大跨度钢管混凝土拱桥日照温度效应理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥作为一种新兴的桥型,具有轻巧的结构、美观的造型、超强的跨越能力、方便的施工方法等优点,近二十年来在我国得到了迅速发展。但是在理论、计算方法、规范制定等方面却还比较落后,还有许多问题待于研究,其中温度问题便是其一。钢管混凝土结构具有与普通混凝土结构不同的材料组成及结构特点,温度场分布与温度效应的产生也与普通混凝土结构有较大差异;相关的温度研究工作也开展较少,目前还没有相关的计算规范,因此有必要对钢管混凝土拱桥的温度效应作进一步的深入研究。
     鉴于以上现状,本文以支井河特大桥—跨径430m的上承式钢管混凝土拱桥为工程背景,从其钢拱肋的安装、钢管混凝土的灌注以及成桥状态方面围绕日照温度和环境温度进行了较为系统的研究,包括温度场的分布形式和温度应力两方面。本文所做的工作如下:
     1.日照温度场及其效应有限元程序模块的编制和应用。
     根据传热学基本定律、太阳物理学、普通天文学和有限元基本理论,研究了运用有限元方法实现日照温度场和应力分析的方法,并以ANSYS为平台编制和开发了对于钢管混凝土拱桥结构进行日照温度效应分析的程序模块。通过实测结果与其进行比较,验证了计算模型和程序的实用性和可靠性。
     2.钢管混凝土拱桥安装阶段钢拱肋温度场及应其效应的研究。
     在大跨度钢管混凝土拱桥钢拱肋安装期问,在大悬臂扣挂状态下,钢拱肋的线形及应力状态极易受到日照及环境温度的影响,给施工控制造成重大影响。本文对其温度场分布及其温度效应进行了研究,研究表明扣索的温度变化和钢拱肋的梯度温度分布是造成线形和应力变化的主要原因,在此基础上拟合了温度分布曲线,通过计算分析给施工控制提供了科学依据。
     3.钢管混凝土灌注阶段温度场及其效应的研究。
     空钢管拱肋合拢以后,要进行钢管内混凝土的泵送顶升工作。整个拱肋除了受到日照和环境温度的影响,还要受到混凝土水化热的影响,为了研究水化过程中综合温度效应对钢拱的影响,要对日照作用和水化过程进行深入研究。针对该工程采用的复合胶凝材料微膨胀高强混凝土,对其水化热释放过程和弹性模量增长曲线进行了分析。在此基础上对日照和水化热复合作用下的温度场分布规律及其效应进行了研究。研究表明:添加了减水剂和膨胀剂的高强混凝土,在较长时间的诱导期结束以后,水化热急剧释放,温度快速上升,中心点的温度在12小时内达到最高值61℃,截面中心和外缘的温差较大,内外温差最高31.3℃;在钢管混凝土水化过程中在钢管和混凝土的界面上不存在拉应力,不会因出现脱粘现象而影响该钢管混凝土复合材料的力学性能;水化期间,截面梯度温度的极差最大点一般出现在上午6~8点,最大差值能够达到23℃左右;钢管上表面的温变应力最高能够达到60MPa,对于核心混凝上水化过程中压应力能够达到6.8MPa。
     4.钢管混凝土拱桥成桥阶段温度场及其效应的研究。
     为确定钢管混凝土拱桥成桥阶段温度场的取值,首先对钢管混凝土的计算合拢温度和有效最高、最低温度进行了研究。根据水化过程中水化热温度场及弹性模量的变化规律,研究表明对于特殊混凝土,其计算合拢温度与空钢管拱的合拢温度与混凝土入仓温度(更确切的说为混凝土开始水化时的温度)有重要关系,可以取为二者温度和的平均值。在晴空日照作用下,对于最高最低有效温度可以取日平均温度的最高最低值。
     本文还对梯度温度的取值进行了研究,通过三组不同钢管直径及不同壁厚的钢管混凝土拱肋特性的分析,拟合了梯度温度的取值曲线。因拱肋截面为圆形截面,具有很强的方向性,因此称此梯度温度为向阳径向温度梯度。
     在上述温度取值的基础上,对成桥运营阶段的温度效应及钢管混凝土拱桥的稳定性进行了研究,研究表明温度荷载对结构挠度和内力的影响较大,内力以拱脚处受温度荷载的影响最大;同时由于拱肋为桁架结构,所以在温度荷载作用下,上下弦杆受力不同,在计算温度影响产生的内力时,对应上下弦杆受力最不利的温度荷载工况是不同的;分析还表明对于温度荷载,不仅仅要考虑均匀温度的影响,还要重点考虑梯度温度对拱肋结构的影响,特别是梯度温度对拱肋的弯矩影响;通过支井河特大桥的双重非线性稳定分析表明:考虑了温度荷载以后,一、二类稳定系数降低了约20-40%,再次表明在拱桥设计时应该充分考虑温度荷载的不利效应。
In the recent 20 years, the concrete filled steel tube(CFST) arch bridge as a new kind of bridge obtained rapid development in our country, being lightweight structure, artistic modelling, strong spanning ability and convenience merits. But in theory, method, standard-setting and so on are still relatively backward, there are many issues to be studyed, temperature is one of the problems. CFST structure has different material composition and structural characteristics compared with ordinary concrete structure, temperature distribution and the temperature effects are also different between the twos. Being work related with temperature less and no standard related coming out, it is necessary to the temperature effect of CFST arch bridge for further study.
     In view of the status quo, from the installation of CFST steel arch ribs, concrete perfusion state and completed bridge state, studies based the engineering background of zhijing river CFST bridge-span 430m were done centering on sunshine temperature and the environment temperature, including temperature field distribution and temperature stress. This work are following:
