通风对建筑物室内污染物浓度分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,越来越多的建筑经过了大量的装饰、装修,而且由于建筑节能的需要,房间的密闭性加强,这样就造成了室内存在大量低浓度挥发性有机物,它们将会对人体产生严重危害。研究通风对室内污染物浓度分布的影响是建筑环境研究中的重要工作之一,研究成果对于完善室内空气品质的评价体系,优化建筑室内通风系统的设计以及尽早将室内空气品质的研究体现在工程设计上等都有十分重要的意义。
     本文介绍了室内空气品质、通风效率、通风方式等。综述了室内空气品质以及CFD技术研究现状和存在问题。采用数值模拟与实验验证相结合的研究方法,以计算流体力学软件PHOENICS为模拟仿真工具,通过多次模拟选定合理的描述污染物分布的数学模型,并对污染源进行合理的设置。通过实测教学楼空调房间甲醛的浓度分布,验证了模拟程序设置的正确性。以重庆江津白沙镇建筑节能示范楼为研究对象,探讨了住宅建筑中自然通风与机械通风对污染物浓度分布的影响,并讨论了自然通风中,风口位置与风口大小对室内污染物浓度分布的影响,讨论了机械通风中,换气次数、风速以及进风口位置对污染物浓度分布的影响。
     自然通风实验结果表明,示范楼建筑设计的自然通风方案,可以有效排出室内污染物;现场测试结果显示,简单装修的房间,室内HCHO和TVOC的浓度都满足室内空气质量标准的要求,说明该示范楼设计的自然通风方案是合理的。机械通风实验结果表明,三种机械通风量对室内污染物浓度分布影响不大。最大风量所排出室内污染物的速率较小。
     自然通风数值模拟结果表明,风口位置和风口大小都会影响室内污染物的浓度分布。东、西外窗同时开启,易于形成穿堂风,能够有效排出室内污染物;增大进风口面积,风量增大,排出室内污染物的能力增强;秋季在风压和热压作用下的自然通风,排出室内污染物的速率很快,通风效率很高,能够明显改善室内空气品质。
     机械通风数值模拟结果表明,换气次数、排风速度以及进风口位置都会影响室内污染物的浓度分布。换气次数增大时,排出室内污染物的能力增强;相同的排风量下,增大排风速度,通风效率改变不大;排风口位置不变,进风口位置下移时,通风效率增大。
     研究结果表明,自然通风时,室内的污染物浓度在空间高度上的变化较小,分布比较均匀;机械通风时,室内污染物浓度在空间高度上呈现下高上低的浓度分层分布。
With the development of social economy, more and more buildings are massively decorated, plus the need of energy conservation, the room airtight is strengthened, which cause massive low density volatile organic compounds exist in the room, they will be harm to the human body. Studying on the interior contaminant distribution characteristic and appraising discharging pollutant ability of different ventilation pattern are one of important job on building environment studies, which is very important to perfect valuation system of indoor air quality, to design building ventilation system, and consider interior air quality in engineering design.
     Indoor air quality、ventilation efficiency and ventilation pattern was introduced in this paper. Summed up the present situation and existed problems of indoor air quality and CFD research, combined numerical simulation and experiment method, made use of computational fluid dynamics software PHOENICS, by means of many times simulation, selected the mathematic model describing the pollutant distribution and set pollution source reasonably. Tested the formaldehyde concentration of air-conditioning room, verified the correctness of simulation procedure. Aimed at energy conservation demonstrated building, discussed the effect of natural ventilation and mechanical ventilation on indoor pollutant distribution, discussed the effect of inlet position and inlet area of natural ventilation on indoor pollutant distribution, and discussed the effect of air exchange rate and velocity of mechanical ventilation on indoor pollutant distribution.
     The experiment results show that, the natural ventilation of demonstrated building could discharge indoor pollutant effetely; the tested results of natural ventilation show that, the HCHO and TVOC concentration of decorated building can satisfy the indoor air quality standard after one year; the tested results of mechanical ventilation show that, the effect of ventilation quantity on indoor pollutant distribution is not obvious, the velocity of discharging indoor pollutant with the maximum is lower than natural ventilation.
     The numerical simulation results of natural ventilation show that, inlet position、inlet area and inlet temperature can influence the indoor pollutant distribution, when half area of east and west window open, indoor pollutant can be discharged effetely; Enlarge area of inlet, the ability of discharging indoor pollutant is strengthened; in autumn, natural ventilation under wind and hot pressure can discharge indoor pollutant quickly, the ventilation efficiency is very high, natural ventilation can improve indoor air quality obviously. The pollutant distribution under natural ventilation is homogeneous on height direction.
