, Arias M J, Rabasco A M, Novak C, Conde A R, Soto P J S. Thermal characterizationof polyethylene glycols applied in the pharmaceutical technology using differential scanningcalorimetry and hot stage microscopy[J]. J. Therm. Anal.,1996,46(1):291-304.
    [66] Mathur S, Moudgil B M. Adsorption mechanism(s) of poly(ethylene oxide)on oxide surfaces[J].J. Colloid. Interface Sci.,1997,196:92-96.
    [67] Sarier N, Onder E. Thermal insulation capability of PEG-containing polyurethane foams[J].Thermochim. Acta,2008,475(1-2):15-21.
    [68] Constantinescu M, Dumitrache L, Constantinescu D, Anghel E M, Popa V T, Stoica A, OlteanuM. Latent heat nano composite building materials[J]. Eur. Polym. J.,2010,46:2247-2254.
    [69] Su J C, Liu P S. A novel polymeric solid-solid phase change heat storage material(PCM) withpolyurethane block co-polymer structure[J]. Energ. Convers. Manage.,2006,47:3185-3191.
    [70] Meng Q, Hu J. A poly(ethylene glycol)-based smart phase change material[J]. Sol. Energ. Mater.Sol. C,2008,92:1260-1268.
    [71] Chen C, Wang L, Huang Y. Electrospun phase change fibers based on polyethyleneglycol/cellulose acetate blends[J]. Appl. Energ.,2011,88:3133-3139.
    [72] Craig D Q M, Newton J M. Characterization of polyethylene glycols using differential scanningcalorimetry[J]. Int. J. Pharm.,1991,74(1-2):33-41.
    [73] Sari A. Eutectic mixtures of some fatty acids for low temperature solar heating applications:thermal properties and thermal reliability[J]. Appl. Therm. Eng.,2005,25:2100-2107.
    [74] Feldman D, Banu D, Hawes D, Ghanbari E. Obtaining an energy storing building material bydirect incorporation of an organic phase change material ingypsum wallboard[J]. Sol. Energ.Mater.,1991,22:231-242.
    [75] Feldman D, Banu D, Hawes D. Low chain esters of stearic acid as PCMs for thermal energystorage in buildings[J]. Sol. Energ. Mater. Sol. C,1995,36:311-322.
    [76] Hasan A. Phase change material energy storage system employing palmitic acid[J]. Sol. Energy,1994,52:143-154.
    [77] Sari A, Kaygusuz K. Thermal performance of myristic acid as a phase change material forenergy storage application[J]. Renew. Energ.,2001,24(2):303-317.
    [78] Cedeno F O, Prieto M M, Espina A, Garcia J R. Measurements of temperature and melting heatof some pure fatty acids and their binary and ternary mixtures by differential scanningcalorimetry[J]. Thermochim. Acta,2001,369:39-50.
    [79] Rozanna D, Chuah T G, Salmiah A, Choong T S Y, Saari M. Fatty acids asphase changematerials (PCMs) for thermal energy storage: a review[J]. Int. J. Green Energy,2005,1(4):495-513.
    [80] Gbabode G, Negrier P, Mondieig D, Moreno-Calvo E, Calvet T, Cuevas-Diarte M A. Structuresof the high-temperature solid phases of the odd-numbered fatty acids from tridecanoic acid totricosanoic acid[J]. Chem. Eur. J.,2007,13(11):3150-3159.
    [81] Feldman D, Banu D, Hawes D. Development and application of organic phase change mixturesin thermal storage gypsum wall board[J]. Sol. Energ. Mater. Sol. C,1995,36:147-157.
    [82] Costa M C, Rolemberg M P, Meirelles A J A, Coutinho J A P, Krahenbuhl M A. The solid-liquidphase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms[J].Thermochim. Acta,2009,496(1-2):30-37.
    [83] Dimaano M N R, Escoto A D. Preliminary assessment of a mixture of capric and lauric acids forlow temperature thermal energy storage[J]. Energy,1998,23:421-427.