     1. Edition and application of finite element program modules about temperature Field and its effects.
     According to the basic laws of heat transfer, solar physics, general astronomy and FEM theory, the finite element method of sunshine temperature and stress analysis method was establisheded and edited the program modulus of CFST arch bridge sunshine temperature effects. The utility and reliability of the computational model and procedures were verified comparison with experimental results.
     2. Research on temperature field and its effects of CFST steel arch ribs in installation phase.
     During erection of large span CFST arch rib, steel ribs lineshape and stress state were easily affected by sunshine and environment temperature under long Cantilever. Research on the temperature field distribution and temperature effects were deeply done. Research indicated that buckle Cable temperature variations and gradient temperature distribution are the main reasons. On this basis, this thesis fits the temperature distribution curve and proves a scientific basis for construction control through calculation and analysis.
     3. Research on temperature field and its effects of CFST steel arch ribs in concrete construction phase.
     After the closure of empty steel tube, the concrete which in steel tube must be pumped up. The whole steel tube arch ribs were subjected to not only sunshine temperature and environment temperature, but also concrete hydration heat. The sunshine effects and hydration process must be studied before considering the comprehensive influence of temperature.
     For composite cementitious material micro-expansion high strength concrete used in this project, hydration heat release process and its elastic modulus growth curve were analyzed.On the basis of the combined effects of sunlight and hydration heat, temperature distribution and its effects were studied. The results show that the concrete hydration heat released rapidly with adding the water reducer and high strength concrete expansion agent after the longer induction period, and the temperature rose rapidly, The temperature at the center reached the highest value 61℃, within 12 hours. There is large temperature difference between section center and outer edge, temperature difference between inside and outside reach to the maximum 31.3℃. During the hydration process in CFST, the interface tensile stress does not exist. Debonding phenomenon will not appear as to affect the steel concrete composite mechanical properties. During hydration period, the cross section maximum gradient of temperature is generally appear in the morning of 6 to 8 AM. Steel surface temperature stress can reach to maximum of 60MPa, concrete core compressive stress can reach to 6.8MPa.