     The numerical simulation results of mechanical ventilation show that, the air exchange rate, exhaust velocity and inlet position can influence indoor pollutant distribution. When air exchange rate increase, the ability of discharging indoor pollutant is strengthened; when exhaust velocity increases, ventilation efficiency also increases; the outlet position keeps invariant, change the inlet position, the ventilation efficiency also increases. The pollutant concentration of mechanical ventilation is high at the bottom of room and low at the upper part of room.
引文
[1] A. P. Jones. Indoor air quality and health.Atmospheric Environment, 1999, 33(28): 4535-4564
    [2] 沈晋明. 同济大学. 室内空气品质若干误区辨析.暖通空调. 2002.32(5):37-39
    [3] 刘焯. 室内污染检测控制方法与标准规范实用手册:中卷[M]. 北京:中科多媒体电子出版社,2003:822
    [4] (美)Allan T. Kirkpatric and James S.Elleson. COLD AIR DISTRIBUTION SYSTEM DESIGN GUIDE[M] 中国建筑工业出版社
    [5] Fatiborz Haghighat, Lisa De Bellis. Material emission Rates: literature review and the impact of indoor air temperature and relative humidity. Building and Environment. 1997, 33(5): 261-277
    [6] 张宏伟. 室内空气污染的健康效应.国外医学卫生学分册. 2002,29(3): 162-165
    [7] Bruce N, Perez Padilla R and Albalak R. Indoor air pollution In Developing Countries: a Major Environmental and Public Health Challenge. Bulletin of The World Health Organization. 2000, 78(9): 1078-1092
    [8] 潘峰. 室内空气污染不容忽视[N]. 科学时报,1999-03-23
    [9] 郑慧,王志刚. 室内环境污染与环境设计[J]. 环境科学动态,2001(1): 32
    [10] 中国建筑科学研究院.《民用建筑热工设计规范》(GB50176-93).第一版. 北京:中国建筑工业出版社,1993,1-10
    [11] 郝俊红. 中国四城市住宅室内空气品质调查及控制标准研究. 湖南大学硕士学位论文
    [12] ISBN 7-80177-040-4/TU 023.编委会《民用建筑工程室内环境污染控制规范辅导教材》.北京.中国计划出版社.2002.02: 12
    [13] 巨久平,马九贤.气流运动及其与热舒适关系研究的发展与评述.暖通空调,1999(4):75-79
    [14] 赵彬,林波荣,李宪庭,彦启森.室内空气分布的预测方法及比较.暖通空调,2001(4):82-86
    [15] 龚光彩.CFD 技术在暖通空调制冷工程中的应用[J].暖通空调,1999 年第 6 期
    [16] Nielsen P.V.Flow in air conditioning rooms.Ph.D.Thesis, Technical University of Denmark, Copenhagen, 1974, pp3-4
    [17] Chen Q.Indoor Airflow, Air Quality and Energy Consumption of Buildings, Ph.D.Thesis of Delft University of Technology, Delft.1988
    [18] Rahmood A.Yaghoubi et al.Three-dimensional Numerical Simulation of Air Contamination Dispersal in a room.ASHRAE Technical Data Bulletin.1995, pp59-68
    [19] Yu Fu.Room Air Distribution and Indoor Air Quality Modeling by Computational Fluid Dynamics.the Second International Symposium on Heating,Ventilation and Air Conditioning, Beijing, 25-27 Sept,1995,pp112-117
    [20] C.Teodosiu etal. Experimental and Numerical Prediction of Indoor Air Quality. [CD]. proceedings of ROOMWENT2000, Reading, UK
    [21] Guohui Gan. Evaluation of room air distribution systems using computational fluid dynamics. Energy and Buildings. 1995, (23): 83-89
    [22] Weizhen Lu, Rew T.Howarth, Nor Adam etc. Modeling and measurement of airflow and aerosol particle distribution in a Ventilated two-zone chamber. Building and Environment. 1996, (31):417-423
