结构塑性极限分析上限法数值计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在土木工程中,结构物的极限承载力和破坏模式的确定是一项重要的研究题和工程问题。分析此类问题的方法大致分为两类:一类是弹塑性的增量分;另一类则是塑性极限分析方法。极限分析的上限和下限方法以塑性极限定为理论基础,是工程结构的设计和分析中直接而又严格的极限状态分析方法。工程的实际应用中通常采用极限分析的数值方法。其中,在工程结构的极限析中较为常用。另外,极限分析方法最终需要求解一个数学规划问题,根据体的情况大致可分为线性和非线性规划问题。随着问题维数的增加,数学规问题将可能成为大规模优化问题,其求解成为了一个难题。因此本文从经典性极限分析理论出发,进一步改进运动许可速度场的构造方法,并将数值优领域中提出的新算法应用于数值极限分析上限的数学规划问题的求解中,取的主要成果如下。
     在刚体有限元上限分析中,如果将安全系数定义为目标函数,则数学规划题就成为了带有约束的非线性规划问题。本文首次采用一种新型的优化算法P-free方法求解此非线性规划问题。求解非线性规划的常用算法为序列二次规(SQP)方法。然而,在初始点任意的情况下,传统的SQP在求解刚体有限上限分析法的非线性规划模型时出现了子问题不相容的问题而导致得不到最解,且在每个迭代步中都要花费大量计算来求解一个二次规划(QP)问题。对这一非线性规划问题,文中采用了一种新型非线性优化算法——QP-free法来求解刚体有限元上限分析法的非线性规划问题。该方法的转轴操作可以免子问题不相容的问题,并且在每个迭代步中将求解QP问题转化为求解三具有相同系数矩阵的线性方程组。而根据虚功率方程将安全系数表示为运动可速度场的函数,目的就是使得非线性规划问题的目标函数避免了其导数成常数向量,便于采用QP-free算法进行求解。通过两类算法对经典边坡稳定题的对比分析,QP-free算法比传统的SQP算法则更为有效。
     在上述的刚体有限元上限分析法中,数学规划模型的非线性是由于采用安系数作为评价指标而引起的。为了避免求解非线性规划问题,文中采用了加系数的定义来衡量结构的极限载荷,并且根据临界加速度的概念可由加载系计算安全系数,实现了利用线性规划模型来求解结构的安全系数。在此基础,通过在刚体单元之间的界面上的两个端点施加相关联流动法则,使得在构造运动许可速度场时可以考虑刚体单元形心速度的转动分量,因而得到了考虑转动破坏模式的刚体有限元上限法的线性规划模型。进而将该方法应用于边坡稳定分析和地基承载力计算中。根据边坡稳定和地基承载力的经典问题的分析验证了本章中所提出的刚体有限元上限法及其线性规划模型的正确性。另外,通过单纯形方法和原对偶内点算法对线性规划问题求解的对比发现,后者比前者的计算效率要高,尤其是针对大规模问题的情况。
     然而,对于大多数的岩土材料而言,相关联流动法则并不能反映其真实的力学特性。需要在塑性极限分析中考虑非相关联流动法则。因此,在考虑相关联流动法则的刚体有限元上限法中,应当将该方法推广到考虑非相关联流动法则的情况。在构造考虑转动模式运动许可速度场时,在刚体单元之间界面的两端点处施加非相关联流动法则,使得刚体有限元上限法可以在非相关联流动法则的情况下建立求解结构极限承载力的线性规划模型。并将考虑非相关联流动法则的刚体有限元上限法应用于膨胀系数对边坡稳定安全系数的影响研究中。另外,还可以将这一方法推广到研究土体剪胀性对土钉极限抗拔力的影响。
     为了克服调整网格划分带了的困难,在径向基点插值法构造运动许可速度场的基础上,并结合Cartesian积分变换数值积分法对能量耗散功率的近似计算,推导了无需任何网格的数值极限分析上限法的非线性数学规划模型。为了求解此类无网格上限法,采用了一种逐步区分刚性和塑性区域的直接迭代算法。针对摩擦型材料而言,无论强度参数取何值时,直接迭代算法的迭代控制因子都等于零,因此该方法不能应用于求解服从Mohr-Coulomb或Drucker-Prager破坏准则的摩擦型材料的极限承载力问题,而只能求解服从椭圆型屈服函数的非模型材料的极限承载力的问题。通过对垂直边坡的临界高度、带孔板的极限承载力以及厚壁圆筒的极限扩张压力的计算和分析,验证了本章所提出的无网格上限法及其无搜索迭代算法。
The collapse load and failure mechanism of solid or structure play an important role in engineering structure design and safety assessment in civil engineering. In general, the methods used to determine the collapse load and failure mechanism of a structure can be classified into two types: a) elastoplastic incremental approaches, and b) upper and lower bound approaches of limit analysis. The upper and lower bound approaches which based on limit theorem are more direct and rigorous method for designing engineering structures. In general, the numerical upper bound limit analysis is more popular in pracitcal engineering due to the facility of constructing the kinematically admissble velocity field. In the upper bound limit analysis, the linear or nonlinear mathematical programming problems will be solved ultimately. With the increasing of dimension of kinematically admissble velocity, these mathematical programming problems will become too difficult to be solved. Therefore, in this paper, the research focuses on the numerical theories of plastic upper bound approach and the application of new algorithm of optimization. The summary of this paper is illustrated as follows:
     If the safety factor is treated as the objective function in RFEM (rigid finite element method)-based upper bound approach, the mathematical programming will be a nonlinear programming problem with constraints. In genearl, the so-called sequential quadratic programming (SQP) method is used to solve the constrained nonlinear programming. However, with an arbitrary starting point, it is quite time consuming and difficult to search the optimum based on the SQP-type algorithms because the sub-QP problem is infeasible at every iteration step. Fortunately, a QP-free algorithm based on the so call pivoting operation and active-set strategy can be convergent toward the optimal