     4. Research on temperature field and its effects of completed CFST arch bridge.
     To determine the values of CFST arch bridge temperature field, the calculation closure temperature of CFST and the effective maximum or minimum temperature were studied. According to the process of hydration heat temperature variation and elastic modulus variation, The study shows that for special concrete, the calculation closure temperature is depended on empty steel tube closure temperature and placing temperature, and the calculation closure Temperature can be taken as the average of the two temperature. In the clear sky sunshine, the maximum and minimum effective temperature can be obtained from the highest and minimum average daily temperature.
     The values of the gradient temperature has been studied also, through the analysis of three different tube diameters and wall thickness of CFST, Fitting the values of the temperature gradient curve. For the circular cross-section, the radial temperature gradient has directionlity, this gradient temperature can be called sun-direction radial temperature gradient.
     At the basis of the above, temperature effect and the stability of completed CFST arch bridge has been studied. Studies show that the influence of temperature load on the structure is important for the deflection and internal force, especially for the arch bridge foot. Being arch ribs are truss structure, the force between upper ribs and down ribs is not the same under temperature load, so the most unfavorable working cases are different between upper ribs and down ribs when calculate the temperature force. Still analysis show that not only uniform temperature but also gradient temperature must be considered, especiallyconsidering the gradient temperature for bending moment. The double nonlinear stability analysis of Zhijing Rive bridge shows that first and second stability factor reduced 20%-40% considering temperature load.
引文
[1]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1994.
    [2]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1999.
    [3]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989.
    [4]蒋家奋.三向应力混凝土[M].北京:中国铁道出版社,1988.
    [5]Lally Handbook of Lally Colunm Construetion(Steel Colunms-Concrete Filled) Tenth Edition.NewYork:Lally Columnn ComPanies,1926.
    [6]陈宝春.钢管混凝上拱桥设计与施工[M].北京:人民交通出版社,2000.
    [7]陈宝春,杨亚林.钢管混凝土拱桥应用概况分析,中国公路学会桥梁和结构工程学会2005.
    [8]年全国桥梁学术会议论文集[C].北京:人民交通出版社,pp:219-226.
    [9]Bruce Hunt and Nigel Cooke.Thermal Calculations for Bridge Design.Journal of the Structural division,Septembe,1975.pp:1763-1781.
    [10]闫雯.钢管混凝土拱肋截面温度场及温度效应分析[D].西安:长安大学,2008.
    [11]Mamdouth M.E and Amine.G.Temperature Variations in Concrete Bridges.Journal of Structural Engineering,ASCE.1983(10),2355-2374.
    [12]Emerson M.Bridge temperature and movemet in the British Isles.Bridges Section-Road Reserch laboratory,RRL Report LR 228,Ministry of Transport,1968.
    [13]Zuk W.Thermal and shrinkage slresses in composite bridges.Journal of American Concrete Institute,1961,58(3):327-340.
    [14]Zuk W.Summary rview of studies relating to thermal stresses in highway bridges.Highway Research Records,No.103,1965.
    [15]Zuk w:End movement studies of various type highway bridges.Highway Research Records,No.295,1969.
    [16]Liu Y.N.Zuk W.Thermoelastic behavior in pre-stressed flexural members。Journal of Prestressed Concrete bridges.1963,8(3):64-85.
    [17]Houk I.E,Paxton J.A.Prediction of thermal stresses and strain capacity of concrete by tests on small beams. Journal of American Concrete institute,1970,67(3):253-261.
    [18]Eriekson E.L,Van Eenam,N.Application and developmant of AASHO specifications to bridge design.Journal of Structural Division,ASCE,1957,83(4):1-38.
    [19]Barber E.S.Calculation of nlaximum pavement temperatures from weather reports.Bulltein 168,Highway Research Board,1957:1-8.
    [20]F.凯尔别克著,刘兴法等译.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,社,1981.