    [84] Zhang J J, Zhang J L, He S M, Wu K Z, Liu X D. Thermal studies on the solid-liquid phasetransition in binary system of fatty acids[J]. Thermochim. Acta,2001,369:157-160.
    [85] Inoue T, Hisatsugu Y, Ishikawa R, Suzuki M. Solid-liquid phase behavior of binary fatty acidmixtures:2. Mixtures of oleic acid with lauric acid, myristicacid, and palmitic acid[J]. Chem. Phys.Lipids,2004,127(2):161-173.
    [86] Sari A, Sari H, Onal A. Thermal properties and thermal reliability of eutectic mixtures of somefatty acids as latent heat storage materials[J]. Energ. Convers. Manage.,2004,45(3):365-376.
    [87] Sari A, Kaygusuz K. Thermal energy storage characteristics of myristic and stearic acids eutecticmixture for low temperature heating applications[J]. Chin. J. Chem. Eng.,2006,14(2):270-275.
    [88] Sari A, Bicer A, Karaipekli A. Synthesis, characterization, thermal properties of a series ofstearic acid esters as novel solid-liquid phase change materials[J]. Mater. Lett.,2009,63(13-14):1213-1216.
    [89] Sari A, Bicer A, Karaipekli A, Alkan C, Karadag A. Synthesis, thermal energy storage propertiesand thermal reliability of some fatty acid esters with glycerolas novel solid-liquid phase changematerials[J]. Sol. Energ. Mater. Sol. C,2010,94(10):1711-1715.
    [90] Suppes G J, Goff M J, Lopes S. Latent heat characteristics of fatty acid derive ative spursuantphase change material applications[J]. Chem. Eng. Sci.,2003,58:1751-1763.
    [91] Nikolic R, Marinovic-Cincovic M, Gadzuric S, Zsigrai I J. New materials for solar thermalstorage-solid/liquid transitions in fatty acid esters[J]. Sol. Energ. Mater. Sol. C,2003,79(3):285-292.
    [92] Li W D, Ding E Y. Preparation and characterization of a series of diol distearates as phasechange heat storage materials[J]. Mater. Lett.,2007,61(21):4325-4328.
    [93] Alkan C, Kaya K, Sari A. Preparation and thermal properties of ethylene glycol distearate as anovel phase change material for energy storage[J]. Mater. Lett.,2008,62:1122-1125.
    [94] Canik G, Alkan C. Hexamethylene dilauroyl, dimyristoyl, and dipalmytoyl amides as phasechange materials for thermal energy storage[J]. Sol. Energy,2010,84(4):666-672.
    [95] Sari A, Bicer A, Lafc O, Ceylan M. Galactitol hexa stearate and galactitol hexapalmitate as novelsolid-liquid phase change materials for thermal energy storage[J]. Sol. Energy,2011,85:2061-2071.
    [96] Sari A, Eroglu R, Bicer A, Karaipekli A. Synthesis and thermal energy storage properties oferythritol tetrastearate and erythritol tetrapalmitate[J]. Chem. Eng. Technol.,2011,34:87-92.
    [97] Kenar J A. Latent heat characteristics of biobased oleochemical carbo natesas potential phasechange materials[J]. Sol. Energ. Mater. Sol. C,2010,94(10):1697-1703.
    [98] Aydin A A, Okutan H. High-chain fatty acid esters of myristyl alcohol with odd carbon number:novel organic phase change materials for thermal energy storage-2[J]. Sol. Energ. Mater. Sol. C,2011,95(8):2417-2423.
    [99] Aydin A A, Okutan H. High-chain fatty acid esters of myristyl alcohol with even carbon number:novel organic phase change materials for thermal energy storage-1[J]. Sol. Energ. Mater. Sol. C,2011,95(10):2752-2762.
    [100] Zhang Z Y, Yang M L. Heat-capacity and phase-transitions of2-amino-2-methyl-1,3-propanediol from280K to the melting point[J]. Thermochim Acta,1990,169:263-269.