points with arbitrary start point. The infeasibility of sub-QP problem can be avoided using poviting operation, and the QP can be transformed into three linear systems of equations with the same coefficient matrixs. For overcoming the constant derivatives of objective function, the objective function (safety factor) was reformulated as a function of the kinematically admissible velocity field based the virtual work rate equation. Two classical problems of slope stability are solved by this QP-free algorithm, the results show that QP-free method is more efficiency than the SQP method.
     In the above RFEM-based upper bound approach, the nonlinearity of mathematical programming is caused by the definition of the safety factor. For avoiding this nonlinearity, the limit load multiplier is used to evaluate the limit load of the structures. And according to the concept of critical acceleration, the safety factor of stablility of strucutres can be computed iteratively from the limit load multiplier using linear programming. In addtion, the rotational failure mechanism can be considered in constructing kinematically admissible velocity field by using enforce the associated flow rule at two points along the interface between two adjacent rigid elements. Therefore, the presented RFEM-based upper bound approach can be earlier applied into slope stability and bearing capacity analysis. In addition, the linear programming problem of RFEM-based upper bound approach can be solved by using simplex algorithm or primal-dual interior point method. The numerical results of several test problems show that the primal-dual interior point method is very suit for the large-scale linear programming problem with sparse coefficient matrix.
     For rock or soil materials, the non-associated flow rule should be satisfied when the kinematically admissible velocity field was constructed. Therefore, in RFEM-based upper bound approach, the non-associated flow rule was enforced at two end points along interface between two adjacent rigid elements. And then, the linear programming problem of upper bound limit analysis was formulated considering the non-associated flow rule. Therefore, the influence of non-associated flow rule on safety factor of slope stability can be solved based on the present method. Furthermore, the pull out resistance of soil nailing within the dilative soils can also be computed by using the present method.
     For overcoming the difficulty of adaptive mesh, the kinematically admissible velocity field can be constructed by using radial point interpolation method (RPIM). Then, the external work rate and internal energy dissipation rate are computed by using Cartesian transformation method (CTM). As a result, the nonlinear programming problem of upper bound approach is presented based on meshless method (MM). For solving the presented MM-based upper bound approach, a direct iterative algorithm based on the distinguishing rigid/plastic zone is adopted. Regarding the direct iterative algorithm for frictional materials, the iteration control parameter is identically vanishing for all the shear strength parameters. Therefore, the direct iterative algorithm can‘t be used to calculate the limit load of frictional materials which follow the Mohr-Coulomb or Drucker-Prager yield criterion, and the direct iterative algorithm can be only used to compute the limit load of non-frictional materials which follow the ellipsoid yield function. To verify and extend the presented MM-based upper bound approach, the limit loads of some classical problems including stability of slopes, plate and thick-walled cylinder are calculated by using the presented method.