    [21]Priestley,M.N.Stractural model of a Prestressed concrete box-girder bridges,Phase 2:Thermal loading,Vol.1,Model description and Temperature Results,New Zealand Ministry of Works,Report No.440,Central Laboratories,Lower Hutt.New Zealand,1972.
    [22]Priestley,M.N.Design of concrete bridges for temperature gradients.Journal of American Concrete Institute.1978,75(5):209-217.
    [23]New Zealand Ministry of Works.Highway Bridge Design Brif,Issue C,Office of the CIlief Civil Engineer,Wellington.New Zealand,1973.
    [24]Priestley,M.N.Linear heat-flow analysis of concrete bridge decks.Research report No.76-3,University of Canterbury,Christchurch.New Zealand,1976.
    [25]铁道部第四工程局科研所等.空心高桥墩温度应科学试验阶段报告[R].长沙,1976.
    [26]刘兴法.预应力混凝土箱形梁的只照温度应力与位移计算[J].桥梁建社,1980,1:32-38.
    [27]刘兴法.预应力混凝土箱梁的温差荷载与应力检算[J].铁路标准设计通,1986,6:1-9.
    [28]刘兴法.圆形空心墩日照温度应力与位移分析[J].铁路标准设计通讯1981,3:14-22.
    [29]刘兴法.混凝土桥梁的温度分布[J].铁道工程学报,1985,1.
    [30]刘兴法.柔性桥墩的日照温度应力计算[J].铁路标准设计通讯,1976,6:1-7.
    [31]刘兴法.柔性墩温度应力计算(之二)[J].铁路标准设计通讯,1978,1:7-17.
    [32]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [33]魏光坪.单室预应力混凝土箱梁温度场及温度应力研究[J].成都:西南交大学学报,1989(4).
    [34]张海元,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报.2004(1).
    [35]余小年.东阳渡湘江大桥温度应力分析[J].中国铁道科学,2000(9).
    [36]康为江.钢筋混凝土箱梁日照温度效应研究[D].长沙:湖南大学硕士学位论文,2001.
    [37]叶见曙,贾琳,钱培舒.混凝土箱梁温度分布观测与研究[J].东南大学学报,2002,32(5):788-793.
    [38]邵旭东,李立峰,鲍卫刚.砼箱形梁横向温度应力计算分析[J].重庆交通学院学报,2000,19(4):5-10.
    [39]王林,项贻强,汪劲丰等.各国规范关于混凝土箱梁桥温度应力计算的分析与比较[J].公路,2004,6:76-79.
    [40]陈玉骥,叶梅新.钢-混凝土结合梁在温度倚载作用下的响应分析[J].中国铁道科学,2001,22(5):48-53.
    [41]陈玉骥,叶梅新.钢-混凝土结合梁的温度效应[J].中南大学学报(自然科学版),2004,35(1):142-146.
    [42]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交通大学,2007.
    [43]陈宝春,刘振宇.钢管混凝土拱桥温度问题研究综述[J].福州大学学报(自然科学版),2009,37(3):412-417.
    [44]陈宝春.钢管混凝土拱桥施工问题研究[J].桥梁建设,2002(3):55-59.
    [45]陈宝春.拱桥技术的回顾与展望[J].福州大学学报(自然科学版),2009,37(1)94-104.
    [46]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    [47]彭文立,罗月静,郑皆连等.钢管拱吊装阶段中温度的影响分析[J].公路,2004(3):45-49.
    [48]王佶,张明中,范剑锋等.钢管拱吊装过程中温度变化对扣索偏角及拱肋线形的影响[J].中国水运,2007,7(5):88-89.
    [49]杜红田,张明中.钢管混凝土拱桥拱肋吊装过程中温度变化对拱肋线形的影响[J].铁道标准设计,2008(3):91-93.
    [50]李秀梅,赖炼,谢肖礼.钢管砼拱桥悬拼过程温度荷载对扣索偏角的影响[J].中南公路工程,2004,29(4):29-30.