    [101] Zhang Z Y, Yang M L, Li H P. Heat-capacity and phase-transitions of mixtures ofneopentylglycol and pentaerythritol from270K to their melting point[J]. Thermochim Acta,1992,202:105-112.
    [102] Feng H, Liu X, He S, Wu K, Zhang J. Studies on solid-solid phase transitions of polyols byinfrared spectroscopy[J]. Thermochim. Acta,2000,348:175-179.
    [103] Benson D K, Burrows R W, Webb J D. Solid state phase transitions in pentaery thritoland relatedpolyhydric alcohols[J]. Sol. Energy Mater. Sol. C,1986,13:133-152.
    [104] Quanying Y, Chen L. The thermal storage performance of monobasic, binary and triatomicpolyalcohols systems[J]. Sol. Energy,2008,82:656-662.
    [105] Murrill E, Breed L W. Solid-solid phase transitions determined by differential scanningcalorimetry. Part I. Tetrahedral substances[J]. Thermochim. Acta,1970,1:239-246.
    [106] Divi S, Chellappa R, Chandra D. Heat capacity measurement of organic thermal energy storagematerials[J]. J. Chem. Thermodyn.,2006,38(11):1312-1326.
    [107] Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energystorage[J]. Renew. Sust. Energ. Rev.,2012,16(4):1999-2040.
    [108] Barrio M, Lopez D O, Tamarit J L, Negrier P, Haget Y. Molecular interactions and packing inmolecular alloys between nonisomorphous plastic phases[J]. J. Solid State Chem.,1996,124(1):29-38.
    [109] Chandra D, Fitzpatrick J J, Jorgensen G. Structure and lattice parameters of pentaerythritol aboveand below its phase-transition temperature[J]. Adv. XRayAnal.,1985,28:353-360.
    [110] Khodadadi J M, Hosseinizadeh S F. Nanoparticle-enhanced phase change materials (NEPCM)with great potential for improved thermal energy storage[J]. Int. Commun. Heat Mass,2007,34:534-543.
    [111] Wang X, Lu E, Lin W, Liu T, Shi Z, Tang R, Wang C. Heat storage performance of the binarysystems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethaneas solid-solid phase change materials[J]. Energ. Convers. Manage.,2000,41(2):129-134.
    [112] Gao W, Lin W, Liu T, Xia C. An experimental study on the heat storage performances ofpolyalcohols NPG, TAM, PE, and AMPD and their mixtures as solid-solid phase-change materialsfor solar energy applications[J]. Int. J. GreenEnergy,207,4:301-311.
    [113] Yan Q, Liang C. The thermal storage performance of monobasic, binary and triatomicpolyalcohols systems[J]. Sol. Energy,2008,82(7):656-662.
    [114] Bo T, Zhi C T, Rui B L, Chang G M, Jing N Z. Thermodynamicin vestigation of a solid-solidphase change material:2-amino-2-methyl-1,3-propanediol by calorimetric methods[J]. Energ.Convers. Manage.,2010,51(10):1905-1910.
    [115] Mishra A, Talekar A, Chandra D, Chien W M. Ternary phase diagram calculations ofpentaerythritol-pentaglycerine-neopentylglycol system[J].Thermochim. Acta,2012,535:17-26.
    [116] Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbonnanotube additives on thermal behavior of phase change materials[J]. Sol. Energ. Mater. Sol. C,2011,95(4):1208-1212.
    [117] Ren Y J, Ruckman J E. Condensation in three-layer waterproof breathable fabrics for clothing[J].Int. J. Clothing Sci. Tech.,2004,16(3):335-347.
    [118] Pause B. Development of heat and cold insulating membrane structures with phase changematerial[J]. J. Coated Fabric,1995,25:59-68.
    [119] Colvin D P, Bryant Y G. Protective clothing containing encapsulated phase change materials[J].ASME: Adv. Heat Mass Transf. ASME-IMECE,1998,362(40):123-132.