引文
1陈祖煜,汪小刚,杨健,王玉杰.岩质边坡稳定分析——原理、方法、程序.中国水利水电出版社. 2005
    2钱令希,钟万勰.论固体力学中的极限分析并建议一个变分原理.力学学报. 1963, 6(4): 287~303
    3 W. F. Chen. Limit Analysis and Soil Plasticity. Elsevier Scientific: Amsterdam. 1975
    4 W. F. Chen, X. L. Liu. Limit analysis in soil mechanics. Elsevier. 1990
    5陈祖煜.土质边坡稳定分析——原理、方法、程序.中国水利水电出版社. 2005
    6 Hodge PG. Plastic analysis of structures. MCGRAW-HILL, 1959
    7徐秉业,刘信声.结构塑性极限分析.中国建筑工业出版社, 1985
    8陈刚,刘应华.结构塑性极限与安定分析理论及工程方法.科学出版社. 2006
    9高扬,黄克智.塑性极限分析的统一理论.力学学报. 1989, 21(3): 306~315
    10钟万勰.极限分析中新的上、下限定理.力学学报. 1983, 4: 341~350
    11 T. Mura, S. L. Lee. Application of variational principles of limit analysis. Quartly of Applied Mathematics. 1963, 21(3): 243~248
    12 R. Casciaro, L. Cascini. A mixed formulation and mixed finite element for limit analysis. International Journal of Numerical Method in Engineering. 1982, 18: 211~243
    13鹫津久一郎.弹性和塑性力学中的变分法.老亮译.科学出版社. 1984
    14杨小礼.线性与非线性破坏准则下岩土极限分析方法及其应用.中南大学博士学位论文. 2002: 12~16
    15 D. C. Drucker, W. Prager. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics. 1952, 10(2): 157~165
    16 M. Maier, J. Munro. Mathematical programming applcition to engineering plastic analysis. Appl. Mech. Rev. 1982, 35: 1631~1643
    17 E. H. Davis, M. J. Gunn, R. J. Mair, H. N. Seneviratne. The stability of shallow tunnels and underground openings in cohesive material. Geotechnique.1980, 30(4): 397~416
    18 A. Drescher. Analytical methods in limit analysis. Archive of Applied Mechanics. 1989, 59: 138~147
    19 M. Puzrin, M. F. Randolph. Generalized Framework for Three-Dimensional Upper Bound Limit Analysisin a Tresca Material. Journal of Applied Mechanics. 2003, 70: 91~100
    20 S. Osman, R. J.Mair, M. D. Bolton. On the kinematics of 2D tunnel collapse in undrained clay. Geotechnique. 2006, 56(9): 585~595
    21 Klar, A. S. Osman, M. Bolton. 2D and 3D upper bound solutions for tunnel excavation using ?elastic‘?ow ?elds. International Journal of Numerical and Analytical Methods Geomechans. 2007, 31: 1367~1374
    22 Klar, A. S. Osman. Continuous velocity ?elds for the T-bar problem. International Journal of Numerical and Analytical Methods Geomechans. 2007, 32: 949-963
    23 Klar, M. F. Randolph. Upper-bound and load–displacement solutions for laterally loaded piles in clays based on energy minimisation. Geotechnique. 2008, 58(10): 815~820
    24 W. F. Chen, N. Snitbhan. On slip surface and slope stability analysis. Soils and Foundations. 1975, 15(3): 41~49
    25 R. Baker, S. Frydman. Upper bound limit analysis of soil with non-linear failure criterion. Soils and Foundations. 1983, 23(4): 34~42
    26 X. J. Zhang, W. F. Chen. Stability analysis of slopes with general non-linear failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics. 1987, 11: 33~50
    27 X. L. Liu, Q. Y. Wang, W. F. Chen. Layered analysis with generalized failure criterion. Computers Structures. 1989, 33(4): 1117~1123
    28 J. Kumar, P. Samui. Stability determination for layered soil slopes using the upper bound limit analysis. Geotechnical and Geological Engineering. 2006, 24: 1803~1819
    29 A. Drescher, C. Christopoulos. Limit analysis slope stability with nonlinear yield condition. International Journal for Numerical and Analytical Methods in Geomechanics. 1988, 12(5): 341~345
    30 F. Collins, C. Gunn, M. J. Pender, Y. Wang. Slope stability analyses for materials with a nonlinear failure envelope. International Journal for Numericaland Analytical Methods in Geomechanics. 1988, 12: 533~550
    31 X. L. Yang, J. H. Yin. Slope stability analysis with nonlinear failure criterion. Journal of Engineering Mechanics. 2004, 130(3): 267~273
    32 X. L. Yang, L. Li, J. H. Yin. Stability analysis of rock slopes with a modi?ed Hoek–Brown failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics. 2004, 28: 181~190