    [51]JTG D60-2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [52]徐爱民.钢管混凝土拱桥温度特性研究[D],福州:福州大学硕士论文,1998.
    [53]冯斌.钢管混凝土中核心混凝土的水化热收缩与徐变计算模型研究[D].福州:福州大学,2004.
    [54]刘振宇,钢管混凝土拱肋截面温度场研究[D].福州:福州大学硕士论文,2006.
    [55]王璐,钢管混凝土结构温度影响试验研究[D].重庆:重庆交通大学硕士论文,2006.
    [56]范丙臣.中承式钢管混凝上拱桥的温度评价及试验研究[D].哈尔滨:哈尔滨工业大学,2001.
    [57]林春姣.钢管混凝土拱计算合拢温度研究[D].南宁:广西大学,2008.
    [58]闫雯.钢管混凝土拱肋截而温度场及温度效应分析[D].西安:长安大学,2008.
    [59]朱伯芳.大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社,1999.
    [60]陈宝春,徐爱民,孙潮.钢管混凝土拱桥温度内力计算时温差取值分析[J].中国公路学报,2000,13(2):52-56.
    [61]林春姣,郑皆连,秦荣.哑铃形钢管混凝土截面水化热温度分布有限元分析[J].中外公路,2007(4):125-127.
    [62]林春姣,郑皆连,秦荣.钢管混凝土拱肋成形过程水化热影响分析[J].广西大学学报,2007(2):186-188.
    [63]刘振宇,陈宝春.钢管混凝土拱肋施工过程截面温度特性分析[J].公路交通科技,2006,23(5):52-55.
    [64]刘振宇,陈宝春.日照作用下钢管混凝土构件截面温度场有限元分析[J].公路交通科技,2008,25(7):49-53.
    [65]张后举.中承式钢管混凝土拱桥温度场及温度效应分析[D].西安:长安大学,2009.
    [66]陈宝春,刘振宇.日照作用下钢管混凝土构件温度场实测分析[J1.公路交通科技,2008,25(12):117-122.
    [67]柯婷娴.钢管混凝土哑铃形拱的计算温度取值研究[D].福州:福州大学,2009.
    [68]#12
    [69]彭友松,强士中,刘悦臣.钢管混凝土圆管拱肋日照温度分布研究[J].桥梁建设,2006,27(6):18-24.
    [70]彭友松,强士中,李松.哑铃形钢管混凝士拱日照温度分布研究[J].桥梁建设,2006,27(5):9-11.
    [71]陈宝春,郑振飞.拱桥非线性温差的应力计算[J].福州大学学报(自然科学版),1990,18(3):75-81.
    [72]熊红霞.钢管混凝土拱桥收缩徐变与温度应力的数值模拟分析[D].武汉:武汉理工大学,2004.
    [73]何雄君,文武松,胡志坚.钢管混凝土拱桥温度荷载分析[J].桥梁建设,2000(1):17-19.
    [74]徐爱民,陈宝春.钢管混凝土拱桥温度应力数值分析[J].福州大学学报(自然科学版),1999,27(3):15-18.
    [75]赵毓成.钢管混凝土拱桥温度应力分析[D].沈阳:东北大学,2005.
    [76]李申生.太阳能物理学[M].北京:首都师范大学出版社,1996.
    [77]Kuehn T.H, Ramsey J.W, Threlkeld J.L. Thermal enviromental engineering,3rd ed. Upper Saddle River, N,J.:Prentice Hall,1998.
    [78]ASHRAE handbook. Heating, ventilating, and air-conditioning systems and equipment. Atlanta, GA,1992.
    [79]Elbadry M.M, GhaliA. Temperature variations in conerete bridges.Journal of the Structural Engineenng,ASCE,1983 109(10):2355-237.
    [80]Sayigh AAM.太阳能工程.徐任学,刘鉴民译.北京:科学出版社,1984.
    [81]杨世铭,陶文锉.传热学(第三版).北京:高等教育出版社,1998.