    [120] Li Y. The science of clothing comfort: a critical appreciation of recent developments[J]. Text.Prog.,2001,31(1/2):26-76.
    [121] Nelson G. Application of microencapsulation in textiles[J]. Int. J. Pharm.,2002,242:55-62.
    [122] Gao C, Kuklane K, Holmer I. Cooling vests with phase change materials: the effects of meltingtemperature on heat strain alleviation in an extremely hot environment[J]. Eur. J. Appl. Phys.,2011,111:1207-1216.
    [123] Shim H, McCullough E A, Jones B W. Using phase change materials in clothing[J]. Text. Res. J.,2001,71(6):495-502.
    [124] Shin Y, Son K, Yoo D I. Development of natural dyed textiles with thermoregulatingproperties[J]. Thermochim. Acta,2010,511(1-2):1-7.
    [125] Choi J K, Cho G, Kim P, Cho C. Thermal storage/release and mechanical properties of phasechange materials on polyester fabrics[J]. Text. Res. J.,2004,74:292-296.
    [126] Chung H, Cho G. Thermal properties and physiological responses of vapor permeablewater-repellent fabrics treated with microcapsule-containing PCMs[J]. Text. Res. J.,2004,74:571-575.
    [127] Zhang X X, Wang X C, Tao X M, Yick K L. Energy storage polymer/MicroPCM sblended chipsand thermo-regulated fibers[J]. J. Mater. Sci.,2005,40(14):3729-3734.
    [128] Bo H, Gustafsson E M, Setterwall F. Tetradecane and hexadecane binary mixtureas phasechange materials (PCMs) for cool storage in district cooling systems[J]. Energy,1999,24:1015-1028.
    [129] Zhang X X, Wang X C, Tao X M, Yick K L. Structures, Properties of wet spunthermo-regulatedpolyacrylonitrile-vinylidene chloride fibers[J]. Text. Res. J.,2006,76:351-359.
    [130] Salaun F, Devaux E, Bourbigot S, Rumeau P, Chapuis P O, Sah e S K, Volz S. Thermoregulatingresponse of cotton fabric containing microencapsulated phase change materials[J]. Thermochim.Acta,2008,477:25-31.
    [131] Salaun F, Devaux E, Bourbigot S, Rumeau P. Influence of process parameterson microcapsulesloaded with n-hexadecane prepared by in-situ polymerization[J]. Chem. Eng. J.,2009,155(1-2):457-465.
    [132] Kumano H, Saito A, Okawa S, Takeda S, Okuda A. Study of direct contact melting withhydrocarbon mixtures as the PCM[J]. Int. J. Heat Mass Transf.,2005,48:3212-3220.
    [133]董家瑞. Outlast空调纤维的性能及其应用[J].针织工业,2007(3):32-34.
    [134] Alkan C, Sari A, Karaipekli A, Uzun O. Preparation, characterization, and thermal properties ofmicroencapsulated phase change material for thermal energy storage[J]. Sol. Energ. Mater. Sol. C,2009,93(1):143-147.
    [135] Cox R. Synopsis of the new thermal regulating fiber. Outlast[J]. Chem. FibersInt.,1998,48:475-479.
    [136] Bryant Y G, Colvin D P. Fabric with reversible enhanced thermal properties: US,5366807[P/OL].1993-6-11[1994-11-22]. http://www. google. com. hk/patents? hl=zh-CN&lr=&vid=USPAT5366807&id=9_scAAAAEBAJ&oi=fnd&dq=5366807&printsec=abstract#v=onepage&q=5366807&f=false.
    [137] Nuckols M L. Analytical modeling of a diver dry suit enhanced with microencapsulatedphasechange material[J]. Ocean Eng.,1999,26:547-564.
    [138] Lennox K P.1000frames per second: revealing the secrets of meltblown nonwovens[J]. Chem.Fibers Int.,1999,49(2):166-167.
    [139] Bryant Y G, Colvin D P. Fibers with enhanced, reversible thermal energy storage properties[J].Tech. Text. Symp.,1992,2:1-8.