    33 R. L. Michalowski. Slope stability analysis: a kinematical approach. Geotechnique. 1995, 45(2): 283~293
    34 Farzaneh, F. Askari. Three-Dimensional Analysis of Nonhomogeneous Slopes. Journal of Geotechnical and Geoenvironmental Engineering. 2003, 129(2):137~145
    35 B. Donald, Z. Chen. Slope stability analysis by the upper bound approach: fundamentals and methods. Canadian Geotechnical Journal. 1997, 34(6): 853~862
    36 Y. J. Wang, J. H. Yin, C. F. Lee. The influence of a non-associated flow rule on the calculation of the factor of safety of soil slopes. International Journal for Numerical and Analytical Methods in Geomechanics. 2001, 25: 1351~1359
    37 Z. Chen, X. Wang, C. Haberfield, J. H. Yin, Y. Wang. A three-dimensional slope stability analysis method using the upper bound theorem PartⅠ: theory and methods. International Journal of Rock Mechanics & Mining Science. 2001, 38: 369~378
    38 Z. Chen, J. Wang, Y. Wang, J. H. Yin, C. Haberfield. A three-dimensional slope stability analysis method using the upper bound theorem PartⅡ: numerical approaches, applications and extensions. International Journal of Rock Mechanics & Mining Science. 2001, 38: 379~397
    39 J. Lysmer. Limit analysis of plane problems in soil mechanics. Journal of Soil Mechanics and Foundations Divison. 1970, 96(4): 1311~1334
    40 E. Anderheggen, H. Knopfel. Finite Element Limit Analysis Using Linear Programming. International Journal of Solids and Structures. 1972, 8: 1413~1431
    41 A. Bottero, R. Negre, J. Pastor, S. Turgeman. Finite Element Method And Limit Analysis Theory for Soil Mechanics Problems. Computer Methods in Applied Mechanics and Engineering. 1980, 22: 131~149
    42 S. W. Sloan. Upper bound limit analysis using finite elements and linearprogramming. International Journal for Numerical and Analytical Methods in Geomechanics. 1989, 13: 263~282
    43 S. W. Sloan. Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics. 1988, 12: 61~77
    44 S. W. Sloan, P. W. Kleeman. Upper bound limit analysis using discontinuous velocity fields. Computer methods in applied mechanics and engineering. 1995, 127: 293~314
    45 C. Nagtegaal, D. M. Parks, J. R. Rice. On numerically accruate finite element solutions in the fully plastic range. Computer Methods in Applied Mechanics and Engineering. 1974, 4: 153-177
    46 S. W. Sloan, M. F. Randolph. Numerical prediction of collapse loads using finite element methods. International Journal for Numerical and Analytical Methods in Geomechanics. 1982, 6: 47~76
    47 H. S. Yu, S. W. Sloan, P. W. Kleeman. A quadratic element for upper bound limit analysis. Engineering Computations. 1994, 11: 195~212
    48 A. Makrodimopoulos, C. M. Martin. Upper bound limit analysis using simplex strain elements and second-order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics. 2007, 31: 835~865
    49 A. Makrodimopoulos, C. M. Martin. Upper bound limit analysis using discontinous quadartic displacement fields. Communications in Numerical Methods in Engineering. 2008, 24: 911~927
    50 K. Krabbenhoft, A. V. Lyamin, M. Hjiaj, S. W. Sloan. A new discontinous upper bound limit analysis formualtion. International Journal for Numerical Methods in Engineering. 2005, 63: 1069~1088
    51 A. V. Lyamin. Three-Dimensional lower bound limit anlaysis using nonlinear programming. The University of Newcastle Doctor of Philosophy. 1999
    52钱令希,张雄.结构分析中的刚体有限元.计算结构力学及其应用. 1991, 8(1): 1~13
    53张雄.岩体稳定性的极限分析方法——刚体-弹塑性夹层模型.岩土力学. 1992, 13(1): 66~73
    54 X. Zhang. Slope stability analysis based on the rigid finite element method. Géotechnique. 1999, 49: 585–593
    55 J. Chen, J. H. Yin, C. F. Lee. Upper bound limit analysis of slope stability usingrigid finite elements and nonlinear programming. Canadian Geotechnical Journal. 2003, 40(4):742~752
    56 J. Chen, J. H. Yin, C. F. Lee. A rigid finite element method for upper bound limit analysis of soil slopes subjected to pore water pressure. Journal of Engineering Mechanics. 2004, 8: 886~893