    [23] H.Xing, A.Haton, H.B-Awbi. A study of the air quality in the breathing zone in a room with displacement ventilation. Building and Environment. 2001, (36): 809-820
    [24] H.Guo, S.C. Lee, W.M. Li, J.J. Cao. Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmospheric Environment. 2003, 37:73-82
    [25] Guo H. Evaluation of Total Volatile Organic Compound Emissions from Adhesives Based on Chamber Tests. J. of the Air& Waste Management Association. 2000, 50(2): 199-206
    [26] A.T. Hodgson, D. Faulkner, D.P. Sullivan, D.L. DiBartolomeo, M.L. Russell, W.J. Fisk Effect of outside air ventilation rate on volatile organic compound concentrations in a call center. Atmospheric Environment 37(2003) 5517-5527
    [27] Sumin Kim, Jin-A Kim, Hyun-Joong Kim, Shin Do Kim. Determination of formaldehyde and TVOC emission factor from wood-based composites by small chamber method. Polymer Testing 25(2006)605-614
    [28] Zeli Que, Takeshi Furuno, Sadanobu Katoh, Yoshihiko Nishino. The mathematical model for the formaldehyde emission from wood-based board in room. Building and Environment 42(2007)2321-2324
    [29] 王菊凝,陈宝生,刘光锉等.天然气对室内空气污染的卫生评价.环境科学.1995,(3): 44- 63
    [30] 朱利中,刘勇健.室内空气中多环芳烃的污染特征、来源及影响因素分析.环境科学学报.2001, 21(1):64-68
    [31] 刘杰.,姚汉超,陈茂林等人造板材释放的甲醛所致的遗传毒性的研究.环境科学学报.2003, 23(5): 679-682
    [32] 严彦,王光学,杨旭等.木制人造板材甲醛释放规律的研究.环境科学学报.2003, 23(1): 134-137
    [33] 白志鹏,王宗爽,贾纯荣等.应用环境舱研究室内混凝土墙体中氨的释放规律中国环境科学. 2003, 23(2): 117-121
    [34] 韩克勤,井海宁.室内材料和用品挥发性有机物释放速率测定和释放规律.中国环境卫生.20025(1): 190-205
    [35] 沈晋明,刘燕敏,孙光前.室内空气品质的新定义与新风直接入室方法的实验测试.[J]暖通空调,1995(06)
    [36] 李宪庭,江亿.用计算流体力学方法求解通风房间的空气年龄.清华大学学报,Vol.38, No.5, 1998, pp28-31
    [37] 邓峥,朱莹,朱铁勋.空调新风问题的探讨[J]能源研究与信息,1999(02)
    [38] Yu Huifang, LiXinyi, Lu Jing, et al. Investigation on indoor air pollution in furniture markets[J]. Journal of environment and Health, 2000, 17(4):224-227
    [39] 徐丽,翁培奋,孙为民.三种通风方式下的室内气流组织和室内空气品质的数值分析[J].空气动力学学报,2003,21(3): 311-319
    [40] 杨婉. 室内通风效率及污染物的治理. 四川大学工程硕士学位论文,2005
    [41] 李治民,杨运良,魏平儒,袁东升. 置换通风下污染源对室内空气品质的影响.河南理工大学学报第 2006, Vol. (5): 355-358
    [42] 陆亚俊主编.暖通空调.北京:中国建筑工业出版社,2002
    [43] 张金萍.自然通风的研究应用现状与问题探讨.暖通空调.2005.8
    [44] ASHRAE Standard 55-92.Thermal Environmental Comfort Conditions for Human Occupancy. ASHRAE,Inc.
    [45] GBJ19-87 采暖通风与空气调节设计规范.北京:中国计划出版社,1989
    [46] 陶文铨.数值传热学.西安交通大学出版社,1988
    [47] 汤广发.室内气流数值计算及模型实验.湖南大学出版社,1989
    [48] Y.S. Chen and S.W.Kim.Computation of turbulent flows using an extended k ?εturbulence closure model. NASA CR-179204,ASHRAE HandBook,1987
    [49] AgonaferD,Liao GL,SpaldingB.The LVEL turbulence model for conjugate heat transfer at low Reynolds numbers.PHOENICS/Polis/Lecture/LVEL,2002
    [50] PHOENICS3.3 User Handbook[J].Cham Corporation.U.K.,2002.2
    [51] 室内空气质量标准(GB/T 18883-2002)附录 A.室内空气监测技术
    [52] 白雁斌,刘兴荣.模拟舱内温度对甲醛扩散的影响[J]中国公共卫生, 2003(05)
    [53] 田胜元,萧曰嵘编著.实验设计与数据处理.北京:中国建筑工业出版社,1988
    [54] 杨虎,刘琼荪,钟波编著.数理统计.北京:高等教育出版社,2004