    [140] Cox R. Re-positioning acrylic fibers for the new millennium[J]. Chem. Fibers Int.,2001,51:118-128.
    [141] Gao X Y, Han N, Zhang X X, Yu W Y. Melt-processable acrylonitrilemethylacrylate co-polymersand melt-spun fibers containing MicroPCMs[J]. J. Mater. Sci.,2009,44:5877-5884.
    [142] Sawhney A P S, Condon B, Singh K V, Pang S S, Li G, Hui D. Modern applications ofnanotechnology in textiles[J]. Text. Res. J.,2008,78:731-739.
    [143] Leskovsek M, Jedrinovic G, Stankovic Elesini U. Properties of polypropylene fibres withincorporated microcapsules[J]. Acta Chim. Slov.,2004,51:699-715.
    [144] Jiang M, Song X, Ye G, Xu J. Preparation of PVA/paraffin thermal regulating fiber by in-situmicroencapsulation[J]. Compos. Sci. Technol.,2008,68(10-11):2231-2237.
    [145] Juarez D, Ferrand S, Fenollar O, Fombuena V, Balart R. Improvement of thermal inertia ofstyrene-ethylene/butylene-styrene (SEBS) polymers byaddition of microencapsulated phasechange materials (PCMs)[J]. Eur. Polym. J.,2011,47(2):153-161.
    [146] Renzi I, Carfagna C, Persico P. Thermoregulated natural leather using phase change materials:an example of bioinspiration[J]. Appl. Therm. Eng.,2010,30:1369-1376.
    [147] Lee W, Boh B, Knez E, Staresinic M. Microencapsulation of higher hydrocarbon phase changematerials by in-situ polymerization[J]. J. Microencapsul.,2005,22(7):715-735.
    [148] Kim J H, Cho G S. Thermal storage/release, durability, and temperature sensing properties ofthermostatic fabrics treated with octadecane-containing microcapsules[J]. Text. Res. J.,2002,72:1093-1098.
    [149] Pause B. Driving more comfortably with phase change materials[J]. Tech. Text. Int.2002,11(2):24-27.
    [150] Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nanoencapsulatedn-tetradecane as phase change material for thermal energy storage[J]. Chem. Eng. J.,2009,153:217-221.
    [151] Worley J B. Micro-perforated temperature regulating fabrics, garments andarticles havingimproved softness, flexibility, breathability and moisturevapor transport properties: US,20020132091A1[P/OL].2001-5-8[2002-9-19]. http://www.google.com.hk/patents/US20020132091? pg=PA1&dq=20020132091A1&hl=zh-CN&sa=X&ei=quumUcS9EoGpkwXt3YCoDg&ved=0CDkQ6AEwAA.
    [152] Choi J K, Cho G, Kim P, Cho C. Thermal storage/release and mechanical properties of phasechange materials on polyester fabrics[J]. Text. Res. J.,2004,74(4):292-296.
    [153] Choi J K, Chung H, Lee B, Chung K, Cho G, Park M, Kim Y, Watanuki S. Clothing temperaturechanges of phase change material-treated warm-up incold and warm environments[J]. FiberPolym.,2005,6(4):343-347.
    [154] Chung H, Cho G. Thermal properties and physiological responses of vaporpermeablewater-repellent fabrics treated with microcapsule-containing PCMs[J]. Text. Res. J.,2004,74(7):571-575.
    [155] Shin Y, Yoo D I, Son K. Development of thermoregulating textile materials withmicroencapsulated phase change materials (PCM). IV. Performance properties and hand of fabricstreated with PCM microcapsules[J]. J. Appl. Polym. Sci.,2005,97:910-915.
    [156] Sanchez P, Sanchez-Fernandez M V, Romero A, Rodriguez J F, Sanchez-Silva L. Developmentof thermo-regulating textiles using paraffin wax microcapsules[J]. Thermochim. Acta,2010,498:16-21.