    57 J. Chen, J. H. Yin, C. F. Lee. A three-dimensional upper-bound approach to slope stability analysis based on RFEM. Geotechnique, 2005, 55(7): 549~556
    58殷建华,陈健,李焯芬.岩土边坡稳定性的刚体有限元上限分析法.岩石力学与工程学报. 2004, 23(6): 898~905
    59殷建华,陈健,李焯芬.考虑孔隙水压力的土坡稳定性的刚体有限元上限分析.岩土工程学报. 2003, 25(3): 273~277
    60徐千军,李明元,陆杨.边坡稳定极限分析的单元集成法.岩土力学. 2006, 27(7): 1028~1032
    61 P. H. Chuang. Stability analysis in geomechanics by linear programming.Ⅰ: Formulation. Journal of Geotechnical Engineering. 1992, 118(11): 1696~1715
    62 P. H. Chuang. Stability analysis in geomechanics by linear programming.Ⅱ: Approach. Journal of Geotechnical Engineering. 1992, 118(11): 1716~1726
    63 S. Chen, Y. Liu, Z. Cen. Lower-bound limit analysis by using the EFG method and non-linear programming. International Journal for Numerical Methods in Engineering. 2008, 74: 391~415
    64 C. V. Le, M. Gilbert, H. Askes. Limit analysis of plates using the EFG method and second-order cone programming. International Journal for Numerical Methods in Engineering. 2009, 78: 1532~1552
    65 C. V. Le, M. Gilbert, H. Askes. Limit analysis of plates and slabs using a meshless equilibrium formulation. International Journal for Numerical Methods in Engineering. 2010 (Published online. DOI: 10.1002/nme.2887)
    66 S. W. Sloan. A steepest edge active set algorithm for solving sparse linear programming problems. International Journal for Numerical Methods in Engineering. 1988. 26: 2671~2685
    67杨小礼,李亮,刘宝琛.大规模优化及其在上限定理有限元中的应用.岩土工程学报. 2001, 23(5): 602~605
    68 D. Andersen, E. Christiansen. Limit analysis with the dual affine scaling algorithm. Journal of Compuational and Applied Mathematics. 1995, 59:233-243
    69 A. V. Lyamin, S. W. Sloan. Upper bound limit analysis using linear finite elements and nonlinear programming. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 26: 181~216
    70 A. V. Lyamin, S. W. Sloan. Lower bound limit analysis using non-linear programming. International Journal for Numerical and Analytical Methods in Engineering. 2002, 55: 573~611
    71 N. Zouain, J. Herskovits, L. A. Borges, R. A. Feijóo. An iterative algorithm for limit analysis with nonlinear yield functions. International Journal of Solids and Structures. 1993, 30: 1397~1417
    72 J. Herskovits. A two-stadge feasible direction algorithm for nonlinearly constrained optimization. Mathematical Programming. 1986, 36: 19~38
    73张丕新,陆明万,黄克智.极限分析的无搜索数学规划算法.力学学报. 1991, 23: (4): 433~441
    74 Y. H. Liu, Z. Z. Cen, B. Y. Xu. A numerical method for plastic limit analysis of 3-D structures. International Journal of Solids Structures. 1995, 32(12): 1645~1658
    75 Y. G. Zhang, M. W. Lu. An algorithm for plastic limit analysis. Computer methods in applied mechanics and engineering. 1995, 126:333~341
    76 H. Li, Y. Liu, X. Feng, Z. Cen. Micro/macromechanical plastic limit analysis of composite materials and structures. ACTA MECHANICA SOLIDA SINICA, 2001, 14(4): 323~333
    77 A. Capsoni, L. Corradi, P. Vena. Limit analysis of orthotropic structures based on Hill‘s yield condition. International Journal of Solids and Structures. 2001, 38: 3945~3963
    78 H. X. Li, H. S. Yu. Limit analysis of 2-D and 3-D structures based on an ellipsoid yield criterion. Acta Geotechnica. 2006, 1: 179~193
    79 H. X. Li, H. S. Yu. Kinematic limit analysis of frictional materials using nonlinear programming. International Journal of Solids and Structures. 2005, 42: 4058~4076
    80 K. D. Andersen, E. Christiansen, M. L. Overton. Computing limit loads by minimizing a sum of norms. SIAM Journal on Scientific Computing. 1998, 19(3): 1046~1062
    81 K. Krabbenhoft, A. V. Lyamin, S. W. Sloan. Formulation and solution of someplasticity problems as conic programs. International Journal of Solid and Structures. 2007, 44: 1533~1459