    [82]J.P.霍尔曼著.传热学.马庆芳,马重芳,王兴国译.北京:人民教育出版社,1982.
    [83]R.西格尔,J.R.豪厄尔.曹玉璋,黄素逸,陆大有等译.热辐射传热.北京:科学出版社,1990.
    [84]朱伯芳.大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社,1999.
    [85]Zienkiewicz O.C.Tylor R.L.Finite Element Method, volumel, the Basis, the fifth ed.北京:世界图书出版公司,2005.
    [86]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.
    [87]徐芝纶.性力学(第三版上册).北京:高等教育出版社,1996.
    [88]王龙甫.弹性理论[M].北京:科学出版社,1979.
    [89]王洪纲.热弹性力学概论[M].北京:清华大学出版社,1989.
    [90]谢贻权,林钟祥,丁皓江.弹性力学[M].杭州:浙江大学出版社.1988.
    [91]竹内洋一郎.热应力[M].郭廷伟,李安定译.北京:科学出版社,1977.
    [92]Timoshenko S.P,Goodler J.N. Theory of Elasticity[M].New York:The McGraw-Hill Companies,Inc.,1970.
    [93]Nowinski J.L Theory of thermoelastidty with applications. Sithoff & Noordhoff International Publishers,The Netherlands,1978.
    [94]薛守义.有限单元法.北京:中国建材工业出版社,2005.
    [95]郑志明,周建庭,梁雄等.大跨钢管混凝士拱桥实测与理论温差变形分析[J],重庆交通大学学报(自然科学版),2008,27(3):843-848.
    [96]田杨,夏招广.薄壁箱型梁桥日照温度场的数值计算分析[J].四川建筑科学研究,2009,35(2):67-70.
    [97]蔡正泳.混凝土性能[M].北京:水利电力出版社,1987.
    [98]朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报.1985.9:23-26.
    [99]阎培渝,郑峰.温度对补偿收缩复合胶凝材料水化放热特性的影响[J].硅酸盐学报,2006,34(8):1006-1010.
    [100]阎培渝,徐志全.水胶比和组成对补偿收缩胶凝材料的水化反应的影响[J].硅酸盐学报2003,31(8):790-794.
    [101]鲁统卫,刘永生,王谦.粉煤灰和膨胀剂配制高性能混凝土的研究及应用[J].混凝土2002,153(7):39-42.
    [102]危鼎,戴耀军,王桂玲.胶凝材料水化热计算问题探讨[J].水泥,2009(3):15-17.
    [103]民用建筑热工设计规范(GB 50176-93)[S],北京:中国建筑工业出版社,1994.
    [104]Priestly M J N. Thermal Gradients in Bridges-some DesignConsiderations. New Zealand Engineering,1972,27(7):228-233.
    [105]Branco F A,Mendes P.A.Thermal Actions for ConcreteBridge Design.Journal of Structural Engineering,1993,119(8):2313-2331.
    [106]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986,19(1):44-54.
    [107]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [108]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,17(1):49-52.
    [109]刘来君,贺拴海,宋一凡.大跨径桥梁施工控制温度应力分析[J].中国公路学报,2004,17(1)53-56.
    [110]Pant B, Ashwath B K. Discussion of Temperature Variations in Concrete Bridges.Journal of Structural Engineering,1984,110(12):3059-3060.
    [111]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,1996.
    [112]项海帆,姚玲森.高等桥梁结构理论[M].北京:人民交通出版社,1991.
    [113]龙驭球,包世华等编.结构力学[M].北京:高等教育出版社(第二版),1996.
    [114]项海帆,刘光栋.拱结构的稳定与振动[M].北京:人民交通出版社,1991.
    [115]韩林海.钢管混凝土结构—理论与实践[M].北京:科学出版社,2004.
    [116]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [117]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2004.
    [118]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005.
    [119]王勖成,劭敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2002.
    [120]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州大学,2006,4.