    [157] Park Y, Shin J. Surface properties studies of MPCMs containing fabrics for thermo-regulatingtextiles[J]. Fiber Polym.,2011,12(3):384-389.
    [158] Alay S, Gode F, Alkan C. Synthesis and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J].J. Appl. Polym. Sci.,2011,120(5):2821-2829.
    [159] Bryant Y G, Colvin D P. Moldable foam insole with reversible enhanced thermal storageproperties: US,5499460[P/OL].1994-7-13[1996-3-19]. http://www. google. com. Hk/patents?hl=zh-CN&lr=&vid=USPAT5499460&id=aP4nAAAAEBAJ&oi=fnd&dq=Moldable+foam+insole+with+reversible+enhanced+thermal+storage+properties&printsec=abstract#v=onepage&q=Moldable%20foam%20insole%20with%20reversible%20enhanced%20thermal%20storage%20properties&f=false.
    [160] You M, Zhang X X, Li W, Wang X C. Effects of MicroPCMs on the fabrication ofMicroPCMs/polyurethane composite foams[J]. Thermochim. Acta,2008,472:20-24.
    [161] You M, Zhang X X, Wang J P, Wang X C. Polyurethane foam containing microencapsulatedphase-change materials with styrene-divinyl benzeneco-polymer shells[J]. J. Mater. Sci.,2009,44:3141-3147.
    [162] Vigo T L, Frost C M. Temperature-adaptable hollow fibers containing polyethylene glycols[J]. J.Coated Fabrics,1983,12:243-254.
    [163] Vigo T L, Frost C M. Temperature adaptable fabrics[J]. Text. Res. J.,1985,55:737-743.
    [164]天津纺织工学院.自动调温纤维及其制品:中国, CN00105837.1[P].2001-10-17.
    [165] Hu J, Yu H, Chen Y, Zhu M. Study on phase-change characteristics of PET-PEG co-polymers[J].J. Macromol. Sci. B,2006,45(4):615-621.
    [166] Meng Q, Hu J. A temperature-regulating fiber made of PEG-based smart copolymer[J]. Sol.Energ. Mater. Sol. C,2008,92(10):1245-1252.
    [167] You M, Zhang X X, Wang X C, Li W, Wen W. Effects of type and contents of microencapsuledn-alkanes on properties of soft polyurethane foams[J]. Thermochim. Acta,2010,500:69-75.
    [168] Ghahremanzadeh F, Khoddami A, Carr C M. Improvement in fastness properties ofphase-change material applied on surface modified wool fabrics[J]. Fiber Polym.,2010,11(8):1170-1180.
    [169] Nihlstrand A, Gabrielii I, Hagstrom B. Multi-component fibers: US,20110027568[P/OL].2008-12-11[2010-10-28]. http://www. google. com. hk/patents? hl=zh-CN&lr=&vid=USPATAPP12808013&id=yFsCAQAAEBAJ&oi=fnd&dq=Multi-component+fibers&printsec=abstract#v=onepage&q=Multi-component%20fibers&f=false.
    [170] Mollah M T I. Experimental study on temperature regulating bi-component fibres containingparaffin wax in the core, PB2009.7.2[R]. The Swedish School of Textiles, University of Boras,2009.
    [171] Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique[J].Biotechnol. Adv.,2010,28:325-347.
    [172] Chen C, Wang L, Huang Y. Morphology and thermal properties of electrospun fattyacids/polyethylene terephthalate composite fibers as novelform-stable phase change materials[J].Sol. Energ. Mater. Sol. C,2008,92:1382-1387.
    [173] Chen C, Wang L, Huang Y. Ultrafine electrospun fibers based on stearyl stearate/polyethyleneterephthalate composite as form stable phase change materials[J]. Chem. Eng. J.,2009,150:269-274.
    [174] McCann J T, Marquez M, Xia Y N. Melt coaxial electrospinning: a versatile method for theencapsulation of solid materials and fabrication of phasechange nanofibers[J]. Nano Lett.,2006,6:2868-2872.