    82黄齐武.基于锥形规划理论的数值极限分析下限法及其应用.同济大学博士学位论文. 2007
    83 J. Chen. Slope stability analysis using rigid elements. The Hong Kong Polytechnic University Doctor of Philosophy Thesis. 2004
    84蔡绍怀.用极限平衡法计算钢筋混凝土圆板的强度(一).建筑学报. 1961, 9: 21~24
    85蔡绍怀.用极限平衡法计算钢筋混凝土圆板的强度(二).建筑学报. 1961, 10: 28~31
    86蔡绍怀.用极限平衡法计算钢筋混凝土圆板的强度(三).建筑学报. 1961, 11: 20~23
    87蔡绍怀.钢筋混凝土矩形板在线性分布荷载下的极限强度计算.建筑结构学报. 1980, 3: 43~48
    88蔡绍怀.钢筋混凝土板壳在中面力系作用下的极限分析和设计.建筑结构学报. 1995, 16(6): 11~16
    89蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算.建筑结构学报. 1984, 6: 13~29
    90 A. Capsoni, L. Corradi. Limit analysis of plates– a finite element formulation. Strucutral Engineering and Mechanics. 1999, 8(4): 325~341
    91 A. Capsoni, M. V. da Silva. 2A finite element formulation ofMindlin plates for limit analysis. Commuictions in Numerical Methods in Engineering. 2009, n/a. doi: 10.1002/cnm.1300
    92 K. Krabbenhoft, L. Damkilde. Lower bound limit analysis of slabs with nonlinear yield criteria. Computers and Structures. 2002, 80: 2043~2057
    93 P. B. Louren?o, G. Milani, A. Tralli, A. Zucchini. Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering. 2007, 34: 1443~1457
    94 A. Orduna. Seismic Assessment of ancient masonry structures by rigid blocks limit analysis. University of Minho Doctor of Philosophy Thesis, 2003
    95 P. De Buhant, G. De Felice. A homogenization approach to the ultimate strength of brick masonry. Journal of the Mechancis and Physics of Solids. 1997, 45(7): 1085~1104
    96 J. Sutcliffe, H. S. Yu, A. W. Page. Lower bound limit analysis of unreinforced masonry shear walls. Computers and Structures. 2001, 79: 1295~1312
    97 G. Milani, P. B. Louren?o, A. Tralli. Homogenised limit analysis of masonry walls, Part I: Failure surfaces. Computers and Structures. 2006, 84: 166~180
    98 G. Milani, P. B. Louren?o, A. Tralli. Homogenised limit analysis of masonry walls, Part II: Structural examples. Computers and Structures. 2006, 84: 181~195
    99 M. Gilbert, C. Casapulla, H. M. Ahmed. Limit analysis of masonry block structures with non-associative frictional joints using linear programming. Computers and Structures. 2006, 84: 873~887
    100 G. Milani. Homogenized limit analysis of FRP-reinforced masonry walls out-of-plane loaded. Computational Mechanics. 2009, 43(5): 617~639
    101 G. Milani, E. Milani, A. Tralli. Upper Bound limit analysis model for FRP-reinforced masonry curved structures. Part I: Unreinforced masonry failure surfaces. Computers and Structures. 2009, 87: 1516~1533
    102 G. Milani, E. Milani, A. Tralli. Upper Bound limit analysis model for FRP-reinforced masonry curved structures. Part II: Structural analyses. Computers and Structures. 2009, 87: 1534~1558
    103 G. Milani. 3D FE limit analysis model for multi-layer masonry structures reinforced with FRP strips. International Journal of Mechanical Sciences. 2010, 52: 784~803
    104 A. Cecchi, G. Milani, A. Tralli. A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls. International Journal of Solids and Structures. 2007, 44: 1438~1460
    105 G. Milani, K. Beyer, A. Daziob. Upper bound limit analysis of meso-mechanical spandrel models for the pushover analysis of 2D masonry frames. Engineering Structures. 2009, 31: 2696~2710
    106 A. Cavicchi, L. Gambarotta. Two-dimensional finite element upper bound limit analysis of masonry bridges. Computers and Structures. 2006, 84: 2316~2328
    107 A. Cavicchi, L. Gambarotta. Lower bound limit analysis of masonry bridges including arch–fill interaction. Engineering Structures. 2007, 29: 3002~3014
    108 J. Kim, R. Salgado, H. S. Yu. Limit analysis of soil slopes subjected to pore-water pressures. Journal of Geotechnical and Geoenvirionmental Engineering. 1999, 125(1): 49~58
    109 J. Kim, R. Salgado, J. Lee. Stability analysis of complex soil slopes using limit analysis. Journal of Geotechnical and Geoenvirionmental Engineering. 2002, 128(7): 546~557
    110姜功良.浅埋软土隧道稳定性极限分析.土木工程学报. 1998, 31(5): 65~72
    111谢骏,刘纯贵,于海勇.双平行圆形隧道稳定的塑性极限分析上限解.岩石力学与工程学报. 2006, 25(9): 1835~1841
    112杨小礼,眭志荣.应力剪胀对浅埋隧道稳定性系数的影响.中南大学学报(自然科学版). 2008, 39(1): 190~195
    113杨小礼,王作伟.非线性破坏准则下浅埋隧道围岩压力的极限分析.中南大学学报(自然科学版). 2010, 41(1): 299~302
    114 A. Anthoine. Mixed modelling of reinforced soils within the framework of the yield design theory. Computers and Geotechnics. 1989, 7: 67~82
    115 R. L. Michalowski. Stability of uniformly reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering. 1997, 123(6): 546~556
    116 R. L. Michalowski. Limit analysis in stability calculations of reinforced soil structures. Geotextiles and Geomembranes. 1998, 16: 311~331
    117 R. L. Michalowski. Soil reinforcement for seismic design of geotechnical structures. Computers and Geotecnics. 1998, 23: 1~17
    118 R. L. Michalowski. Limit loads on reinforced foundation soils. Journal of Geotechnical and Geoenvironmental Engineering. 2004, 130(4): 381~390
    119 R. L. Michalowski. Limit analysis with anisotropic fiber-reinforced soil. Geotechnique. 2008, 58(6): 489~501
    120 I. Juran, G. Baudrand, K. Farrag, V. Elias. Kinematical limit analysis for design of soil-nailed structures. Journal of Geotechnical Engineering. 1990, 116(1): 54~72
    121屠毓敏,王建江.土钉支护结构的极限分析方法.岩土力学. 2006, 27(9): 1559~1562
    122卓家寿,章青.不连续介质力学问题的界面元法.科学出版社, 2000: 1-12
    123 J. Chen, J. H. Yin, C. F. Lee. The use of an SQP algorithm in slope stability analysis. Communications in Numerical Methods in Engineering. 2005, 21: 23~37
    124 E. R. Panier, A. L. Tits. A superlinear convergent feasible method for the solution of inequality constrained optimization problems. SIAM Journal onControl and Optimization, 1987, 25: 934~950
    125 Z. Y. Gao, G. P. He, F. Wu. An algorithm of sequential systems of linear equations for nonlinear optimization problems with arbitrary initial point. Science in China (Series A). 1997, 40(6): 561~571
    126 H. D. Qi, L. Qi. A New QP-Free Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM Journal of Optimization. 2000, 11: 113~132
    127 Y. F. Yang, D. H. Li, L. Q. Qi. A feasible sequential linear equation method for inequality constrained optimization. SIAM Journal of Optimization. 2003, 13(4): 1222~1244
    128 Y. Wang, L. Chen, G. He. Sequential systems of linear equations method for general constrained optimization without strict complemetentarity. Journal of Computational and Applied Mathematics. 2005, 182: 447~471
    129 J. B. Jian, W. X. Cheng. A superlinearly convergent strongly sub-feasible SSLE-type algorithm with working set nonlinearly constrained optimization. Journal of Computational and Applied Mathematics. 2009, 225: 172~186
    130 W. Hock, K. Schittkowski. Test examples for nonlinear programming codes, Lecture Notes in Economics and Mathematical Systems. Springer. Verlag, 1981
    131陈祖煜.土力学经典问题的极限分析上、下限解.岩土工程学报. 2002, 24(1): 1~11
    132杨光华.岩土材料不符合Druker公设的一个证明.岩土工程学报. 2010, 32(1): 144~146
    133 E. H. Davis. Theories of plasticity and the failure of soil masses. In Soil Mechanics: selected topics, Lee IK (ed.). Butterworth: London, 1968, 341~380
    134 S. K. Sarma. Stability analysis of embankments and slopes. Geotechnique, 1973, 23(3): 423~433
    135 R. L. Michalowski. An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils and Foundations, 1997, 37(4): 57~64
    136 Y. J. Wang, J. H. Yin, Z. Y. Chen. Calculation of bearing capactiy of a strip footing using an upper bound method. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(8): 841~851
    137 M. Hjiaj, A. V. Lyamin, S. W. Sloan. Numerical limit analysis solutions for the bearing capacity factor Nγ. International Journal of Solids and Structures, 2005, 42: 1681~1704
    138 M. Martin. ABC– Analysis of bearing capacity. Available online from www-civil.eng.ox.ac.uk/people/cmm/software/abc. 2004