    [175] Cai Y, Ke H, Dong J, Q Wei, Lin J, Zhao Y, Song L, Hu Y, Huang F, Gao W, Fong H. Effects ofnano-SiO2on morphology, thermal energy storage, thermalstability, and combustion properties ofelectrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials[J].Appl. Energ.,2011,88(6):2106-2112.
    [176] Nguyen T T T, Park J S. Fabrication of electrospun nonwoven mats of polyvinylidenefluoride/polyethylene glycol/fumed silica for use as energystorage materials[J]. J. Appl. Polym.Sci.,2011,121:3596-3603.
    [177] Chen C, Liu S, Liu W, Zhao Y, Lu Y. Synthesis of novel solid-liquid phase change materials andelectrospinning of ultrafine phase change fibers[J]. Sol. Energ. Mater. Sol. C,2012,96:202-209.
    [178] Vigo T L, Bruno J S. Temperature adaptable textiles[J]. Text. Res. J.,1987,57:427-429.
    [179] Vigo T L, Bruno J S. Thermal analysis of fibrous substrates containing crosslinked polyols[J].Thermochim. Acta,1990,161(2):339-351.
    [180] Goynes W R, Vigo T L, Burno J S. Microstructure of fabrics chemically finished for thermaladaptability[J]. Text. Res. J.,1990,60:277-284.
    [181] Gruber P R, Kolstad J J, Ryan C M. Melt-stablelactide polymer nonwoven fabric and process formanufacture thereof: US,6,355,772B1[P/OL].2000-5-9[2002-3-12]. http://www.google.com.hk/patents/US6355772?pg=PA6&dq=6,355,772&hl=zh-CN&sa=X&ei=0WiwUdS2LMXXkgWBu4DYDA&ved=0CDkQ6AewAA.
    [182] Standard test method for steady state and dynamic thermal performance of textile materials.ASTM, American Standards for Testing and Materials. Standard D7024. Book of Standards,2004,7(2).
    [183] Michalak M, Felczak M, Wi B. A new method of evaluation of thermal parameters for textilematerials[C].9th International Conference on Quantitative InfraRed Thermography, Krakow,Poland:2008:2-5.
    [184] Lamb G E R, Duffy-Morris K. Heat loss through fabrics under ventilation with and without aphase transition additive[J]. Text. Res. J.,1990,60:261-265.
    [185] Ying B, Kwok Y, Li Y, Zhu Q, Yeung C. Assessing the performance of textiles incorporatingphase change materials[J]. Polym. Test.,2004,23(5):541-549.
    [186] Ghali K, Ghaddar N, Jones B. Modeling of heat and moisture transport byperiodic ventilation ofthin cotton fibrous media[J]. Int. J. Heat Mass Transf.,2002,45:3703-3714.
    [187] Jaffe M, Collins G, Menczel J. The thermal analysis of fibers in the twenty first century: fromtextile, industrial and composite to nano, bio and multifunctional[J].Thermochim. Acta,2006,442(1-2):95-99.
    [188] Wan X, Fan J. A new method for measuring the thermal regulatory properties of phase changematerial (PCM) fabrics[J]. Meas. Sci. Technol.,2009,20:1-6.
    [189] Persico P, Izzo Renzi A, Carfagna C. Infrared thermography: some applications ofmicroencapsulated PCMs as investigative tool for heat transportevaluation[J]. AIP Conf. Proc.,2010,1255(1):303-306.
    [190] Song G, Cao W, Gholamreza F. Analyzing stored thermal energy and therm alprotectiveperformance of clothing[J]. Text. Res. J.,2011,81(11):1124-1138.
    [191] Li Y, Zhu Q. A model of coupled liquid moisture and heat transfer in porous textiles withconsideration of gravity[J]. Numer. Heat Transf. A,2003,433:501-523.
    [192] Li Y, Zhu Q. A model of heat and moisture transfer in porous textiles with phase changematerials[J]. Text. Res. J.,2004,74:447-457.
    [193] Wang S X, Li Y, Hu J Y, Tokura H, Song Q W. Effect of phase-change material on energyconsumption of intelligent thermal-protective clothing[J]. Polym. Test.,2006,25:580-587.
    [194] Verma P, Singal S K. Review of mathematical modeling on latent heath ermal energy storagesystems using phase-change material[J]. Renew. Sust. Energ. Rev.,2008,12(4):999-1031.
    [195]潘祖仁.高分子化学[M].北京:化学工业出版社,2007:47-49.
    [196]朱吕民,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002:1-36.
    [197]陈珀丽,刘经梅,张之涵,等.聚氨酯涂料技术在中国的发展[J].涂料工业,2007,37(5):49-51.
    [198]瞿金清,陈焕钦.水性聚氨酯涂料研究进展[J].高分子材料科学与工程,2003,19(2):43-46.
    [199]徐强,景浩,胡春圃.聚氨酯脲-丙烯酸酯水分散液的粒径及形态研究[J].功能高分子学报,1999,12(12):405-407.
    [200]叶桂香,张平,邢乾斌.影响MDI型聚氨酯预聚体合成和性质的因数[J].聚氨酯工业,2010,25(2):43-45.
    [201]张军科. NCO含量对水性聚氨酯PCM乳液性能影响的研究[J].化学与黏合,2012,34(1):22-24.
    [202]王翠,吴佑实,吴莉莉. MDI型水性聚氨酯PCM乳液的合成及性能研究[J].涂料工业,2009,39(2):4-8.
    [203]杨冬亚,胡春圃,张志平,等.具有明确硬段结构的水性聚氨酯脲的研究[J].高分子学报,2006,3:461-464.
    [204]朱善农.高分子链结构[M].北京:科学出版社,1996:20-25.
    [205] Su J C, Liu P S. A novel Solid-solid Phase Change Heat Storage Material with PolyurethaneBlock Copolymer Structure[J]. Energy conversion and management,2006,47(18):3185-3191.
    [206]粟劲苍,刘朋生.具有储能功能的聚氨酯固-固相变材料的研究[J].华东理工大学学报,2006,32(2):197-200.
    [207] Carrillo F, Colom X, Su ol JJ et al. Structural FTIR analysis and thermal characterisation oflyocell and viscose-type fibres[J]. European Polymer Journal,2004,40(9):2229-2234.
    [208]刘冰.智能调温粘胶纤维的性能研究[D].青岛大学,2012:15
    [209]张琳琳,王跃强.智能调温纤维综述[J].印染助剂,2011,28(1):9-13.
    [210] Carrillo F, Colom X, Suol J J. Structural FTIR analysis and thermal characterisation of lyocelland viscose-type fibres[J]. European Polymer Journal,2004,40(9):2229-2234.
    [211]李新娥,钱丽丹.负离于粘胶纤维的性能研究及其应用[J].中原工学院学报,2005,16(3):26-29.
    [212]姜岩,王善元.纱线膨松性能的表征与EIB测试:1.膨松度的概念与测试[J].纺织学报,2008,29(1):22-25.
    [213]于伟东.纺织材料学[M].北京:中国纺织出版社,2006:55-58.
    [214]李桦.基于储能材料原位生长方式研发蓄热调温纺织品[D].天津工业大学,2008:6-11.
    [215]王办彤,李哗,陈建军.纺织品中原位生长超微银粒及其性能测试[J].浙江理工大学学报,2006,23(4):389-392.
    [216]赵忠民,张龙,白鸿柏等.原位生长纳微米纤维自增韧复相陶瓷纤维结构与不同尺度多级增韧[J].稀有金属材料与工程,2006,35(8):91-94.
    [217]仝建峰,陈大明,李宝伟.原位生长柱状晶氧化铝陶瓷材料的制备[J].真空电子技术,2005,4:13-17.
    [218]曹小明,张劲松,胡宛平.泡沫碳化硅陶瓷表面原位生长碳化硅品须[J].材料研究学报,2006,20(3):291-294.