    139 M. Martin. Exact bearing capacity calculations using the method of characteristics. In G. Barla, M. Barla editors. Proceedings of the 11th IACMAG, Turin, 2005, (4): 441~450
    140陈肇元,崔京浩.土钉支护在基坑工程中的应用.中国建筑工业出版社, 2000: 1~11
    141 W. E. Milligan, K. Tei. The pull-out resistance of model soil nails. Soils and Foundations, 1998, 38(2): 179~190
    142 L. M. Chu, J. H. Yin. Comparison of interface shear strength of soil nails measured by both direct shear box tests and pullout tests. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1097~1107
    143 L. J. Su, T. C. F. Chan, Y. K. Shiu, T. Cheung, J. H. Yin. Influence of degree of saturation on soil nail pull-out resistance in compacted completely decomposed granite fill. Canadian Geotechnical Journal, 2007, 44: 1314~1328
    144 L. J. Su, T. C. F. Chan, J. H. Yin, Y. K. Shiu, S. L. Chiu. Influence of overburden pressure on soil-nail pullout resistance in a compacted fill. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1339~1347
    145 J. H. Yin, L. J. Su, R. W. M. Cheung, Y. K. Shiu, C. Tang. The influence of grouting pressure on the pullout resistance of soil nails in compacted completely decomposed granite fill. Geotechnique, 2009, 59(2): 103~113
    146秦四清.土钉支护机理与优化设计.地质出版社, 1999: 9~37
    147 F. Schlosser. Behavior and design of soil nailing. In: Proc. on recent developments in ground improvement techniques, Bangkok, Thailand; 1982, 339~413
    148 S. Q. Luo, S. A. Tan, K. Y. Yong. Pull-out resistance mechanism of a soil nail reinforment in dilative soils. Soils and Foundations, 2000, 40(1): 47~56
    149 R. W. Rowe. Stress-dilatancy, earth pressures and slopes. Journal of the Soil Mechacnics and Foundations, Proceeding of ASCE, 1963(SM3): 37~61
    150 M. D. Bolton. The strength and dilatancy sand. Geotechnique, 1986, 36(1): 65~78.
    151 W. H. Zhou. Experimental and theorectical study on pullout resistance of grouted soil nails. The Hong Kong Polytechnic University. Ph.D. Thesis. 2008: 143~145
    152 F. Schlosser, V. Elias. Friction in reinforced earth. Symp. On Earth Reinforcement, ASCE Annal Covention, Pittsburgh, Pennsylvania, USA, 1978: 735~763
    153 W. H. Zhou, J. H. Yin. A simple mathematical model for soil nail and soil interation analysis. Computers and Geotechnics, 2008, 35: 479~488
    154蒋明镜,沈珠江.考虑剪胀的线性软化柱形孔扩张问题.岩石力学与工程学报, 1997, 16(6): 550~557
    155 G. R. Liu, G. T. Gu. An introduction to meshfree methods and their programming. Springer, 2005
    156 S. Chen, C. T. Wu, S. Yoon, Y. You. A stabilized conforming nodal integration for Galerkin mesh-free method. International Journal for Numerical Methods in Engineering. 2001, 50: 435~466
    157 S. Chen, S. Yoon, C. T. Wu. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering. 2002, 53: 2587~2615
    158 A. Khosravifard, M. R. Hematiyan. A new method for meshless integration in
    2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements. 2010, 34: 30~40
    159 M. R. Hematiyan. A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM. Computional Mechanics 2007, 39: 509~520
    160 T. Most, C. Bucher. New concepts for moving least squares: an interploationg non-singular weighting function and weighted nodal least squares. Engineering Analysis with Boundary Elements. 2008, 32: 461~470
    161 T. Belytschko, Y. Y. Lu, L. Gu. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994, 37: 229~256
    162 S. Beissel, T. Belytschko. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechancis and Engineering. 1996, 139: 49~74
    163 J. Pastor, T. H. Thai, P. Francescato. New bounds for the height limit of a vertical slope. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24: 165~182.
    164徐秉业,刘信声.应用弹塑性力学.清华大学出版社, 1995: 191~201
    165 R. Hill. The mathematical theory of plasticity. Oxford University Press, 1950:317~320